Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.034
Filter
1.
J Pak Med Assoc ; 74(4): 647-651, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38751255

ABSTRACT

Objectives: To examine the influence of hirudotherapy on parameters of oxidative stress. METHODS: The cross-sectional study was conducted from March 29 to September 29, 2021, at the Alanya Research and Training Hospital's Traditional and Complementary Medicine Application Centre, Turkey, and comprised adult volunteers of either gender. The participants were subjected to two sessions of hirudotherapy 4 weeks apart. Total antioxidant status, total oxidant status, oxidative stress index values, ischaemia-modified albumin level, paraoxonase 1, disulfide, native thiol, total thiol, and arylesterase levels were assessed at baseline and after the second hirudotherapy session. Data was analysed using SPSS 15. RESULTS: Of the 50 subjects, 30(60%) were females and 20(40%) were males. The overall mean age was 47.10±15.16 years. Oxidative stress, ischaemia-modified albumin and disulfide levels decreased, but not significantly (p>0.05). The reduction in disulfide levels was significant (p=0.021). CONCLUSIONS: Hirudotherapy, within its limitations, could reduce oxidative stress.


Subject(s)
Antioxidants , Aryldialkylphosphatase , Carboxylic Ester Hydrolases , Oxidative Stress , Serum Albumin, Human , Humans , Female , Male , Adult , Antioxidants/metabolism , Aryldialkylphosphatase/blood , Aryldialkylphosphatase/metabolism , Cross-Sectional Studies , Middle Aged , Serum Albumin, Human/metabolism , Carboxylic Ester Hydrolases/metabolism , Carboxylic Ester Hydrolases/blood , Disulfides/blood , Sulfhydryl Compounds/blood , Oxidants/blood , Oxidants/metabolism , Turkey
2.
Discov Med ; 36(184): 1054-1069, 2024 May.
Article in English | MEDLINE | ID: mdl-38798264

ABSTRACT

BACKGROUND: The variations in sequence, three-dimensional structure, and post-translational modifications (PTMs) of human serum albumin (HSA) are crucial for its physiological functions. This study aims to analyze and compare the disparities in PTMs between HSA derived from human plasma and genetically recombinant sources for clinical treatments in China. METHODS: Six distinct PTMs, namely acetylation, succinylation, crotonylation, phosphorylation, beta-hydroxybutyrylation, and lactylation, were identified using pan-specific antibodies via Western blot analysis. The samples, comprising human plasma-derived HSA (pHSA) from six different manufacturers and recombinant HSA (rHSA) expressed in yeast and Oryza sativa, underwent detection for various types of PTMs. Additionally, a 4D label-free quantitative proteomic analysis was performed to identify N-glycosylation and the aforementioned PTMs in both pHSA and rHSA samples. This analysis aimed to discern disparities in modification sites and levels. RESULTS: Through Western blot analysis, all six pHSA and two rHSA samples displayed positive bands for albumin (66.5 kDa) across the six PTMs. Subsequent analysis using 4D label-free quantitative proteomics revealed 25 (29) acetylated, 30 (32) succinylated, 41 (50) malonylated, 15 (23) phosphorylated, 36 (30) beta-hydroxybutyrylated, and 27 (34) lactylated modification sites in pHSA and rHSA samples, with no N-glycosylation modification sites detected. The analysis identified 1 acetylation (ALB_K160), 2 beta-hydroxybutyrylation (ALB_K569, ALB_K426), and 3 crotonylation (ALB_K264, ALB_K581, ALB_K560) specific modification sites in pHSA, as well as 3 crotonylation (ALB_K560, ALB_K562, ALB_K75), 1 succinylation (ALB_K490), and 23 phosphorylation specific modification sites in rHSA. In pHSA (rHSA), 2 (6) acetylation, 10 (12) succinylation, 0 (9) crotonylation, 1 (9) phosphorylation, 6 (0) beta-hydroxybutyrylation, and 0 (7) lactylation specific modification sites were found. Moreover, in the shared modification sites between pHSA and rHSA, pHSA exhibited up-regulation of amberylation (16:1) and beta-hydroxybutyrylation (12:2) in more sites, and up-regulation of acetylation (7:11), crotonylation (2:11), phosphorylation (1:8), and lactylation (1:14) in fewer sites compared to rHSA. CONCLUSION: In clinical practice, both pHSA and rHSA utilized in China commonly display acetylation, succinylation, crotonylation, phosphorylation, beta-hydroxybutyrylation, and lactylation. Notably, there exist distinctions in the site characteristics and modification levels of these alterations between pHSA and rHSA. Further experimental inquiries are imperative to delve into the implications of these disparities in PTMs on the biological functionality, effectiveness, and safety of pHSA and rHSA.


