Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
BMC Plant Biol ; 21(1): 352, 2021 Jul 24.
Article in English | MEDLINE | ID: mdl-34303354

ABSTRACT

BACKGROUND: Sesame (Sesamum indicum L.) leaves, flowers, especially seeds are used in traditional medicine to prevent or cure various diseases. Its seed's market is expanding. However, the other tissues are still underexploited due to the lack of information related to metabolites distribution and variability in the plant. Herein, the metabolite profiles of five sesame tissues (leaves, fresh seeds, white and purple flowers, and fresh carpels) have been investigated using ultra-high-performance liquid chromatography-mass spectrometry (UPLC-MS/MS)-based widely targeted metabolomics analysis platform. RESULTS: In total, 776 metabolites belonging to diverse classes were qualitatively and quantitatively identified. The different tissues exhibited obvious differences in metabolites composition. The majority of flavonoids predominantly accumulated in flowers. Amino acids and derivatives, and lipids were identified predominantly in fresh seeds followed by flowers. Many metabolites, including quinones, coumarins, tannins, vitamins, terpenoids and some bioactive phenolic acids (acteoside, isoacteoside, verbascoside, plantamajoside, etc.) accumulated mostly in leaves. Lignans were principally detected in seeds. 238 key significantly differential metabolites were filtered out. KEGG annotation and enrichment analyses of the differential metabolites revealed that flavonoid biosynthesis, amino acids biosynthesis, and phenylpropanoid biosynthesis were the main differently regulated pathways. In addition to the tissue-specific accumulation of metabolites, we noticed a cooperative relationship between leaves, fresh carpels, and developing seeds in terms of metabolites transfer. Delphinidin-3-O-(6"-O-p-coumaroyl)glucoside and most of the flavonols were up-regulated in the purple flowers indicating they might be responsible for the purple coloration. CONCLUSION: This study revealed that the metabolic processes in the sesame tissues are differently regulated. It offers valuable resources for investigating gene-metabolites interactions in sesame tissues and examining metabolic transports during seed development in sesame. Furthermore, our findings provide crucial knowledge that will facilitate sesame biomass valorization.


Subject(s)
Flowers/metabolism , Metabolic Networks and Pathways/genetics , Metabolomics , Plant Leaves/metabolism , Seeds/metabolism , Sesamum/genetics , Sesamum/metabolism , China , Crops, Agricultural/anatomy & histology , Crops, Agricultural/genetics , Crops, Agricultural/metabolism , Flowers/anatomy & histology , Flowers/genetics , Gene Expression Regulation, Plant , Genetic Variation , Genotype , Plant Leaves/anatomy & histology , Plant Leaves/genetics , Seeds/anatomy & histology , Seeds/genetics , Sesamum/anatomy & histology
2.
ScientificWorldJournal ; 2021: 6660711, 2021.
Article in English | MEDLINE | ID: mdl-34007247

ABSTRACT

The emerging oilseed crop Sesamum indicum, also known as the queen of oilseeds, is being grown globally for its oil content for medicinal and nutritional values. One of the key challenges of sesame cultivation is its low productivity. In the present study, sodium azide (NaN3) was used as a chemical mutagen. The aim of this study was to examine the effect of NaN3 on quantitative and qualitative stem traits in the M2 generation of Ethiopian sesame (Sesamum indicum L.) genotypes. Seeds of fourteen sesame genotypes were used in this study and germinated and grown under greenhouse conditions. Different qualitative and quantitative data were collected and analyzed. Traits such as plant height, ground distance to first distance, and internode length were significantly affected by NaN3 treatment. The highest plant height was recorded in the control on Humera 1 and Baha Necho genotypes, while the lowest was observed on Setit 2 and Hirhir treated with the chemical. The highest ground distance to the first branch was observed in Gumero, while the least ground distance was recorded in Setit 1 in the treated and control genotypes, respectively. The best internode length was recorded on Setit 2 and ADI in the control, while the lowest internode length was observed in Setit 1 genotype treated with sodium azide. Genotypes such as ACC44, ADI, Baha Necho, Borkena, Gonder 1, and Setit 1 treated with NaN3 have showed glabrous type of stem hairiness. All the fourteen genotypes (both treated and control) were clustered into four groups. In conclusion, we observed a highly significant variation among the genotypes due the effect of the chemical and genotypes themselves. Hence, this report would create more genetic diversity for further sesame genetic research improvements.


