Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
1.
J Food Prot ; 87(2): 100221, 2024 02.
Article in English | MEDLINE | ID: mdl-38215978

ABSTRACT

Flaxseed oil is an important source of vegetable oil with a polyunsaturated fatty acid. It is significant to establish a method to quickly identify adulterated flaxseed oil. In the present study, the qualitative and quantitative analysis of phytosterol of flaxseed oil from different varieties and different production areas in the Qinghai area was first performed by gas chromatography-mass spectrometry (GC-MS) and the phytosterol standard profile of flaxseed oil was established. Then, a combination of similarity evaluation and cluster analysis was used to distinguish pure flaxseed oil from flaxseed oil adulterated with concentrations of 10-50% rapeseed oil, peanut oil, sunflower oil, and sesame oil, and discriminant analysis was used to identify the types of adulterated flaxseed oil. The results showed that similarity evaluation combined with cluster analysis can distinguish pure and adulterated flaxseed oil when the concentration of the adulterant was greater than 10%. Discriminant analysis models accurately identified the types of adulterating oil in flaxseed oil when the concentration of rapeseed, peanut, or sunflower oil was greater than 20%, and that of sesame oil was greater than 30%. This study shows that the determination of the phytosterol composition and chemometrics is a valuable tool to evaluate the purity of flaxseed oil.


Subject(s)
Linseed Oil , Phytosterols , Gas Chromatography-Mass Spectrometry , Sesame Oil/analysis , Sesame Oil/chemistry , Chemometrics , Plant Oils , Sunflower Oil
2.
Sensors (Basel) ; 23(14)2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37514589

ABSTRACT

Food quality assurance is an important field that directly affects public health. The organoleptic aroma of food is of crucial significance to evaluate and confirm food quality and origin. The volatile organic compound (VOC) emissions (detectable aroma) from foods are unique and provide a basis to predict and evaluate food quality. Soybean and corn oils were added to sesame oil (to simulate adulteration) at four different mixture percentages (25-100%) and then chemically analyzed using an experimental 9-sensor metal oxide semiconducting (MOS) electronic nose (e-nose) and gas chromatography-mass spectroscopy (GC-MS) for comparisons in detecting unadulterated sesame oil controls. GC-MS analysis revealed eleven major VOC components identified within 82-91% of oil samples. Principle component analysis (PCA) and linear detection analysis (LDA) were employed to visualize different levels of adulteration detected by the e-nose. Artificial neural networks (ANNs) and support vector machines (SVMs) were also used for statistical modeling. The sensitivity and specificity obtained for SVM were 0.987 and 0.977, respectively, while these values for the ANN method were 0.949 and 0.953, respectively. E-nose-based technology is a quick and effective method for the detection of sesame oil adulteration due to its simplicity (ease of application), rapid analysis, and accuracy. GC-MS data provided corroborative chemical evidence to show differences in volatile emissions from virgin and adulterated sesame oil samples and the precise VOCs explaining differences in e-nose signature patterns derived from each sample type.


Subject(s)
Sesame Oil , Volatile Organic Compounds , Sesame Oil/analysis , Sesame Oil/chemistry , Gas Chromatography-Mass Spectrometry/methods , Volatile Organic Compounds/analysis , Electronic Nose , Neural Networks, Computer
3.
Molecules ; 28(12)2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37375308

ABSTRACT

The authenticity of food products marketed as health-promoting foods-especially unrefined, cold-pressed seed oils-should be controlled to ensure their quality and safeguard consumers and patients. Metabolomic profiling using liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (LC-QTOF) was employed to identify authenticity markers for five types of unrefined, cold-pressed seed oils: black seed oil (Nigella sativa L.), pumpkin seed oil (Cucurbita pepo L.), evening primrose oil (Oenothera biennis L.), hemp oil (Cannabis sativa L.) and milk thistle oil (Silybum marianum). Of the 36 oil-specific markers detected, 10 were established for black seed oil, 8 for evening primrose seed oil, 7 for hemp seed oil, 4 for milk thistle seed oil and 7 for pumpkin seed oil. In addition, the influence of matrix variability on the oil-specific metabolic markers was examined by studying binary oil mixtures containing varying volume percentages of each tested oil and each of three potential adulterants: sunflower, rapeseed and sesame oil. The presence of oil-specific markers was confirmed in 7 commercial oil mix products. The identified 36 oil-specific metabolic markers proved useful for confirming the authenticity of the five target seed oils. The ability to detect adulterations of these oils with sunflower, rapeseed and sesame oil was demonstrated.