Subject(s)
Protein Processing, Post-Translational , Recombinant Proteins , Serum Albumin, Human , Humans , China , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Serum Albumin, Human/metabolism , Serum Albumin, Human/chemistry , Serum Albumin, Human/genetics , Acetylation , Glycosylation , Proteomics/methods , Phosphorylation
3.
Sci Rep ; 14(1): 10185, 2024 05 03.
Article in English | MEDLINE | ID: mdl-38702420

ABSTRACT

Albumin, a key protein in human blood plasma, has been linked to various health conditions. However, its association with malaria, particularly in assessing disease severity, remains inadequately understood. This comprehensive systematic review and meta-analysis aimed to elucidate the relationship between albumin levels and malaria severity. A comprehensive literature search was conducted across multiple databases, including Embase, Scopus, PubMed, MEDLINE, Ovid, and Google Scholar, to identify studies examining albumin levels in malaria patients. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed. Data were pooled using a random-effects model, and heterogeneity was assessed using I2 statistics. Subgroup and meta-regression analyses were performed based on publication year, study location, and Plasmodium species. A total of 37 studies were included in this review. The thematic synthesis indicated that albumin levels in malaria patients varied significantly based on geographical location. A meta-analysis of 28 studies found that albumin levels were significantly lower in malaria patients compared with non-malarial controls (P < 0.001, standardized mean differences [SMD] = -2.23, 95% CI - 3.25 to - 1.20, I2: 98%, random effects model, 28 studies). Additionally, subgroup analysis revealed variations in albumin levels based on geographical location and Plasmodium species. Regarding the association with disease severity, thematic synthesis showed that severe malaria cases generally had decreased albumin levels across various regions. However, one Brazilian study reported higher albumin levels in severe cases. A separate meta-analysis of five studies found significantly lower albumin levels in patients experiencing severe malaria relative to those with less severe forms of the disease (P < 0.001, SMD = -0.66, 95% CI - 1.07 to - 0.25), I2: 73%, random effects model, 5 studies). This study underscores the clinical significance of albumin as a potential biomarker for Plasmodium infection and the severity of malaria. The findings suggest that albumin level monitoring could be crucial in managing malaria patients, especially in assessing disease severity and tailoring treatment approaches. Additional studies are required to investigate the underlying mechanisms driving these associations and validate the clinical utility of albumin levels in malaria patient management.


Subject(s)
Malaria , Severity of Illness Index , Humans , Malaria/blood , Malaria/parasitology , Biomarkers/blood , Serum Albumin/analysis , Serum Albumin/metabolism , Serum Albumin, Human/analysis , Serum Albumin, Human/metabolism
4.
Int J Mol Sci ; 25(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38791436

ABSTRACT

A comprehensive study of the interactions of human serum albumin (HSA) and α-1-acid glycoprotein (AAG) with two isoquinoline alkaloids, i.e., allocryptopine (ACP) and protopine (PP), was performed. The UV-Vis spectroscopy, molecular docking, competitive binding assays, and circular dichroism (CD) spectroscopy were used for the investigations. The results showed that ACP and PP form spontaneous and stable complexes with HSA and AAG, with ACP displaying a stronger affinity towards both proteins. Molecular docking studies revealed the preferential binding of ACP and PP to specific sites within HSA, with site 2 (IIIA) being identified as the favored location for both alkaloids. This was supported by competitive binding assays using markers specific to HSA's drug binding sites. Similarly, for AAG, a decrease in fluorescence intensity upon addition of the alkaloids to AAG/quinaldine red (QR) complexes indicated the replacement of the marker by the alkaloids, with ACP showing a greater extent of replacement than PP. CD spectroscopy showed that the proteins' structures remained largely unchanged, suggesting that the formation of complexes did not significantly perturb the overall spatial configuration of these macromolecules. These findings are crucial for advancing the knowledge on the natural product-protein interactions and the future design of isoquinoline alkaloid-based therapeutics.


Subject(s)
Molecular Docking Simulation , Protein Binding , Humans , Binding Sites , Circular Dichroism , Orosomucoid/chemistry , Orosomucoid/metabolism , Berberine Alkaloids/chemistry , Berberine Alkaloids/metabolism , Serum Albumin, Human/chemistry , Serum Albumin, Human/metabolism , Benzophenanthridines/chemistry , Benzophenanthridines/metabolism , Blood Proteins/chemistry , Blood Proteins/metabolism
5.
AAPS J ; 26(3): 59, 2024 05 09.
Article in English | MEDLINE | ID: mdl-38724865

ABSTRACT

Drug clearance in obese subjects varies widely among different drugs and across subjects with different severity of obesity. This study investigates correlations between plasma clearance (CLp) and drug- and patient-related characteristics in obese subjects, and evaluates the systematic accuracy of common weight-based dosing methods. A physiologically-based pharmacokinetic (PBPK) modeling approach that uses recent information on obesity-related changes in physiology was used to simulate CLp for a normal-weight subject (body mass index [BMI] = 20) and subjects with various severities of obesity (BMI 25-60) for hypothetical hepatically cleared drugs with a wide range of properties. Influential variables for CLp change were investigated. For each drug and obese subject, the exponent that yields perfect allometric scaling of CLp from normal-weight subjects was assessed. Among all variables, BMI and relative changes in enzyme activity resulting from obesity proved highly correlated with obesity-related CLp changes. Drugs bound to α1-acid glycoprotein (AAG) had lower CLp changes compared to drugs bound to human serum albumin (HSA). Lower extraction ratios (ER) corresponded to higher CLp changes compared to higher ER. The allometric exponent for perfect scaling ranged from -3.84 to 3.34 illustrating that none of the scaling methods performed well in all situations. While all three dosing methods are generally systematically accurate for drugs with unchanged or up to 50% increased enzyme activity in subjects with a BMI below 30 kg/m2, in any of the other cases, information on the different drug properties and severity of obesity is required to select an appropriate dosing method for individuals with obesity.