Subject(s)
Mutagens/pharmacology , Plant Stems/drug effects , Quantitative Trait, Heritable , Seeds/drug effects , Sesamum/drug effects , Sodium Azide/pharmacology , Genotype , Humans , Phenotype , Phylogeny , Plant Stems/anatomy & histology , Plant Stems/genetics , Seeds/chemistry , Seeds/genetics , Selection, Genetic , Sesamum/anatomy & histology , Sesamum/classification , Sesamum/genetics
3.
Theor Appl Genet ; 133(1): 73-86, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31686114

ABSTRACT

KEY MESSAGE: SiDWF1 encodes a gibberellin receptor GID1B-like protein controlling the internode length and plant height in sesame. Sesame is a high-height crop. Here we systematically analyzed the morphological and genetic characters of the sesame dwarf mutant dw607 (dwf1 type). The plant height and the internode length of dw607 significantly declined, while the thousand seed weight (TSW) significantly increased (P < 0.01). The cell size of stem parenchyma and pith tissue reduced, and vascular bundle cells and parenchyma tissue arranged much tighter in the dwarf mutant. Based on the cross-population association mapping of a RIL population of the cross 'dw607 (dwf1) × 15N41 (wt type),' the target interval linked to the short internode length was located on C9.scaffold2 of SiChr.4 in sesame. We further screened the 58 variants using the genomic variant data of 824 germplasm and BSA DNA pools and determined the target gene Sidwf1. The SNP mutation of C1057 to T1057 resulted in the amino acid change of P150 (proline) to S150 (serine) in SiDWF1. SiDWF1 gene allele is 1,638 bp and encodes a gibberellin receptor GID1B-like protein. Transcription profile assay reflected that Sidwf1 is highly expressed in leaf, stem, bud, and capsule tissues. The dynamic variation in endogenous GA3 content in dw607 and the wild type was also monitored in this study. The results revealed the molecular genetic mechanism of the internode length and plant height trait in sesame for the first time. The findings supply the theoretical and material basis for developing the marker-assisted selection (MAS) breeding in sesame.


Subject(s)
Genes, Plant , Mutation/genetics , Plant Stems/anatomy & histology , Plant Stems/genetics , Quantitative Trait, Heritable , Sesamum/anatomy & histology , Sesamum/genetics , Alleles , Amino Acid Sequence , Crosses, Genetic , Gene Expression Regulation, Plant , Genetic Testing , Genotype , Gibberellins/metabolism , Inheritance Patterns/genetics , Phenotype , Phylogeny , Plant Proteins/chemistry , Plant Proteins/genetics , Plant Stems/cytology , Sequence Homology, Amino Acid
4.
Planta ; 250(5): 1461-1474, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31321496

ABSTRACT

MAIN CONCLUSION: Sesame harbors a large diversity in root morphological and anatomical traits and a high root biomass improves the plant aboveground biomass as well as the seed yield. Sesame provides one of the most nutritious and healthy vegetable oils, sparking an increasing demand of its seeds. However, with the low yield and productivity of sesame, there is still a huge gap between the seed demand and supply. Improving the root system has a high potential to increase crop productivity, but information on the diversity of the sesame root systems is still lacking. In this study, 40 diverse sesame varieties were grown in soil and hydroponics systems and the diversity of the root system was investigated. The results showed that sesame holds a large root morphological and anatomical diversity, which can be harnessed in breeding programmes. Based on the clustering of the genotypes in hydroponics and soil culture systems, we found that similar genotypes were commonly clustered either in the small-root or in the big-root group, indicating that the hydroponics system can be employed for a large-scale root phenotyping. Our results further revealed that the root biomass positively contributes to increased seed yield in sesame, based on multi-environmental trials. By comparing the root transcriptome of two contrasting genotypes, 2897 differentially expressed genes were detected and they were enriched in phenylpropanoid biosynthesis, starch and sucrose metabolism, stilbenoid, diarylheptanoid and gingerol biosynthesis, flavonoid biosynthesis, suggesting that these pathways are crucial for sesame root growth and development. Overall, this study sheds light on the diversity of sesame root system and offers the basis for improving root traits and increasing sesame seed yield.


Subject(s)
Sesamum/genetics , Transcriptome , Biomass , Genotype , Phenotype , Plant Oils/metabolism , Plant Proteins/genetics , Plant Roots/anatomy & histology , Plant Roots/genetics , Plant Roots/growth & development , Sesamum/anatomy & histology , Sesamum/growth & development
5.
Braz. J. Pharm. Sci. (Online) ; 55: e17479, 2019. tab
Article in English | LILACS | ID: biblio-1039040