Subject(s)
Sesame Oil , Tandem Mass Spectrometry , Humans , Chromatography, Liquid/methods , Sesame Oil/analysis , Plant Oils/chemistry
4.
PLoS One ; 18(4): e0284599, 2023.
Article in English | MEDLINE | ID: mdl-37079607

ABSTRACT

Testing the composition, quality and authenticity of edible oils is crucial to safeguard the consumers' rights and health. The aim of our study was to identify oil-specific markers to enable the differentiation and authentication of sunflower, sesame, flaxseed and rapeseed oils, and to evaluate their antioxidant activity, total phenolic and carotenoid content. A metabolomic approach based on liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry was employed for marker discovery. Spectrophotometric method was used for determination of antioxidant activity, total phenolic and carotenoid content. 76 oil samples from the four different manufacturers were examined. We identified 13 oil-specific markers for sunflower seed oil, 8 for rapeseed oil, 5 for sesame seed oil and 3 for flaxseed oil, their retention times, accurate masses, and characteristic fragment ions are reported. The abundances of the markers for each plant species were found to vary depending on the oil producer and the product batch. Significant differences in antioxidant activity, total phenolic and carotenoid content were also observed both between oils and within oil type. The highest total phenolic content (84.03 ± 4.19 to 103.79 ± 3.67 mg of gallic acid/kg) and antioxidant activity (245.67 ± 7.59 to 297.22 ± 2.32 mg Trolox/kg) were found in sesame seed and flaxseed oils, respectively. Identified metabolic markers can be used as qualitative markers to confirm the authenticity or to detect adulterations of oils. Composition, properties and authenticity testing should be more rigorous for food products marketed as health-promoting.


Subject(s)
Brassica napus , Flax , Helianthus , Sesamum , Plant Oils/chemistry , Antioxidants/analysis , Sesame Oil/analysis , Sesame Oil/chemistry , Sunflower Oil , Rapeseed Oil , Phenols/analysis , Carotenoids
5.
J Food Biochem ; 46(8): e14180, 2022 08.
Article in English | MEDLINE | ID: mdl-35396857

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) can be attributed to the imbalance between lipogenesis and lipidolysis in the liver. Sesame lignans (sesamin, sesamolin, and sesamol) are unique bioactive compounds responsible for the nutritional function of sesame oils. However, the preventive effects of three lignans on oxidative stress and lipid metabolism in steatosis HepG2 cells have not been compared. In this study, we investigated the role of sesamin, sesamolin, and sesamol on hepatic lipid accumulation and explored the underlying mechanism via a well-established cell model. The results showed that 3 µg/ml of lignans could decrease the TG/TC contents and alleviate cellular oxidative stress, with an order of the lipid-lowering effect as sesamol > sesamin > sesamolin. The lignan-activated AMPK and PPAR signaling pathways enhanced gene and protein expressions related to fatty acid oxidation, cholesterol efflux, and catabolism. Meanwhile, treatment of the steatosis HepG2 cells with sesamin, sesamolin, and sesamol reduced lipid synthesis and cholesterol uptake, thus lowering intracellular lipogenesis in the process of NAFLD. Our data suggested that sesame lignans can attenuate oxidative stress and regulate lipid metabolism in liver cells, which may be potential therapeutic agents for treating the NAFLD. PRACTICAL APPLICATIONS: The present work demonstrated that sesame lignans can be used for dietary supplements or functional additives with excellent lipid-lowering effects. Furthermore, this study supplied potential molecular mechanisms involved in NAFLD treatment process, and also provided nutritional guidelines for sesame oil evaluation and selection.