Subject(s)
Body Mass Index , Models, Biological , Obesity , Humans , Obesity/metabolism , Metabolic Clearance Rate/physiology , Pharmaceutical Preparations/metabolism , Pharmaceutical Preparations/administration & dosage , Liver/metabolism , Orosomucoid/metabolism , Serum Albumin, Human/metabolism , Serum Albumin, Human/analysis , Male , Adult
6.
Phys Chem Chem Phys ; 26(22): 15968-15977, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38775038

ABSTRACT

Relaxation times of nuclear spins often serve as a valuable source of information on the dynamics of various biochemical processes. Measuring relaxation as a function of the external magnetic field turned out to be extremely useful for the studies of weak ligand-protein interactions. We demonstrate that observing the relaxation of the long-lived spin order instead of longitudinal magnetization extends the capability of this approach. We studied the field-dependent relaxation of the longitudinal magnetization and the singlet order (SO) of methylene protons in alanine-glycine dipeptide and citrate in the presence of human serum albumin (HSA). As a result, SO relaxation proved to be more sensitive to ligand-protein interaction, providing higher relaxation contrast for various HSA concentrations. To assess the parameters of the binding process in more details, we utilized a simple analytical relaxation model to fit the experimental field dependences for both SO and T1 relaxation. We also tested the validity of our approach in the experiments with trimethylsilylpropanoic acid (TSP) used as a competitor in ligand binding with HSA.


Subject(s)
Protein Binding , Serum Albumin, Human , Ligands , Humans , Serum Albumin, Human/chemistry , Serum Albumin, Human/metabolism , Dipeptides/chemistry , Dipeptides/metabolism , Citric Acid/chemistry
7.
Exp Clin Transplant ; 22(3): 214-222, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38695590

ABSTRACT

OBJECTIVES: Sarcopenia is common in chronic kidney disease and associated with increased mortality. We investigated the prevalence of sarcopenia, defined as low muscle mass by the psoas muscle index, in endstage renal disease patients on waiting lists for kidney transplant and determined its association with prognostic nutritional index, C-reactive protein-toalbumin ratio, cardiovascular events, and mortality. MATERIALS AND METHODS: Our study included 162 patients with end-stage renal disease and 87 agematched healthy controls. We calculated nutritional status as follows: prognostic nutritional index = (10 × albumin [g/dL]) + (0.005 × total lymphocyte count (×103/µL]) and C-reactive protein-to-albumin ratio. We gathered demographic and laboratory data from medical records. RESULTS: Patients with end-stage renal disease had a mean age of 44.7 ± 14.2 years; follow-up time was 3.37 years (range, 0.35-9.60 y). Although patients with endstage renal disease versus controls had higher prevalence of sarcopenia (16.7% vs 3.4%; P = .002) and C-reactive protein-to-albumin ratio (1.47 [range, 0.12-37.10] vs 0.74 [range, 0.21-10.20]; P < .001), prognostic nutritional index was lower (40 [range, 20.4-52.2] vs 44 [range, 36.1-53.0]; P < .001). In patients with end-stage renal disease with and without sarcopenia, prognostic nutritional index (P = .005) was lower and C-reactive protein-to-albumin ratio (P = .041) was higher in those with versus those without sarcopenia. Among 67 patients on waiting lists who received kidney transplants, those without sarcopenia had better 5-year patient survival posttransplant than those with sarcopenia (P = .001). Multivariate regression analysis showed sarcopenia and low prognostic nutritional index were independentrisk factors for mortality among patients with end-stage renal disease. CONCLUSIONS: Sarcopenia was ~5 times more frequent in patients with end-stage renal disease than in healthy controls and was positively correlated with the prognostic nutritional index. Sarcopenia was an independent risk factor for mortality in patients on transplant waiting lists.


Subject(s)
Biomarkers , C-Reactive Protein , Kidney Failure, Chronic , Kidney Transplantation , Nutrition Assessment , Nutritional Status , Predictive Value of Tests , Sarcopenia , Waiting Lists , Humans , Sarcopenia/diagnostic imaging , Sarcopenia/mortality , Sarcopenia/epidemiology , Sarcopenia/diagnosis , Kidney Transplantation/adverse effects , Kidney Transplantation/mortality , Male , Female , Middle Aged , Kidney Failure, Chronic/mortality , Kidney Failure, Chronic/diagnosis , Kidney Failure, Chronic/surgery , Risk Factors , Adult , Time Factors , Prevalence , Waiting Lists/mortality , C-Reactive Protein/analysis , Risk Assessment , Biomarkers/blood , Serum Albumin, Human/analysis , Serum Albumin, Human/metabolism , Case-Control Studies , Tomography, X-Ray Computed , Treatment Outcome , Psoas Muscles/diagnostic imaging , Retrospective Studies
8.
Metab Syndr Relat Disord ; 22(5): 372-384, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38696648

