Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 20(8)2019 Apr 12.
Article in English | MEDLINE | ID: mdl-31013805

ABSTRACT

Sesbania herbacea, a native North American fast-growing legume, thrives in wet and waterlogged conditions. This legume enters into symbiotic association with rhizobia, resulting in the formation of nitrogen-fixing nodules on the roots. A flooding-induced anaerobic environment imposes a challenge for the survival of rhizobia and negatively impacts nodulation. Very little information is available on how S. herbacea is able to thrive and efficiently fix N2 in flooded conditions. In this study, we found that Sesbania plants grown under flooded conditions were significantly taller, produced more biomass, and formed more nodules when compared to plants grown on dry land. Transmission electron microscopy of Sesbania nodules revealed bacteroids from flooded nodules contained prominent polyhydroxybutyrate crystals, which were absent in non-flooded nodules. Gas and ion chromatography mass spectrometry analysis of nodule metabolites revealed a marked decrease in asparagine and an increase in the levels of gamma aminobutyric acid in flooded nodules. 2-D gel electrophoresis of nodule bacteroid proteins revealed flooding-induced changes in their protein profiles. Several of the bacteroid proteins that were prominent in flooded nodules were identified by mass spectrometry to be members of the ABC transporter family. The activities of several key enzymes involved in nitrogen metabolism was altered in Sesbania flooded nodules. Aspartate aminotransferase (AspAT), an enzyme with a vital role in the assimilation of reduced nitrogen, was dramatically elevated in flooded nodules. The results of our study highlight the potential of S. herbacea as a green manure and sheds light on the morphological, structural, and biochemical adaptations that enable S. herbacea to thrive and efficiently fix N2 in flooded conditions.


Subject(s)
Floods , Root Nodules, Plant/anatomy & histology , Root Nodules, Plant/chemistry , Sesbania/anatomy & histology , Sesbania/chemistry , Stress, Physiological , Enzyme Activation , Mass Spectrometry , Plant Roots/anatomy & histology , Plant Roots/chemistry , Plant Roots/cytology , Plant Roots/metabolism , Root Nodules, Plant/cytology , Root Nodules, Plant/metabolism , Sesbania/cytology , Sesbania/metabolism
2.
Appl Environ Microbiol ; 84(3)2018 02 01.
Article in English | MEDLINE | ID: mdl-29150498

ABSTRACT

Chemotaxis can provide bacteria with competitive advantages for survival in complex environments. The CheZ chemotaxis protein is a phosphatase, affecting the flagellar motor in Escherichia coli by dephosphorylating the response regulator phosphorylated CheY protein (CheY∼P) responsible for clockwise rotation. A cheZ gene has been found in Azorhizobium caulinodans ORS571, in contrast to other rhizobial species studied so far. The CheZ protein in strain ORS571 has a conserved motif similar to that corresponding to the phosphatase active site in E. coli The construction of a cheZ deletion mutant strain and of cheZ mutant strains carrying a mutation in residues of the putative phosphatase active site showed that strain ORS571 participates in chemotaxis and motility, causing a hyperreversal behavior. In addition, the properties of the cheZ deletion mutant revealed that ORS571 CheZ is involved in other physiological processes, since it displayed increased flocculation, biofilm formation, exopolysaccharide (EPS) production, and host root colonization. In particular, it was observed that the expression of several exp genes, involved in EPS synthesis, was upregulated in the cheZ mutant compared to that in the wild type, suggesting that CheZ negatively controls exp gene expression through an unknown mechanism. It is proposed that CheZ influences the Azorhizobium-plant association by negatively regulating early colonization via the regulation of EPS production. This report established that CheZ in A. caulinodans plays roles in chemotaxis and the symbiotic association with the host plant.IMPORTANCE Chemotaxis allows bacteria to swim toward plant roots and is beneficial to the establishment of various plant-microbe associations. The level of CheY phosphorylation (CheY∼P) is central to the chemotaxis signal transduction. The mechanism of the signal termination of CheY∼P remains poorly characterized among Alphaproteobacteria, except for Sinorhizobium meliloti, which does not contain CheZ but which controls CheY∼P dephosphorylation through a phosphate sink mechanism. Azorhizobium caulinodans ORS571, a microsymbiont of Sesbania rostrata, has an orphan cheZ gene besides two cheY genes similar to those in S. meliloti In addition to controlling the chemotaxis response, the CheZ-like protein in strain ORS571 is playing a role by decreasing bacterial adhesion to the host plant, in contrast to the general situation where chemotaxis-associated proteins promote adhesion. In this study, we identified a CheZ-like protein among Alphaproteobacteria functioning in chemotaxis and the A. caulinodans-S. rostrata symbiosis.


Subject(s)
Azorhizobium caulinodans/genetics , Azorhizobium caulinodans/physiology , Chemotaxis/genetics , Methyl-Accepting Chemotaxis Proteins/genetics , Sesbania/microbiology , Bacterial Adhesion , Biofilms/growth & development , Catalytic Domain , Chemotaxis/physiology , Phosphates/metabolism , Phosphoric Monoester Hydrolases/genetics , Phosphorylation , Plant Roots/microbiology , Sequence Deletion , Sesbania/anatomy & histology , Signal Transduction , Symbiosis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...