ABSTRACT

The aim of this study was to evaluate the antifungal susceptibility patterns of three antifungals, methanolic extracts and N-hexane oil of sesame seeds on C. albicans and C. glabrata, isolated from oral cavity of liver transplant recipients. The results were compared with other reports to develop a mini review as well. Candida species were isolated from liver transplant recipients. To evaluate the antifungal activity of sesame seed oil and methanolic extract, fluconazole, caspofungin and nystatin, the corresponding minimum inhibitory concentrations were determined by CLSI M27-A3 standard method. Minimum fungicidal concentration was also evaluated. The most prevalent species was C. albicans, followed by C. glabrata. Findings indicated sensitivity to antifungal agents and resistance to methanolic extract and N-hexane oil for all C. albicans and C. glabrata isolates. The rate of Candida colonization in the oral cavity of liver transplant recipients was high. Our results revealed that the methanolic and N-hexan extracts of sesame seeds are not effective on C. albicans and C. glabrata species, isolated from the patients. The sesame seed oil pulling and mouthwash cannot effectively cleanse and remove the Candida species in the mouth. Investigation of other medicinal plants or other parts of sesame like leaves and roots are suggested.


Subject(s)
Oils, Volatile/analysis , Sesamum/anatomy & histology , Antifungal Agents/adverse effects , Candida/immunology , Liver Transplantation
6.
Int J Mol Sci ; 19(9)2018 Sep 17.
Article in English | MEDLINE | ID: mdl-30227628

ABSTRACT

Sesame is poised to become a major oilseed crop owing to its high oil quality and adaptation to various ecological areas. However, the seed yield of sesame is very low and the underlying genetic basis is still elusive. Here, we performed genome-wide association studies of 39 seed yield-related traits categorized into five major trait groups, in three different environments, using 705 diverse lines. Extensive variation was observed for the traits with capsule size, capsule number and seed size-related traits, found to be highly correlated with seed yield indexes. In total, 646 loci were significantly associated with the 39 traits (p < 10-7) and resolved to 547 quantitative trait loci QTLs. We identified six multi-environment QTLs and 76 pleiotropic QTLs associated with two to five different traits. By analyzing the candidate genes for the assayed traits, we retrieved 48 potential genes containing significant functional loci. Several homologs of these candidate genes in Arabidopsis are described to be involved in seed or biomass formation. However, we also identified novel candidate genes, such as SiLPT3 and SiACS8, which may control capsule length and capsule number traits. Altogether, we provided the highly-anticipated basis for research on genetics and functional genomics towards seed yield improvement in sesame.


Subject(s)
Quantitative Trait Loci , Seeds/genetics , Sesamum/genetics , Chromosome Mapping , Gene Expression Regulation, Plant , Genetic Linkage , Genome, Plant , Genome-Wide Association Study , Phenotype , Seeds/anatomy & histology , Seeds/growth & development , Sesamum/anatomy & histology , Sesamum/growth & development
7.
Molecules ; 23(5)2018 May 15.
Article in English | MEDLINE | ID: mdl-29762486

ABSTRACT

Chemical composition of secondary metabolites is of great importance for quality control of agricultural products. Black sesame seeds are significantly more expensive than white sesame seeds, because it is thought that black sesame seeds are more beneficial to human health than white sesame seeds. However, the differences in nutrient composition between black sesame seeds and white sesame seeds are still unknown. The current study examined the levels of different metabolites in black and white sesame seeds via the use of a novel metabolomics strategy. Using widely targeted metabolomics data, we obtained the structure and content of 557 metabolites, out of which 217 metabolites were identified, and discovered 30 metabolic pathways activated by the secondary metabolites in both black and white sesame seeds. Our results demonstrated that the main pathways that were differentially activated included: phenylpropanoid biosynthesis, tyrosine metabolism, and riboflavin metabolism. More importantly, the biomarkers that were significantly different between black seeds and white sesame seeds are highly related to the functions recorded in traditional Chinese medicine. The results of this study may serve as a new theoretical reference for breeding experts to promote the genetic improvement of sesame seeds, and therefore the cultivation of higher quality sesame varieties.


Subject(s)
Metabolome , Metabolomics , Nutrition Assessment , Sesamum/anatomy & histology , Sesamum/metabolism , Chromatography, Liquid , Humans , Medicine, Chinese Traditional , Metabolomics/methods , Seeds/anatomy & histology , Seeds/metabolism , Tandem Mass Spectrometry
8.
Sci Rep ; 7(1): 8755, 2017 08 18.
Article in English | MEDLINE | ID: mdl-28821876