Subject(s)
Lignans , Non-alcoholic Fatty Liver Disease , Sesamum , Benzodioxoles , Cholesterol , Dioxoles , Hep G2 Cells , Humans , Lignans/metabolism , Lignans/pharmacology , Lignans/therapeutic use , Lipid Metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Oxidative Stress , Phenols , Sesame Oil/analysis , Sesame Oil/pharmacology , Sesamum/metabolism
6.
J Sci Food Agric ; 102(1): 250-258, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34091922

ABSTRACT

BACKGROUND: Sesame oil has an excellent flavor and is widely appreciated. It has a higher price than other vegetable oils because of the high price of its raw materials, and different processing techniques also result in products of different quality levels, which can command different prices. In the market, there is a persistent problem of adulteration of sesame oil, driven by economic interests. The screening of volatile markers used to distinguish the authenticity of sesame oil raw materials and production processes is therefore very important. RESULTS: In this work, six markers related to the production processes and raw materials of sesame oil were screened by gas chromatography-tandem mass spectrometry (GC-MS/MS) combined with chemometric analysis. They were 3-methyl-2-butanone, 2-ethyl-5-methyl-pyrazine, guaiacol, 2,6-dimethyl-pyrazine, 5-methyl furfural, and ethyl-pyrazine. The concentration of these markers in sesame oil is between 10 and1000 times that found in other vegetable oils. However, only 3-methyl-2-butanone and 2-ethyl-5-methyl-pyrazine differed significantly as the result of the use of different production processes. Except for guaiacol, which was mainly derived from raw materials, the other five compounds mentioned above all result from the Maillard reaction during thermal processing. The six compounds mentioned above are sufficient to distinguish fraud involving sesame oil raw materials and production processes, and can identify accurately adulteration levels of 30% concentration. CONCLUSION: In this study, the classification markers can identify the adulteration of sesame oil accurately. These six compounds are therefore important for the authenticity of sesame oil and provide a theoretical basis for the rapid and accurate identification of the authenticity of sesame oil. © 2021 Society of Chemical Industry.


Subject(s)
Food Contamination/analysis , Glycation End Products, Advanced/analysis , Guaiacol/analysis , Sesame Oil/analysis , Flavoring Agents/analysis , Furaldehyde/analysis , Gas Chromatography-Mass Spectrometry , Maillard Reaction
7.
Food Chem ; 370: 131373, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34788966

ABSTRACT

Sesame oil is a traditional and delicious edible oil in China and Southeast Asia with a high price. However, sesame oil essence was often illegally added to cheaper edible oils to counterfeit sesame oil. In this study, a rapid and accurate headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS) method was proposed to detect the counterfeit sesame oil where the other cheap oils were adulterated with essence. Combined with chemometric methods including principal component analysis (PCA), orthogonal partial least squares discriminant analysis (OPLS-DA) and random forest (RF), authentic and counterfeit sesame oils adulterated with sesame essence (0.5%, w/w) were easily separated into two groups. More importantly, 2-methylbutanoic acid, 2-furfurylthiol, methylpyrazine, methional, and 2,5-dimethylpyrazine were found to be markers of sesame essence, which were used to directly identify the sesame essence. The determination of volatile compounds based on HS-GC-IMS was proven to be an effective method for adulteration detection of essence in sesame oil.


Subject(s)
Ion Mobility Spectrometry , Sesame Oil , Food Contamination/analysis , Gas Chromatography-Mass Spectrometry , Plant Oils , Sesame Oil/analysis
8.
Molecules ; 26(21)2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34771108