ABSTRACT

Aims: Cys34 albumin redox modifications (reversible "cysteinylation" and irreversible "di/trioxidation"), besides being just oxidative stress biomarkers, may have primary pathogenetic roles to initiate and/or aggravate cell, tissue, and vascular damage in diabetes. In an exploratory "proof-of-concept" pilot study, we examined longitudinal changes in albumin oxidation during diabetes therapy. Methods: Mass spectrometric analysis was utilized to monitor changes in human serum albumin (HSA) post-translational modifications {glycation [glycated albumin (GA)], cysteinylation [cysteinylated albumin (CA) or human non-mercaptalbumin-1; reversible], di/trioxidation (di/trioxidized albumin or human non-mercaptalbumin-2; irreversible), and truncation (truncated albumin)} during ongoing therapy. Four informative groups of subjects were evaluated [type 1 diabetes (T1DM), type 2 diabetes (T2DM), prediabetes-obesity, and healthy controls] at baseline, and subjects with diabetes were followed for a period up to 280 days. Results: At baseline, T2DM was associated with relatively enhanced albumin cysteinylation (CA% total) compared with T1DM (P = 0.004), despite comparable mean hyperglycemia (P values: hemoglobin A1c = 0.09; GA = 0.09). T2DM, compared with T1DM, exhibited selectively and significantly higher elevations of all the "individual" glycated cum cysteinylated ("multimodified") albumin isoforms (P values: CysHSA+1G = 0.003; CysHSA+2G = 0.007; and CysHSA+3G = 0.001). Improvements in glycemic control and decreases in albumin glycation during diabetes therapy in T2DM were not always associated with concurrent reductions of albumin cysteinylation, and in some therapeutic situations, albumin cysteinylation worsened (glycation-cysteinylation discordance). Important differences were observed between the effects of sulfonylureas and metformin on albumin molecular modifications. Conclusions: T2DM was associated with higher oxidative (cysteinylation) and combined (cysteinylation plus glycation) albumin molecular modifications, which are not ameliorated by improved glucose control alone. Further studies are required to establish the clinical significance and optimal therapeutic strategies to address oxidative protein damage and resulting consequences in diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Glycated Serum Albumin , Hypoglycemic Agents , Oxidation-Reduction , Serum Albumin, Human , Humans , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/metabolism , Male , Middle Aged , Female , Hypoglycemic Agents/therapeutic use , Serum Albumin, Human/metabolism , Serum Albumin, Human/chemistry , Glycosylation , Pilot Projects , Adult , Serum Albumin/metabolism , Oxidative Stress/drug effects , Biomarkers/blood , Glycated Hemoglobin/metabolism , Glycated Hemoglobin/analysis , Blood Glucose/metabolism , Case-Control Studies , Aged , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/metabolism , Glycation End Products, Advanced/metabolism , Protein Processing, Post-Translational , Metformin/therapeutic use , Cysteine/metabolism
9.
Int J Biol Macromol ; 270(Pt 2): 132383, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38754667

ABSTRACT

Halogenated Organic Phosphate Esters (OPEs) are commonly found in plasticizers and flame retardants. However, they are one kind of persistent contaminants that can pose a significant threat to human health and ecosystem as new environmental estrogen. In this study, two representative halogenated OPEs, tris(1,3-dichloro-2-propyl) phosphate (TDCP) and tris(2,3-dibromopropyl) phosphate (TDBP), were selected as experimental subjects to investigate their interaction with human serum albumin (HSA). Despite having similar structures, the two ligands exhibited contrasting effects on enzyme activity of HSA, TDCP inhibiting enzyme activity and TDBP activating it. Furthermore, both TDCP and TDBP could bind to HSA at site I, interacted with Arg222 and other residues, and made the conformation of HSA unfolded. Thermodynamic parameters indicated the main driving forces between TDBP and HSA were hydrogen bonding and van der Waals forces, while TDCP was mainly hydrophobic force. Molecular simulations found that more hydrogen bonds of HSA-TDBP formed during the binding process, and the larger charge area of TDBP than TDCP could partially account for the differences observed in their binding abilities to HSA. Notably, the cytotoxicity of TDBP/TDCP was inversely proportional to their binding ability to HSA, implying a new method for determining the cytotoxicity of halogenated OPEs in vitro.


Subject(s)
Esters , Protein Binding , Serum Albumin, Human , Humans , Esters/chemistry , Serum Albumin, Human/chemistry , Serum Albumin, Human/metabolism , Molecular Dynamics Simulation , Thermodynamics , Molecular Docking Simulation , Hydrogen Bonding , Organophosphates/chemistry , Organophosphates/metabolism , Binding Sites , Halogenation
10.
Int J Mol Sci ; 25(9)2024 May 02.
Article in English | MEDLINE | ID: mdl-38732194

ABSTRACT

An imbalance between production and excretion of amyloid ß peptide (Aß) in the brain tissues of Alzheimer's disease (AD) patients leads to Aß accumulation and the formation of noxious Aß oligomers/plaques. A promising approach to AD prevention is the reduction of free Aß levels by directed enhancement of Aß binding to its natural depot, human serum albumin (HSA). We previously demonstrated the ability of specific low-molecular-weight ligands (LMWLs) in HSA to improve its affinity for Aß. Here we develop this approach through a bioinformatic search for the clinically approved AD-related LMWLs in HSA, followed by classification of the candidates according to the predicted location of their binding sites on the HSA surface, ranking of the candidates, and selective experimental validation of their impact on HSA affinity for Aß. The top 100 candidate LMWLs were classified into five clusters. The specific representatives of the different clusters exhibit dramatically different behavior, with 3- to 13-fold changes in equilibrium dissociation constants for the HSA-Aß40 interaction: prednisone favors HSA-Aß interaction, mefenamic acid shows the opposite effect, and levothyroxine exhibits bidirectional effects. Overall, the LMWLs in HSA chosen here provide a basis for drug repurposing for AD prevention, and for the search of medications promoting AD progression.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Protein Binding , Serum Albumin, Human , Humans , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/chemistry , Ligands , Serum Albumin, Human/metabolism , Serum Albumin, Human/chemistry , Alzheimer Disease/metabolism , Molecular Weight , Binding Sites , Peptide Fragments/metabolism , Peptide Fragments/chemistry
11.
J Biotechnol ; 390: 62-70, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38761885

