Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.170
Filter
1.
Zhongguo Zhong Yao Za Zhi ; 49(8): 2138-2146, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38812229

ABSTRACT

In this study, four Atractylodes chinensis(A. chinensis) with different leaf shapes, such as the split leaf, long and narrow leaf, oval leaf, and large round leaf, were used as experimental materials to establish a method for simultaneously determining atractylodin, atractylenolide Ⅰ, ß-eudesmol, and atractylon in the rhizome of A. chinensis. The expression of key enzyme genes for biosynthesis of acetyl-CoA carboxylase(ACC), 3-hydroxy-3-methylglutaryl-CoA reductase(HMGR), and farnesyl pyrophosphate synthase(FPPS) was detected by real-time fluorescence quantitative polymerase chain reaction(qRT-PCR). High performance liquid chromatography(HPLC) was used to compare the difference in the content of four active components in A. chinensis with different leaf shapes, and the correlation between the content of active components and the expression of key enzyme genes in biosynthesis was discussed. The results show that there was good linearity among atractylodin, atractylenolide Ⅰ, ß-eudesmol, and atractylon in the range of 3.30-33.00 µg·mL~(-1)(r =0.999 7), 12.04-120.40 µg·mL~(-1)(r =0.999 5), 29.16-291.60 µg·mL~(-1)(r =0.999 5), and 14.20-142.00 µg·mL~(-1)(r =0.999 5), respectively. The average recoveries were 99.77%(RSD=2.1%), 98.56%(RSD=1.2%), 103.0%(RSD=1.2%), and 100.6%(RSD=1.5%), respectively. The method was accurate and had good reproducibility, which could be used to simultaneously detect atractylodin, atractylenolide Ⅰ, ß-eudesmol, and atractylon. The results showed that there were significant differences in the content of four active components in A. chinensis with different leaf shapes. The content of atractylodin, atractylenolide Ⅰ, and ß-eudesmol in A. chinensis with split leaves was the highest, which were 1.341 9, 5.237 2, and 12.084 3 mg·g~(-1), respectively. The content of atractylon in A. chinensis with long and narrow leaves was the highest(5.470 1 mg·g~(-1)). The content of atractylodin, atractylenolide Ⅰ, ß-eudesmol, and atractylon in A. chinensis with oval leaves was the lowest. The total content of the four effective components in descending order was A. chinensis with split leaves > A. chinensis with long and narrow leaves > A. chinensis with large round leaves > A. chinensis with oval leaves. The gene expression levels of key enzymes ACC, HMGR, and FPPS in A. chinensis with split leaves were the highest(P < 0.05), and the gene expression levels of key enzymes ACC and HMGR in A. chinensis with oval leaves were the lowest(P < 0.05). The gene expression level of key enzyme FPPS in A. chinensis with large round leaves was the lowest. In A. chinensis with different leaf shapes, the key enzyme gene ACC was significantly positively correlated with the polyacetylene component, namely atractylodin(P < 0.01), and the key enzyme genes HMGR and FPPS were positively correlated with the sesquiterpene components, namely atractylenolide Ⅰ, ß-eudesmol, and atractylon. In summary, the quality of A. chinensis with split leaves is the best, and the biosynthesis of atractylodin is significantly correlated with the gene expression of key enzyme ACC, which provides a theoretical basis for screening and optimizing the germplasm resources of A. chinensis and improving the quality of medicinal materials.


Subject(s)
Atractylodes , Lactones , Plant Leaves , Sesquiterpenes , Atractylodes/genetics , Atractylodes/chemistry , Atractylodes/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/chemistry , Sesquiterpenes/metabolism , Sesquiterpenes/analysis , Lactones/metabolism , Lactones/analysis , Plant Proteins/genetics , Plant Proteins/metabolism , Furans/metabolism , Drugs, Chinese Herbal , Gene Expression Regulation, Plant , Rhizome/genetics , Rhizome/chemistry , Rhizome/metabolism , Sesquiterpenes, Eudesmane
2.
Int J Mol Sci ; 25(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38791163