ABSTRACT

To achieve the nutritional target of human food, boron (B) has been described as an essential mineral in determining seed and theoretical oil yield of Sesamum indicum L. The research to increase its cultivation is garnering attention due to its high oil content, quality and its utilization for various purposes, which include human nutrition as well as its use in the food industry. For this, a two-year field experiment was performed at PAU, Punjab, India to determine the effect of different concentrations of foliar-applied B (20, 30 and 40 mg L-1) and different growth stages of crop, i.e., we measured the effects on agroeconomic indicators and certain quality parameters of sesame using different concentrations of B applied at the flowering and capsule formation stages as compared to using water spray and untreated plants. Water spray did not significantly affect the studied parameters. However, B application significantly increased the yield, uptake, antioxidant activity (AOA) and theoretical oil content (TOC) compared to those of untreated plants. The maximum increase in seed yield (26.75%), B seed and stover uptake (64.08% and 69.25%, respectively) as well as highest AOA (69.41%) and benefit to cost ratio (B:C ratio 2.63) was recorded when B was applied at 30 mg L-1 at the flowering and capsule formation stages. However, the maximum sesame yield and B uptake were recorded when B was applied at a rate of 30 mg L-1. A significant increase in TOC was also recorded with a B application rate of 30 mg L-1. For efficiency indices, the higher values of boron agronomic efficiency (BAE) and boron crop recovery efficiency (BCRE) were recorded when B was applied at 20 mg L-1 (5.25 and 30.56, respectively) and 30 mg L-1 (4.96 and 26.11, respectively) at the flowering and capsule formation stages. In conclusion, application of B @ 30 mg L-1 at the flowering and capsule formation stages seemed a viable technique to enhance yield, B uptake and economic returns of sesame.


Subject(s)
Agriculture/economics , Boron/metabolism , Plant Development , Sesamum/growth & development , Sesamum/metabolism , Algorithms , Chemical Phenomena , Minerals , Models, Economic , Models, Theoretical , Sesame Oil/analysis , Sesame Oil/chemistry
9.
Spectrochim Acta A Mol Biomol Spectrosc ; 244: 118841, 2021 Jan 05.
Article in English | MEDLINE | ID: mdl-32871392

ABSTRACT

The quality of sesame oil (SO) has been paid more and more attention. In this study, total synchronous fluorescence (TSyF) spectroscopy and deep neural networks were utilized to identify counterfeit and adulterated sesame oils. Firstly, typical samples including pure SO, counterfeit sesame oil (CSO) and adulterated sesame oil (ASO) were characterized by TSyF spectra. Secondly, three data augmentation methods were selected to increase the number of spectral data and enhance the robustness of the identification model. Then, five deep network architectures, including Simple Recurrent Neural Network (Simple RNN), Long Short-Term Memory (LSTM) network, Gated Recurrent Unit (GRU) network, Bidirectional LSTM (BLSTM) network and LSTM fortified with Convolutional Neural Network (LSTMC), were designed to identify the CSO and trace the source with 100% accuracy. Finally, ASO samples were also 100% correctly identified by training these network architectures. These results supported the feasibility of the novel method.


Subject(s)
Deep Learning , Sesame Oil , Neural Networks, Computer , Sesame Oil/analysis , Spectrometry, Fluorescence
10.
Food Chem ; 344: 128577, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33223293

ABSTRACT

Black sesame seeds (BSS) were processed by nine cycles of steaming and sun-drying, and the chemistry of their resulting products studied. That is, the shell color and structure, proximate composition, oil properties and volatile compounds of raw BSS were determined and compared with processed BSS. Various levels of shell color change and structure damage were observed. The proximate composition also differed, whereas the relative proportion of fatty acids and oil properties were unchanged. SPME-GCMS analysis revealed that aldehydes, hydrocarbons and alcohols were the main volatile compounds. And compared with raw BSS, four volatile substances were newly detected in the processed BSS. Principal component analysis (PCA) displayed the overall difference between samples and showed that repeated steaming and sun-drying process had a significant impact on the chemical composition of BSS.


Subject(s)
Desiccation/methods , Sesame Oil/analysis , Sesamum/chemistry , Volatile Organic Compounds/analysis , Chlorophyll/analysis , Chlorophyll/isolation & purification , Color , Fatty Acids/analysis , Fatty Acids/isolation & purification , Gas Chromatography-Mass Spectrometry , Humans , Principal Component Analysis , Seeds/chemistry , Seeds/metabolism , Sesame Oil/chemistry , Sesamum/metabolism , Solid Phase Extraction , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/isolation & purification
11.
Spectrochim Acta A Mol Biomol Spectrosc ; 245: 118948, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-32980759

ABSTRACT

Adulterated sesame oil seriously damages the interests of consumers and the health of market. In this paper, a simple, fast and real-time model for identifying adulterated sesame oil (ASO) was proposed by combining 3D fluorescence spectra with wavelet moments (WMs). First, noise and data volume of the experimental data were reduced by wavelet multiresolution decomposition (WMRSD), which improved the stability and real-time of the model. Next, WMs were used to extract the features of the 3D fluorescence spectra and proved to be effective by hierarchical clustering results. Then, the qualitative quality of WMs of the same orders, different orders and the combinations were evaluated by Dunn's validity index (DVI), and the rules were given, respectively. Finally, the target WMs for identifying ASO were determined. This model is simple and fast, and expandable to online measurement, providing a reference for identification and adulteration of vegetable oils.