ABSTRACT

Human serum albumin (HSA), a polypeptide featuring 17 disulfide bonds, acts as a crucial transport protein in human blood plasma. Its extended circulation half-life, mediated by FcRn (neonatal Fc receptor)-facilitated recycling, positions HSA as an excellent carrier for long-acting drug delivery. However, the conventional method of obtaining HSA from human blood faces limitations due to availability and potential contamination risks, such as blood-borne diseases. This study introduced SHuffle, an oxidative Escherichia coli (E. coli) expression system, for the production of recombinant HSA (rHSA) that spontaneously self-folds into its native conformation. This system ensures precise disulfide bond formation and correct folding of cysteine-rich rHSA, eliminating the need for chaperone co-expression or domain fusion of a folding enhancer. The purified rHSA underwent thorough physicochemical characterization, including mass spectrometry, circular dichroism spectroscopy, intrinsic fluorescence spectroscopy, esterase-like activity assay, and size exclusion chromatography, to assess critical quality attributes. Importantly, rHSA maintained native binding affinity to FcRn and the albumin-binding domain. Collectively, our analyses demonstrated a high comparability between rHSA and plasma-derived HSA. The expression of rHSA in E. coli with an oxidizing cytosol provides a secure and cost-effective approach, enhancing the potential of rHSA for diverse medical applications.


Subject(s)
Escherichia coli , Oxidation-Reduction , Protein Folding , Recombinant Proteins , Serum Albumin, Human , Escherichia coli/genetics , Escherichia coli/metabolism , Humans , Serum Albumin, Human/metabolism , Serum Albumin, Human/chemistry , Recombinant Proteins/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Cytoplasm/metabolism , Receptors, Fc/metabolism , Receptors, Fc/chemistry , Histocompatibility Antigens Class I/metabolism
12.
Colloids Surf B Biointerfaces ; 239: 113964, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38761495

ABSTRACT

Delamanid is an anti-tuberculosis drug used for the treatment of drug-resistant tuberculosis. Since delamanid has a high protein bound potential, even patients with low albumin levels should experience high and rapid delamanid clearance. However, the interaction between delamanid and albumin should be better controlled to optimize drug efficacy. This study was designed to evaluate the binding characteristics of delamanid to human serum albumin (HSA) using various methods: fluorescence spectroscopy, circular dichroism (CD), surface plasmon resonance (SPR), and molecular docking simulation. The fluorescence emission band without any shift indicated the interaction was not affected by the polarity of the fluorophore microenvironment. The reduction of fluorescence intensity at 344 nm was proportional to the increment of delamanid concentration as a fluorescence quencher. UV-absorbance measurement at the maximum wavelength (λmax, 280 nm) was evaluated using inner filter effect correction. The HSA conformation change was explained by the intermolecular energy transfer between delamanid and HSA during complex formation. The study, which was conducted at temperatures of 298 K, 303 K, and 310 K, revealed a static quenching mechanism that correlated with a decreased of bimolecular quenching rate constant (kq) and binding constant (Ka) at increased temperatures. The Ka was 1.75-3.16 × 104 M-1 with a specific binding site with stoichiometry 1:1. The negative enthalpy change, negative entropy change, and negative Gibbs free energy change demonstrated an exothermic-spontaneous reaction while van der Waals forces and hydrogen bonds played a vital role in the binding. The molecular displacement approach and molecular docking confirmed that the binding occurred mainly in subdomain IIA, which is a hydrophobic pocket of HSA, with a theoretical binding free energy of -9.33 kcal/mol. SPR exhibited a real time negative sensorgram that resulted from deviation of the reflex angle due to ligand delamanid-HSA complex forming. The binding occurred spontaneously after delamanid was presented to the HSA surface. The SPR mathematical fitting model revealed that the association rate constant (kon) was 2.62 × 108 s-1M-1 and the dissociation rate constant (koff) was 5.65 × 10-3 s-1. The complexes were performed with an association constant (KA) of 4.64 × 1010 M-1 and the dissociation constant (KD) of 2.15 × 10-11 M. The binding constant indicated high binding affinity and high stability of the complex in an equilibrium. Modified CD spectra revealed that conformation of the HSA structure was altered by the presence of delamanid during preparation of the proliposomes that led to the reduction of secondary structure stabilization. This was indicated by the percentage decrease of α-helix. These findings are beneficial to understanding delamanid-HSA binding characteristics as well as the drug administration regimen.


Subject(s)
Circular Dichroism , Molecular Docking Simulation , Serum Albumin, Human , Spectrometry, Fluorescence , Surface Plasmon Resonance , Thermodynamics , Humans , Serum Albumin, Human/chemistry , Serum Albumin, Human/metabolism , Kinetics , Protein Conformation , Protein Binding , Oxazoles/chemistry , Oxazoles/metabolism
13.
Dalton Trans ; 53(18): 7922-7938, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38644680

ABSTRACT

The four new ligands, dialkyl esters of (S,S)-propylenediamine-N,N'-di-(2,2'-di-(4-hydroxy-benzil))acetic acid (R2-S,S-pddtyr·2HCl) (R = ethyl (L1), propyl (L2), butyl (L3), and pentyl (L4)) and corresponding palladium(II) complexes have been synthesized and characterized by microanalysis, infrared, 1H NMR and 13C NMR spectroscopy. In vitro cytotoxicity was evaluated using the MTT assay on four tumor cell lines, including mouse mammary (4T1) and colon (CT26), and human mammary (MDA-MD-468) and colon (HCT116), as well as non-tumor mouse mesenchymal stem cells. Using fluorescence spectroscopy were investigated the interactions of new palladium(II) complexes [PdCl2(R2-S,S-pddtyr)]; (R = ethyl (C1), propyl (C2), butyl (C3), and pentyl (C4)) with calf thymus human serum albumin (HSA) and DNA (CT-DNA). The high values of the binding constants, Kb, and the Stern-Volmer quenching constant, KSV, show the good binding of all complexes for HSA and CT-DNA. The mentioned ligands and complexes were also tested on in vitro antimicrobial activity against 11 microorganisms. Testing was performed by the microdilution method, where the minimum inhibitory concentration (MMC) and the minimum microbicidal concentration (MMC) were determined.