ABSTRACT

The genome sequencing of Botrytis cinerea supplies a general overview of the map of genes involved in secondary metabolite synthesis. B. cinerea genomic data reveals that this phytopathogenic fungus has seven sesquiterpene cyclase (Bcstc) genes that encode proteins involved in the farnesyl diphosphate cyclization. Three sesquiterpene cyclases (BcStc1, BcStc5 and BcStc7) are characterized, related to the biosynthesis of botrydial, abscisic acid and (+)-4-epi-eremophilenol, respectively. However, the role of the other four sesquiterpene cyclases (BcStc2, BcStc3, BcStc4 and BcStc6) remains unknown. BcStc3 is a well-conserved protein with homologues in many fungal species, and here, we undertake its functional characterization in the lifecycle of the fungus. A null mutant ΔBcstc3 and an overexpressed-Bcstc3 transformant (OvBcstc3) are generated, and both strains show the deregulation of those other sesquiterpene cyclase-encoding genes (Bcstc1, Bcstc5 and Bcstc7). These results suggest a co-regulation of the expression of the sesquiterpene cyclase gene family in B. cinerea. The phenotypic characterization of both transformants reveals that BcStc3 is involved in oxidative stress tolerance, the production of reactive oxygen species and virulence. The metabolomic analysis allows the isolation of characteristic polyketides and eremophilenols from the secondary metabolism of B. cinerea, although no sesquiterpenes different from those already described are identified.


Subject(s)
Botrytis , Sesquiterpenes , Botrytis/genetics , Botrytis/metabolism , Sesquiterpenes/metabolism , Fungal Proteins/metabolism , Fungal Proteins/genetics , Gene Expression Regulation, Fungal , Oxidative Stress , Carbon-Carbon Lyases
3.
Appl Microbiol Biotechnol ; 108(1): 344, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801472

ABSTRACT

Modulating the soil microbiome by applying microbial inoculants has gained increasing attention as eco-friendly option to improve soil disease suppressiveness. Currently, studies unraveling the interplay of inoculants, root-associated microbiome, and plant response are lacking for apple trees. Here, we provide insights into the ability of Bacillus velezensis FZB42 or Pseudomonas sp. RU47 to colonize apple root-associated microhabitats and to modulate their microbiome. We applied the two strains to apple plants grown in soils from the same site either affected by apple replant disease (ARD) or not (grass), screened their establishment by selective plating, and measured phytoalexins in roots 3, 16, and 28 days post inoculation (dpi). Sequencing of 16S rRNA gene and ITS fragments amplified from DNA extracted 28 dpi from different microhabitat samples revealed significant inoculation effects on fungal ß-diversity in root-affected soil and rhizoplane. Interestingly, only in ARD soil, most abundant bacterial amplicon sequence variants (ASVs) changed significantly in relative abundance. Relative abundances of ASVs affiliated with Enterobacteriaceae were higher in rhizoplane of apple grown in ARD soil and reduced by both inoculants. Bacterial communities in the root endosphere were not affected by the inoculants but their presence was indicated. Interestingly and previously unobserved, apple plants responded to the inoculants with increased phytoalexin content in roots, more pronounced in grass than ARD soil. Altogether, our results indicate that FZB42 and RU47 were rhizosphere competent, modulated the root-associated microbiome, and were perceived by the apple plants, which could make them interesting candidates for an eco-friendly mitigation strategy of ARD. KEY POINTS: • Rhizosphere competent inoculants modulated the microbiome (mainly fungi) • Inoculants reduced relative abundance of Enterobacteriaceae in the ARD rhizoplane • Inoculants increased phytoalexin content in roots, stronger in grass than ARD soil.


Subject(s)
Bacillus , Malus , Microbiota , Phytoalexins , Plant Roots , Pseudomonas , RNA, Ribosomal, 16S , Rhizosphere , Sesquiterpenes , Soil Microbiology , Malus/microbiology , Plant Roots/microbiology , Bacillus/genetics , Bacillus/metabolism , RNA, Ribosomal, 16S/genetics , Sesquiterpenes/metabolism , Pseudomonas/genetics , Pseudomonas/metabolism , Pseudomonas/physiology , Agricultural Inoculants/physiology , Agricultural Inoculants/genetics , Fungi/genetics , Fungi/classification , Fungi/metabolism , Fungi/physiology , Plant Diseases/microbiology , Plant Diseases/prevention & control
4.
J Vis Exp ; (206)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38709040