Subject(s)
Plant Oils , Sesame Oil , Cluster Analysis , Sesame Oil/analysis , Spectrometry, Fluorescence
12.
J Oleo Sci ; 69(8): 837-849, 2020.
Article in English | MEDLINE | ID: mdl-32759549

ABSTRACT

Aim of this study was to evaluate the effect of star fruit (Averrhoa carambola L.) by-products (peel and residue) on stability of sesame (Sesamum indicum) oil against oxidation. Antioxidant properties of extract of peel and residue at different time durations of extraction were determined and found that peel contains higher antioxidant potential than residue. Thus, extract of peel obtained after 24 h extraction was used to study its effectiveness on oxidative stability of sesame oil during accelerated oven storage and frying using the butylated hydroxytoluene (BHT) (200 ppm) as the reference antioxidant (positive control) and oil without added antioxidant as the negative control. The oxidative stability of the oil was determined by evaluating peroxide value, p-anisidine value, thiobarbituric acid reactive substances (TBARS) value, total oxidation (TOTOX) value, conjugated diene (CD) and conjugated triene (CT) values, and iodine value. Peel extract at different concentrations (200-1000 ppm) was tested. The oil added with peel extract exhibited higher stability against oxidation than the controls during oven storage test. Extract at 1000 ppm significantly increased the stability of sesame oil during frying as compared with controls. Thus, star fruit peel extract could be an alternative to synthetic antioxidants to suppress oxidation of edible oils.


Subject(s)
Antioxidants , Averrhoa/chemistry , Cooking , Food Additives , Plant Extracts , Sesame Oil/chemistry , Aniline Compounds/analysis , Hot Temperature , Oxidation-Reduction , Peroxides/analysis , Sesame Oil/analysis , Thiobarbituric Acid Reactive Substances/analysis , Time Factors
13.
J Oleo Sci ; 69(7): 685-692, 2020 Jul 02.
Article in English | MEDLINE | ID: mdl-32522944

ABSTRACT

Although cold-pressed sesame oil (CPSO) possesses high nutritional value, its application in the food industry is limited due to its poor oxidative stability. The aim of this study was to enhance the oxidative stability of CPSO by complex coacervation microcapsule technology with gelatin and gum Arabic as wall materials. The characterization of CPSO microcapsules were evaluated by a particle image analyzer, a laser particle size distribution analyzer, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). The encapsulation efficiency (EE) reached 90.25%. The average particle size of the microcapsules was approximately 117.1 µm and many oil droplets were encapsulated by complex coacervation to form a multinuclear spherical microcapsule. The FTIR study confirmed that the process of complex coacervation was formed between gelatin and gum Arabic by electrostatic interactions. The TGA study suggested that the microcapsules had good heat resistance. The fatty acid composition, the content of sesamin, sesamolin and vitamin E in CPSO were determined before and after microencapsulation. It showed that the microencapsulation process had almost no effect on the fatty acid composition, sesamin and sesamolin, only Vitamin E was slightly lost during the microencapsulation process. The accelerated storage test showed that microencapsulation significantly increased the oxidative stability of CPSO.