Subject(s)
Coordination Complexes , DNA , Esters , Palladium , Serum Albumin, Human , Animals , Humans , Mice , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Cell Line, Tumor , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , DNA/metabolism , Esters/chemistry , Esters/pharmacology , Microbial Sensitivity Tests , Molecular Structure , Palladium/chemistry , Palladium/pharmacology , Protein Binding , Serum Albumin, Human/metabolism
14.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124332, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38676982

ABSTRACT

Studies on the interactions between ligands and proteins provide insights into how a possible medication alters the structures and activities of the target or carrier proteins. The natural flavonoid aglycone Chrysin (CHR) has demonstrated anti-inflammatory, antioxidant, antiapoptotic, neuroprotective, and antineoplastic effects, both in vitro and in vivo. In this work, we investigated the impact of CHR binding on the as-yet-unexplored conformation, dynamics, and unfolding mechanism of human serum albumin (HSA). We determined CHR binding to HSA domain-II with the association constant (Ka) of 2.70 ± 0.21 × 105 M-1. The urea-induced sequential unfolding mechanism of HSA was used to elucidate the debatable binding location of CHR. CHR binding induced both secondary and tertiary structural alterations in the protein as studied by far-UV circular dichroism and intrinsic fluorescence spectroscopy. Red edge excitation shift (REES) indicated a decrease in conformational dynamics of the protein on the complex formation. This suggested an ordered compact and spatial arrangement of the CHR-boundmolecule. The binding of CHR was found to significantly modulate the urea-induced unfolding pathway of HSA. Urea-induced unfolding pathway of HSA became a two-state process (N-U) from a three-state process (N-I-U). The interaction of CHR is found to increase the thermal stability of the protein by ∼4 °C. This study focuses on the fundamental sciences and demonstrates how prospective medication compounds can alter the dynamics and stability of protein structure.


Subject(s)
Flavonoids , Protein Binding , Protein Unfolding , Serum Albumin, Human , Humans , Flavonoids/chemistry , Flavonoids/pharmacology , Flavonoids/metabolism , Serum Albumin, Human/chemistry , Serum Albumin, Human/metabolism , Protein Unfolding/drug effects , Urea/pharmacology , Urea/chemistry , Circular Dichroism , Spectrometry, Fluorescence , Protein Conformation
15.
Arch Biochem Biophys ; 756: 109993, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636691

ABSTRACT

5,6-Epoxy-cholesterols has been recently revealed to control metabolic pathway in breast cancer, which makes investigating their binding interaction with human serum albumin (HSA) an attractive field of research. The main aim of this article is to examine the binding interaction of 5,6 α-epoxy-cholesterol (5,6 α EC) and 5,6 ß-epoxy-cholesterol (5,6 ß- EC) with HSA using different spectroscopic methods and molecular modeling. These compounds interact with HSA via hydrophobic interactions and hydrogen bonds with binding constants 6.3 × 105 M-1 for 5,6 α-epoxy-cholesterol and 6.9 × 105 M-1 for 5,6 ß-epoxy-cholesterol besides, the mechanism of the interaction can be attributed to static quenching. Circular dichroism data indicated that the α-helical content of HSA increased from 50.5 to 59.8 and 61.1 % after the addition of 5,6 α-ECs and 5,6 ß-EC, respectively, with a ratio of 1:2. Thermodynamic analysis revealed that binding between 5,6-epoxy-cholesterols and HSA is spontaneous and entropy-driven. The molecular docking and esterase-like activity experiments were performed to envision a link between the experimental and theoretical results. The optimal binding site of 5,6-epoxy-cholesterols with HSA was located in subdomain IIA. Moreover, theoretical calculations were performed using the B3LYP function with the 6-311++G (d,p) basis set, indicating the HOMO-LUMO energy gap of 7.874 eV for 5,6 α-epoxy-cholesterol and 7.873 eV for 5,6 ß-epoxy-cholesterol. The obtained findings are assumed to provide basic data for understanding the binding interactions of HSA with oxysterol compounds, which could help explore the pharmacokinetics and pharmacodynamics of oxysterol compounds.