ABSTRACT

Aflatoxins are highly carcinogenic secondary metabolites of some fungal species, particularly Aspergillus flavus. Aflatoxins often contaminate economically important agricultural commodities, including peanuts, posing a high risk to human and animal health. Due to the narrow genetic base, peanut cultivars demonstrate limited resistance to fungal pathogens. Therefore, numerous wild peanut species with tolerance to Aspergillus have received substantial consideration by scientists as sources of disease resistance. Exploring plant germplasm for resistance to aflatoxins is difficult since aflatoxin accumulation does not follow a normal distribution, which dictates the need for the analyses of thousands of single peanut seeds. Sufficiently hydrated peanut (Arachis spp.) seeds, when infected by Aspergillus species, are capable of producing biologically active stilbenes (stilbenoids) that are considered defensive phytoalexins. Peanut stilbenes inhibit fungal development and aflatoxin production. Therefore, it is crucial to analyze the same seeds for peanut stilbenoids to explain the nature of seed resistance/susceptibility to the Aspergillus invasion. None of the published methods offer single-seed analyses for aflatoxins and/or stilbene phytoalexins. We attempted to fulfill the demand for such a method that is environment-friendly, uses inexpensive consumables, and is sensitive and selective. In addition, the method is non-destructive since it uses only half of the seed and leaves the other half containing the embryonic axis intact. Such a technique allows germination and growth of the peanut plant to full maturity from the same seed used for the aflatoxin and stilbenoid analysis. The integrated part of this method, the manual challenging of the seeds with Aspergillus, is a limiting step that requires more time and labor compared to other steps in the method. The method has been used for the exploration of wild Arachis germplasm to identify species resistant to Aspergillus and to determine and characterize novel sources of genetic resistance to this fungal pathogen.


Subject(s)
Aflatoxins , Arachis , Phytoalexins , Seeds , Sesquiterpenes , Stilbenes , Arachis/microbiology , Arachis/chemistry , Seeds/chemistry , Aflatoxins/analysis , Aflatoxins/metabolism , Stilbenes/metabolism , Stilbenes/analysis , Stilbenes/chemistry , Sesquiterpenes/analysis , Sesquiterpenes/metabolism , Sesquiterpenes/chemistry , Chromatography, High Pressure Liquid/methods
5.
Nat Commun ; 15(1): 3437, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38653755

ABSTRACT

Phytoalexin sakuranetin functions in resistance against rice blast. However, the mechanisms underlying the effects of sakuranetin remains elusive. Here, we report that rice lines expressing resistance (R) genes were found to contain high levels of sakuranetin, which correlates with attenuated endocytic trafficking of plasma membrane (PM) proteins. Exogenous and endogenous sakuranetin attenuates the endocytosis of various PM proteins and the fungal effector PWL2. Moreover, accumulation of the avirulence protein AvrCO39, resulting from uptake into rice cells by Magnaporthe oryzae, was reduced following treatment with sakuranetin. Pharmacological manipulation of clathrin-mediated endocytic (CME) suggests that this pathway is targeted by sakuranetin. Indeed, attenuation of CME by sakuranetin is sufficient to convey resistance against rice blast. Our data reveals a mechanism of rice against M. oryzae by increasing sakuranetin levels and repressing the CME of pathogen effectors, which is distinct from the action of many R genes that mainly function by modulating transcription.


Subject(s)
Ascomycota , Disease Resistance , Endocytosis , Flavonoids , Oryza , Phytoalexins , Plant Diseases , Plant Proteins , Oryza/microbiology , Oryza/metabolism , Oryza/drug effects , Oryza/genetics , Plant Diseases/microbiology , Endocytosis/drug effects , Disease Resistance/genetics , Disease Resistance/drug effects , Plant Proteins/metabolism , Plant Proteins/genetics , Sesquiterpenes/pharmacology , Sesquiterpenes/metabolism , Gene Expression Regulation, Plant/drug effects , Cell Membrane/metabolism , Cell Membrane/drug effects , Plants, Genetically Modified , Fungal Proteins/metabolism , Fungal Proteins/genetics
6.
PeerJ ; 12: e17240, 2024.
Article in English | MEDLINE | ID: mdl-38685939

ABSTRACT

Background: Schisandra sphenanthera Rehd. et Wils. is a plant used in traditional Chinese medicine (TCM). However, great differences exist in the content of active secondary metabolites in various parts of S. sphenanthera. Do microorganisms critically influence the accumulation of active components in different parts of S. sphenanthera? Methods: In this study, 16S/ITS amplicon sequencing analysis was applied to unravel microbial communities in rhizospheric soil and different parts of wild S. sphenanthera. At the same time, the active secondary metabolites in different parts were detected, and the correlation between the secondary metabolites and microorganisms was analyzed. Results: The major components identified in the essential oils were sesquiterpene and oxygenated sesquiterpenes. The contents of essential oil components in fruit were much higher than that in stem and leaf, and the dominant essential oil components were different in these parts. The dominant components of the three parts were γ-muurolene, δ-cadinol, and trans farnesol (stem); α-cadinol and neoisolongifolene-8-ol (leaf); isosapathulenol, α-santalol, cedrenol, and longiverbenone (fruit). The microbial amplicon sequences were taxonomically grouped into eight (bacteria) and seven (fungi) different phyla. Community diversity and composition analyses showed that different parts of S. sphenanthera had similar and unique microbial communities, and functional prediction analysis showed that the main functions of microorganisms were related to metabolism. Moreover, the accumulation of secondary metabolites in S. sphenanthera was closely related to the microbial community composition, especially bacteria. In endophytic bacteria, Staphylococcus and Hypomicrobium had negative effects on five secondary metabolites, among which γ-muurolene and trans farnesol were the dominant components in the stem. That is, the dominant components in stems were greatly affected by microorganisms. Our results provided a new opportunity to further understand the effects of microorganisms on the active secondary metabolites and provided a basis for further research on the sustainable utilization of S. sphenanthera.