Subject(s)
Capsules , Drug Compounding/methods , Food Technology/methods , Sesame Oil/analysis , Sesame Oil/chemistry , Chemical Phenomena , Dioxoles/analysis , Fatty Acids/analysis , Food Storage , Gelatin , Gum Arabic , Lignans/analysis , Molecular Imaging/methods , Oxidation-Reduction , Particle Size , Static Electricity , Vitamin E
14.
Se Pu ; 38(5): 595-599, 2020 May 08.
Article in Chinese | MEDLINE | ID: mdl-34213245

ABSTRACT

A method was established for the determination of eight vitamins E (α-, ß-, γ-, δ-tocopherol and α-, ß-, γ-, δ-tocotrienol) in vegetable oils using gas chromatography-mass spectrometry (GC-MS). The targets were extracted with methanol, and analyzed by GC-MS in the selected ion monitoring (SIM) mode after concentration to a constant volume, and quantified using the external standard method. Baseline separation were achieved for all the target compounds. The linearities of all the compounds were between 0.01 and 1 mg/L. The limits of detection (LODs) and limits of quantification (LOQs) were in the range of 0.03-0.25 mg/kg and 0.10-0.83 mg/kg, respectively. The average recoveries of all the targets in sesame oil samples were between 87.5% and 107.4% at three spiked levels (10, 50, and 250 mg/kg), and the RSDs were all less than 7.5%. The tocopherols and tocotrienols contents in sesame oil samples and in six lower-price vegetable oils (soybean, rapeseed, sunflower, peanut, corn and palm oils) were determined by the above mentioned method. The results showed that the vitamin E profiles of sesame oil were significantly different from those of the other six vegetable oils. Therefore, vitamin E can be used as a discriminating parameter for detecting the adulteration of sesame.


Subject(s)
Food Analysis , Food Contamination/analysis , Plant Oils/analysis , Tocotrienols/analysis , Vitamin E/analysis , Gas Chromatography-Mass Spectrometry , Sesame Oil/analysis
15.
Dev Comp Immunol ; 102: 103488, 2020 01.
Article in English | MEDLINE | ID: mdl-31476324

ABSTRACT

This study aimed to evaluate the influence of dietary pure linseed oil or sesame oil or a mixture on innate immune competence and eicosanoid metabolism in common carp (Cyprinus carpio). Carp of 100.4 ±â€¯4.7 g were fed to satiation twice daily for 6 weeks with four diets prepared from three lipid sources (CLO; LO; SO; SLO). On day 42, plasma was sampled for immune parameter analyses, and kidney and liver tissues were dissected for gene expression analysis. On day 45, HKL and PBMCs from remaining fish were isolated and exposed to E. coli LPS at a dose of 10 µg/mL for 24 h. Results show that the SLO diet enhanced feed utilisation (P = 0.01), while no negative effects on growth or survival were observed in plant oil-fed fish compared to those fed a fish-oil based diet. Plant oil diets did not alter lysozyme and peroxidase activities or gene expression levels. Moreover, the diets did not affect the expression levels of some genes involved in eicosanoid metabolism processes (pla, pge2, lox5). Lys expression in HKL in vitro following exposure to LPS was up-regulated in LO-fed fish, while expression levels of pge2 were higher in SLO fish than in other groups (P < 0.05). The highest value for peroxidase activity in HKL exposed to LPS was found in the SLO-fed group (P < 0.05). In conclusion, our results indicate that dietary plant oils did not induce any negative effects on fish growth, survival, and immune competence status. Moreover, a dietary combination of SO and LO improved the feed utilisation efficiency and seemed more effective in inducing a better immunomodulatory response to LPS through a more active eicosanoid metabolism process.


Subject(s)
Carps , Eicosanoids/metabolism , Immunity, Innate/physiology , Linseed Oil/metabolism , Sesame Oil/metabolism , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Carps/immunology , Carps/metabolism , Cells, Cultured , Fatty Acids/metabolism , Head Kidney/cytology , Head Kidney/immunology , Immunity, Innate/genetics , Leukocytes/metabolism , Linseed Oil/analysis , Lipid Metabolism/genetics , Lipopolysaccharides/pharmacology , Muramidase/metabolism , Peroxidase/metabolism , Sesame Oil/analysis
16.
Int J Biol Macromol ; 145: 207-215, 2020 Feb 15.
Article in English | MEDLINE | ID: mdl-31874264