Subject(s)
Cholesterol , Molecular Docking Simulation , Protein Binding , Serum Albumin, Human , Humans , Serum Albumin, Human/chemistry , Serum Albumin, Human/metabolism , Cholesterol/metabolism , Cholesterol/chemistry , Thermodynamics , Hydrophobic and Hydrophilic Interactions , Binding Sites , Circular Dichroism , Hydrogen Bonding , Epoxy Compounds/chemistry , Epoxy Compounds/metabolism
16.
Mol Pharm ; 21(5): 2198-2211, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38625037

ABSTRACT

Micellar drug delivery systems (MDDS) for the intravenous administration of poorly soluble drugs have great advantages over alternative formulations in terms of the safety of their excipients, storage stability, and straightforward production. A classic example is mixed micelles of glycocholate (GC) and lecithin, both endogenous substances in human blood. What limits the use of MDDS is the complexity of the transitions after injection. In particular, as the MDDS disintegrate partially or completely after injection, the drug has to be transferred safely to endogenous carriers in the blood, such as human serum albumin (HSA). If this transfer is compromised, the drug might precipitate─a process that needs to be excluded under all circumstances. The key question of this paper is whether the high local concentration of GC at the moment and site of MDDS dissolution might transiently saturate HSA binding sites and, hence, endanger quick drug transfer. To address this question, we have used a new approach, which is time-resolved fluorescence spectroscopy of the single tryptophan in HSA, Trp-214, to characterize the competitive binding of GC and the drug substitute anilinonaphthalenesulfonate (ANS) to HSA. Time-resolved fluorescence of Trp-214 showed important advantages over established methods for tackling this problem. ANS has been the standard "model drug" to study albumin binding for decades, given its structural similarity to the class of naphthalene-containing acidic drugs and the fact that it is displaced from HSA by numerous drugs (which presumably bind to the same sites). Our complex global fit uses the critical approximation that the average lifetimes behave similarly to a single lifetime, but the resulting errors are found to be moderate and the results provide a convincing explanation of the, at first glance, counterintuitive behavior. Accordingly, and largely in line with the literature, we observed two types of sites binding ANS at HSA: 3 type A, rather peripheral, and 2 type B, likely more central sites. The latter quench Trp-214 by Förster Resonance Energy Transfer (FRET) with a rate constant of ≈0.4 ns-1 per ANS. Adding millimolar concentrations of GC displaces ANS from the A sites but not from B sites. At incomplete ANS saturation, this causes a GC-induced translocation of ANS from A to the more FRET-active B sites. This leads to the apparent paradox that the partial displacement of ANS from HSA increases its quenching effect on Trp-214. The most important conclusion is that (ANS-like) drugs cannot be displaced from the type-B sites, and consequently, drug transfer to these sites is not impaired by competitive binding of GC in the vicinity of a dissolving micelle. The second conclusion is that for unbound GC above the CMC (9 mM), ANS equilibrates between HSA and GC micelles but with a strong preference for free sites on HSA. That means that even persisting micelles would lose their cargo readily once exposed to HSA. For all MDDS sharing this property, targeted drug delivery approaches involving them as the nanocarrier would be pointless.


Subject(s)
Drug Delivery Systems , Micelles , Serum Albumin, Human , Surface-Active Agents , Humans , Binding Sites , Drug Delivery Systems/methods , Serum Albumin, Human/chemistry , Serum Albumin, Human/metabolism , Surface-Active Agents/chemistry , Spectrometry, Fluorescence , Anilino Naphthalenesulfonates/chemistry , Protein Binding
17.
Int J Biol Macromol ; 267(Pt 1): 131474, 2024 May.
Article in English | MEDLINE | ID: mdl-38599429

ABSTRACT

Advanced glycation end products (AGEs) are produced non-enzymatically through the process of glycation. Increased AGEs production has been linked to several diseases including polycystic ovary syndrome (PCOS). PCOS contributes to the development of secondary comorbidities, such as diabetes, cardiovascular complications, infertility, etc. Consequently, research is going on AGEs-inhibiting phytochemicals for their potential to remediate and impede the progression of hyperglycaemia associated disorders. In this study human serum albumin is used as a model protein, as albumin is predominantly present in follicular fluid. This article focusses on the interaction and antiglycating potential of (-)-Epigallocatechin-3-gallate (EGCG) and vitamin D in combination using various techniques. The formation of the HSA-EGCG and HSA-vitamin D complex was confirmed by UV and fluorescence spectroscopy. Thermodynamic analysis verified the spontaneity of reaction, and presence of hydrogen bonds and van der Waals interactions. FRET confirms high possibility of energy transfer. Cumulative antiglycation resulted in almost 60 % prevention in AGEs formation, decreased alterations at lysine and arginine, and reduced protein carbonylation. Secondary and tertiary structural changes were analysed by circular dichroism, Raman spectroscopy and ANS binding assay. Type and size of aggregates were confirmed by Rayleigh and dynamic light scattering, ThT fluorescence, SEM and SDS-PAGE. Effect on cellular redox status, DNA integrity and cytotoxicity was analysed in lymphocytes using dichlorofluorescein (DCFH-DA), DAPI and MTT assay which depicted an enhancement in antioxidant level by cumulative treatment. These findings indicate that EGCG and vitamin D binds strongly to HSA and have antiglycation ability which enhances upon synergism.


Subject(s)
Catechin , Catechin/analogs & derivatives , Cholecalciferol , Glycation End Products, Advanced , Protein Binding , Serum Albumin, Human , Catechin/pharmacology , Catechin/chemistry , Catechin/metabolism , Humans , Glycation End Products, Advanced/metabolism , Cholecalciferol/pharmacology , Cholecalciferol/metabolism , Cholecalciferol/chemistry , Serum Albumin, Human/metabolism , Serum Albumin, Human/chemistry , Molecular Docking Simulation , Thermodynamics , Computer Simulation
18.
Viruses ; 16(4)2024 03 22.
Article in English | MEDLINE | ID: mdl-38675834