ABSTRACT

Sesame is an important oilseed crop with a high oil quality. It is prone to drought stress in the arid and semi-arid areas where it is widely grown. This study aims to decipher the response of tolerant (DT) and sensitive (DS) genotypes to progressive drought based on transcriptome, biochemical and physio-anatomical characterizations. Results indicated that under severe stress, DT relied on a well-functioning taproot while DS displayed a disintegrated root due to collapsed cortical cells. This was attributed to a higher accumulation of osmoprotectants and strong activity of antioxidant enzymes especially peroxidases in DT. From roots, DT could supply water to the aboveground tissues to ensure photosynthetic activities and improve endurance under stress. Temporal transcriptome sequencing under drought further confirmed that DT strongly activated genes related to antioxidant activity, osmoprotection and hormonal signaling pathways including abscisic acid and Ethylene. Furthermore, DT displayed unique differentially expressed genes in root functioning as peroxidases, interleukin receptor-associated kinase, heat shock proteins, APETALA2/ethylene-responsive element-binding protein and mitogen activated protein kinase, to effectively scavenge reactive oxygen species and preserve root cell integrity. Finally, 61 candidate genes conferring higher drought tolerance in DT were discovered and may constitute useful resources for drought tolerance improvement in sesame.


Subject(s)
Droughts , Genotype , Metabolome , Sesamum/genetics , Sesamum/metabolism , Stress, Physiological , Transcriptome , Gene Expression Profiling , Gene Expression Regulation, Plant , Genes, Plant , Immunohistochemistry , NF-kappa B/metabolism , Phenotype , Plant Growth Regulators/metabolism , Plant Roots/anatomy & histology , Plant Roots/genetics , Plant Roots/metabolism , Sesamum/anatomy & histology , Sesamum/chemistry , Signal Transduction
9.
Plant Sci ; 208: 102-11, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23683935

ABSTRACT

Waterlogging threatens severely to the sesame production in China, India and Burma, which are the top three sesame producers of the world. It was of great importance to explore the dynamics and mechanisms of action of anaerobic proteins and antioxidant enzymes together with the morph-anatomic adaptions in waterlogged sesame. The sesame accessions ZZM2541 and Ezhi-2 respond to waterlogging in considerably different performance. The stress induced wilting and leaf chlorosis in both accessions, but symptom occurred earlier in the susceptive Ezhi-2. In the more tolerant ZZM2541, adventitious roots formed above the flooding level, and plentiful of aerenchyma developed in the root and stem. However, it was discovered no apparent intercellular spaces existing in the spongy mesophyll in leaves of both accessions. The activities of ADH, PDC and LDH increased in roots of both accessions after suffering of the stress. The increase of ADH and PDC activity was more pronounced in ZZM2541, while a significantly higher LDH activity appeared in Ezhi-2. All the activities of SOD, APX and CAT were higher in the leaves of ZZM2541 than in Ezhi-2, and the leaves of Ezhi-2 showed a higher content of MDA throughout the duration of waterlogging. It was suggested that the tolerance to waterlogging of ZZM2541 appears to depend on a combination of metabolic and morpho-anatomical adaptions.


Subject(s)
Adaptation, Physiological , Floods , Sesamum/anatomy & histology , Sesamum/physiology , Chlorophyll/metabolism , Plant Leaves/anatomy & histology , Plant Leaves/cytology , Plant Leaves/enzymology , Plant Proteins/metabolism , Plant Roots/anatomy & histology , Plant Roots/cytology , Plant Roots/enzymology , Plant Stems/anatomy & histology , Plant Stems/cytology , Solubility
10.
Hereditas ; 148(1): 28-35, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21410468

ABSTRACT

The purpose of this study was to comparatively analyze the genetic diversity of sesame (Sesamum indicum L.) using agro-morphological and molecular markers. Twelve sesame populations collected from three regions in Cambodia and Vietnam were used in this study. A high genetic variation was revealed both by agro-morphological and RAPD markers within and among the 12 sesame populations. The range of agro-morphological trait based average taxonomic distance among populations (0.02 to 0.47) was wider than that of RAPD based genetic distance (0.06 to 0.27). The mean distance revealed by agro-morphological markers (0.23) and RAPD markers (0.22) was similar. RAPD based analysis revealed a relatively higher genetic diversity in populations from South Vietnam as compared to the other two regions. Interestingly, populations from this region also had higher values for yield related traits such as number of capsules per plant, number of seeds per capsule, and seed yield per plant suggesting positive correlation between the extent of genetic variation within population and yield related traits in sesame. A highly significant positive correlation (r = 0.88, P < 0.001) was found between agro-morphological and RAPD markers in estimating the genetic distance between populations. Both methods suggested the existence of a substantial amount of genetic diversity both in the Vietnamese and Cambodian populations. Although both agro-morphological and RAPD markers were found to be useful in genetic diversity analysis in sesame, their combined use would give superior results.


Subject(s)
Genetic Markers/genetics , Genetic Variation , Sesamum/genetics , Cambodia , Genetics, Population , Phylogeny , Random Amplified Polymorphic DNA Technique , Sesamum/anatomy & histology , Sesamum/classification , Vietnam
SELECTION OF CITATIONS
SEARCH DETAIL
...