ABSTRACT

Tamarind seed mucilage (TSM) was evaluated as a novel wall material for microencapsulation of sesame oil (SO) by spray-drying method. Wall material:core ratios of 1:1 (M1) and 1:2 (M2) were considered, and the corresponding physical and flow properties, thermal stability, functional groups composition, morphology, encapsulation efficiency, and oxidative stability were evaluated. Powder of M1 and M2 microcapsules exhibited free-flowing characteristics. The particle size distribution for M1 microcapsules was monomodal with diameter in the range 1-50 µm. In contrast, Microcapsules M2 presented a bimodal distribution with diameter in the ranges 1-50 µm and 50-125 µm. M1 microcapsules were thermally stable until 227 °C and microcapsules M2 until 178 °C. Microcapsules M1 and M2 exhibited a dominant amorphous halo and external morphology almost spherical in shape. Encapsulation efficiency was 91.05% for M1 and 81.22% for M2. Peroxide formation reached values after six weeks was 14.65 and 16.51 mEq/kgOil for M1 and M2 respectively. Overall, the results led to the conclusion that tamarind mucilage is a viable material for high microencapsulation efficiency, while offering protection against oxidation mechanisms of SO.


Subject(s)
Dietary Fats/analysis , Drug Compounding/methods , Plant Mucilage/chemistry , Sesame Oil/analysis , Sesamum/chemistry , Tamarindus/chemistry , Capsules/chemistry , Humans , Oxidation-Reduction , Particle Size , Peroxides/chemistry , Seeds/chemistry
17.
Food Chem ; 311: 125882, 2020 May 01.
Article in English | MEDLINE | ID: mdl-31767482

ABSTRACT

The method of 3D fluorescence spectroscopy combined with convolutional neural network (CNN) was developed to identify the counterfeit sesame oil. AlexNet, a pre-trained CNN architecture, was transferred to extract spectral characteristics. Then these features extracted by AlexNet were used as the input of the support vector machine (SVM) to determine whether the sample was counterfeit and its ingredients simultaneously, and both the accuracy were 100%. According to different counterfeit ingredients, these features extracted by AlexNet were used as the input of partial least squares (PLS) to predict the volume percentage concentration of sesame oil essence. There was a good linear relationship between the predicted and actual values of the three sets of counterfeit samples (R2 > 0.99), and the root mean square error of prediction (RMSEP) values were 0.99%, 2.20% and 1.64%, respectively. The results confirmed the validity of this novel method in sesame oil identification.


Subject(s)
Neural Networks, Computer , Sesame Oil/chemistry , Spectrometry, Fluorescence/methods , Least-Squares Analysis , Plant Oils/chemistry , Sesame Oil/analysis , Support Vector Machine
18.
BMC Plant Biol ; 19(1): 466, 2019 Nov 04.
Article in English | MEDLINE | ID: mdl-31684880

ABSTRACT

BACKGROUND: Sesame (Sesame indicum L.) is well-known as a versatile industrial crop having various usages and contains 50-55% oil, 20% protein, 14-20% carbohydrate and 2-3% fiber. Several environmental factors are known to adversely affect yield and productivity of sesame. Our overall aim was to improve the growth, yield and quality of sesame cv. TS-3 using plant growth promoting rhizobacteria (PGPR) and saving the nitrogen and phosphate fertilizers (NP) by 50%. Field experiment (randomized complete block design) was conducted during the months of July to October of two consecutive years 2012-2013. Azospirillum (AL) and Azotobacter (AV) were applied as seed inoculation alone as well as along with half of the recommended dose of nitrogen (N) and phosphate (P) fertilizers (urea and diammonium phosphate) at the rate of 25 kg/ha and 30 kg/ha respectively. RESULTS: Here we report that A. lipoferum along with half dose of NP fertilizers (ALCF) were highly effective in increasing the agronomic and yield traits of sesame as compared to the control. A. vinelandii plus NP fertilizers (AVCF) exhibited higher seed oil content. Minimum acid value, optimum specific gravity and modified fatty acid composition were observed in ALCF treatment. Increase in oleic acid by ALCF is directly linked with improved oil quality for health benefits as oleic acid is the fatty acid which creates a balance between saturation and unsaturation of oil and for the hypotensive (blood pressure reducing) effects. CONCLUSION: It is inferred that ALCF treatment improved plant growth, seed yield and oil quality of sesame pertaining to good quality edible oil production.