ABSTRACT

Tenofovir (TFV) is the active form of the prodrugs tenofovir disoproxil fumarate (TDF) and tenofovir alafenamide (TAF), both clinically prescribed as HIV reverse transcriptase inhibitors. The biophysical interactions between these compounds and human serum albumin (HSA), the primary carrier of exogenous compounds in the human bloodstream, have not yet been thoroughly characterized. Thus, the present study reports the interaction profile between HSA and TFV, TDF, and TAF via UV-Vis, steady-state, and time-resolved fluorescence techniques combined with isothermal titration calorimetry (ITC) and in silico calculations. A spontaneous interaction in the ground state, which does not perturb the microenvironment close to the Trp-214 residue, is classified as weak. In the case of HSA/TFV and HSA/TDF, the binding is both enthalpically and entropically driven, while for HSA/TAF, the binding is only entropically dominated. The binding constant (Ka) and thermodynamic parameters obtained via ITC assays agree with those obtained using steady-state fluorescence quenching measurements, reinforcing the reliability of the data. The small internal cavity known as site I is probably the main binding pocket for TFV due to the low steric volume of the drug. In contrast, most external sites (II and III) can better accommodate TAF due to the high steric volume of this prodrug. The cross-docking approach corroborated experimental drug-displacement assays, indicating that the binding affinity of TFV and TAF might be impacted by the presence of different compounds bound to albumin. Overall, the weak binding capacity of albumin to TFV, TDF, and TAF is one of the main factors for the low residence time of these antiretrovirals in the human bloodstream; however, positive cooperativity for TAF and TDF was detected in the presence of some drugs, which might improve their residence time (pharmacokinetic profile).


Subject(s)
Anti-HIV Agents , Protein Binding , Reverse Transcriptase Inhibitors , Serum Albumin, Human , Tenofovir , Tenofovir/analogs & derivatives , Humans , Reverse Transcriptase Inhibitors/metabolism , Reverse Transcriptase Inhibitors/chemistry , Tenofovir/metabolism , Tenofovir/chemistry , Serum Albumin, Human/metabolism , Serum Albumin, Human/chemistry , Anti-HIV Agents/metabolism , Thermodynamics , Calorimetry , Binding Sites , HIV Infections/virology , HIV Infections/drug therapy , Alanine/metabolism , HIV Reverse Transcriptase/metabolism , HIV Reverse Transcriptase/chemistry
19.
Bioorg Chem ; 147: 107360, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38604019

ABSTRACT

HSA (human serum albumin), a most abundant protein in blood serum, plays a key role in maintaining human health. Abnormal HSA level is correlated with many diseases, and thus has been used as an essential biomarker for therapeutic monitoring and biomedical diagnosis. Development of small-molecule fluorescent probes allowing the selective and sensitive recognition of HSA in in vitro and in vivo is of fundamental importance in basic biological research as well as medical diagnosis. Herein, we reported a series of new synthesized fluorescent dyes containing D-π-A constitution, which exhibited different optical properties in solution and solid state. Among them, dye M-H-SO3 with a hydrophilic sulfonate group at electron-acceptor part displayed selectivity for discrimination of HSA from BSA and other enzymes. Upon binding of dye M-H-SO3 with HSA, a significant fluorescence enhancement with a turn-on ratio about 96-fold was triggered. The detection limit was estimated to be âˆ¼ 40 nM. Studies on the interaction mechanism revealed that dye M-H-SO3 could bind to site III of HSA with a 1:1 binding stoichiometry. Furthermore, dye M-H-SO3 has been applied to determine HSA in real urine samples with good recoveries, which provided a useful method for HSA analysis in biological fluids.


Subject(s)
Fluorescent Dyes , Serum Albumin, Bovine , Serum Albumin, Human , Humans , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/metabolism , Serum Albumin, Human/chemistry , Serum Albumin, Human/metabolism , Molecular Structure , Cattle , Animals , Spectrometry, Fluorescence
20.
J Mater Chem B ; 12(18): 4478-4488, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38629135

ABSTRACT

Human serum albumin (HSA) is regarded as a useful biomarker for rapid medical diagnosis of various disorders mainly related to the kidneys and liver. Hence, it is crucial to identify and monitor the HSA level in complex biofluids (urine and blood samples) using a simple approach. Herein, we have designed and synthesized an intramolecular charge transfer (ICT) based environment-sensitive fluorescent molecular probe, (E)-2-(3-(2-(5-methoxy-1H-indol-3-yl)vinyl)-5,5-dimethylcyclohex-2-en-1-ylidene)malononitrile (DCI-MIN), that can selectively interact with HSA in PBS buffer solution and exhibit a ∼78-fold enhancement in fluorescence intensity with a significant Stokes shift (∼126 nm), which is important to avoid interference from the excitation light. The significant red fluorescence response can be attributed to the suppression of free intramolecular rotation of the DCI-MIN probe inside the hydrophobic binding cavity of HSA and the low polar microenvironment present within HSA. According to the 3σ/slope method, the detection limit was found to be 1.01 nM (0.0671 mg L-1) in aqueous solutions, which is significantly lower than the normal level of HSA in healthy urine and blood serum, indicating its high sensitivity. DCI-MIN has the ability to exhibit useful applications, including the detection and quantification of HSA concentration in complex biofluids (human urine and blood samples) as well as the imaging of serum albumin in living cells.


Subject(s)
Fluorescent Dyes , Serum Albumin, Human , Humans , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Serum Albumin, Human/metabolism , Serum Albumin, Human/analysis , Serum Albumin, Human/chemistry , Spectrometry, Fluorescence , Molecular Structure , Optical Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...