Subject(s)
Azospirillum lipoferum/chemistry , Azotobacter vinelandii/chemistry , Nutritive Value , Sesame Oil/analysis , Sesamum/chemistry , Sesamum/growth & development , Fertilizers/analysis , Phosphates/analysis , Random Allocation , Urea/analysis
19.
J Food Biochem ; 43(10): e12786, 2019 10.
Article in English | MEDLINE | ID: mdl-31608473

ABSTRACT

The study investigated the volatile compounds of sesame oil and the effects of microwave processing (0-8 min with 1-min intervals), mainly focusing on the integral flavor characteristics and individual aroma-active compounds. A total of 82 characteristic odors were identified using GC×GC-TOF/MS. Fifteen volatile compounds with the highest odor activity values (OAV > 100) were selected as the key odors contributing to the flavor profile of microwaved sesame oil, including 2-methyl-propanal (pungent, malt, green), 2-methyl-butanal (cocoa, almond), furaneol (caramel), 1-octen-3-one (mushroom), 4-methyl-3-penten-2-one (sweet), 1-nonanol (fat, citrus, green), 2-methyl-phenol (phenol), 2-methoxy-phenol (smoke, sweet), 2-methoxy-4-vinylphenol (clove, curry), 2,5-dimethyl-pyrazine (cocoa, roasted nut, roast beef), 2-furfurylthiol (coffee, roast), 2-thiophenemethanethiol (sulfur), methanethiol (gasoline, garlic), methional (cooked potato), and dimethyl trisulfide (fish, cabbage). The OAVs significantly increased with a longer microwave process. Meanwhile, PCA results based on E-nose and cluster analysis results based on GC×GC-TOF/MS were similar to distinguish flavor formation during the microwave process. PRACTICAL APPLICATIONS: Sesame oils were prepared by a microwave process. Aroma-active compounds with the highest OAVs in sesame oils were not clear. Identification of key aroma compounds of sesame oils could adopt a comprehensive assessment method in combination with E-nose and individual odors detection. Microwave pretreatment as a new processing technology for sesame oil extraction could reduce the time consumption and produce a unique fragrant flavor compared to the traditional roasting process.


Subject(s)
Seeds/chemistry , Sesame Oil/chemistry , Volatile Organic Compounds/chemistry , Electronic Nose , Flavoring Agents/chemistry , Flavoring Agents/isolation & purification , Food Handling , Gas Chromatography-Mass Spectrometry , Humans , Microwaves , Odorants/analysis , Seeds/radiation effects , Sesame Oil/analysis , Solid Phase Microextraction , Taste , Volatile Organic Compounds/isolation & purification
20.
Phytother Res ; 33(10): 2585-2608, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31373097

ABSTRACT

Traditionally, sesame oil (SO) has been used as a popular food and medicine. The review aims to summarize the antioxidant and antiinflammatory effects of SO and its identified compounds as well as further fatty acid profiling and molecular docking study to correlate the interaction of its identified constituents with cyclooxygenase-2 (COX-2). For this, a literature study was made using Google Scholar, Pubmed, and SciFinder databases. Literature study demonstrated that SO has potential antioxidant and antiinflammatory effects in various test systems, including humans, animals, and cultured cells through various pathways such as inhibition of COX, nonenzymatic defense mechanism, inhibition of proinflammatory cytokines, NF-kB or mitogen-activated protein kinase signaling, and prostaglandin synthesis pathway. Fatty acid analysis of SO using gas chromatography identified known nine fatty acids. In silico study revealed that sesamin, sesaminol, sesamolin, stigmasterol, Δ5-avenasterol, and Δ7-avenasterol (-9.6 to -10.7 kcal/mol) were the most efficient ligand for interaction and binding with COX-2. The known fatty acid also showed binding efficiency with COX-2 to some extent (-6.0 to -8.4 kcal/mol). In summary, it is evident that SO may be one of promising traditional medicines that we could use in the prevention and management of diseases associated with oxidative stress and inflammation.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Molecular Docking Simulation , Sesame Oil/pharmacology , Animals , Humans , Oxidative Stress/drug effects , Sesame Oil/analysis , Sesame Oil/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...