Subject(s)
Schisandra , Schisandra/metabolism , Schisandra/chemistry , Soil Microbiology , Microbiota/genetics , Oils, Volatile/metabolism , Secondary Metabolism , Plant Stems/microbiology , Plant Stems/metabolism , Sesquiterpenes/metabolism , Bacteria/genetics , Bacteria/classification , Bacteria/metabolism
7.
Fungal Genet Biol ; 172: 103895, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38679292

ABSTRACT

Botrytis cinerea is a necrotrophic pathogen that infects across a broad range of plant hosts, including high-impact crop species. Its generalist necrotrophic behavior stems from its ability to detoxify structurally diverse phytoalexins. The current study aims to provide evidence of the ability of B. cinerea to tolerate the sesquiterpenoid phytoalexin rishitin, which is produced by potato and tomato. While the growth of potato pathogens Phytophthora infestans (late blight) and Alternaria solani (early blight) was severely inhibited by rishitin, B. cinerea was tolerant to rishitin. After incubation of rishitin with the mycelia of B. cinerea, it was metabolized to at least six oxidized forms. Structural analysis of these purified rishitin metabolites revealed a variety of oxidative metabolism including hydroxylation at C7 or C12, ketone formation at C5, and dihydroxylation at the 10,11-olefin. Six rishitin metabolites showed reduced toxicity to P. infestans and A. solani, indicating that B. cinerea has at least 5 distinct enzymatic reactions to detoxify rishitin. Four host-specialized phytopathogenic Botrytis species, namely B. elliptica, B. allii, B. squamosa, and B. tulipae also had at least a partial ability to metabolize rishitin as B. cinerea, but their metabolic capacity was significantly weaker than that of B. cinerea. These results suggest that the ability of B. cinerea to rapidly metabolize rishitin through multiple detoxification mechanisms could be critical for its pathogenicity in potato and tomato.


Subject(s)
Botrytis , Phytoalexins , Phytophthora infestans , Plant Diseases , Sesquiterpenes , Botrytis/metabolism , Botrytis/genetics , Botrytis/drug effects , Sesquiterpenes/metabolism , Plant Diseases/microbiology , Phytophthora infestans/metabolism , Phytophthora infestans/genetics , Phytophthora infestans/growth & development , Phytophthora infestans/drug effects , Solanum lycopersicum/microbiology , Inactivation, Metabolic , Alternaria/metabolism , Alternaria/genetics , Metabolic Networks and Pathways , Solanum tuberosum/microbiology
8.
Mycorrhiza ; 34(1-2): 69-84, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38441669

ABSTRACT

Trees form symbioses with ectomycorrhizal (ECM) fungi, maintained in part through mutual benefit to both organisms. Our understanding of the signaling events leading to the successful interaction between the two partners requires further study. This is especially true for understanding the role of volatile signals produced by ECM fungi. Terpenoids are a predominant class of volatiles produced by ECM fungi. While several ECM genomes are enriched in the enzymes responsible for the production of these volatiles (i.e., terpene synthases (TPSs)) when compared to other fungi, we have limited understanding of the biochemical products associated with each enzyme and the physiological impact of specific terpenes on plant growth. Using a combination of phylogenetic analyses, RNA sequencing, and functional characterization of five TPSs from two distantly related ECM fungi (Laccaria bicolor and Pisolithus microcarpus), we investigated the role of these secondary metabolites during the establishment of symbiosis. We found that despite phylogenetic divergence, these TPSs produced very similar terpene profiles. We focused on the role of P. microcarpus terpenes and found that the fungus expressed a diverse array of mono-, di-, and sesquiterpenes prior to contact with the host. However, these metabolites were repressed following physical contact with the host Eucalyptus grandis. Exposure of E. grandis to heterologously produced terpenes (enriched primarily in γ -cadinene) led to a reduction in the root growth rate and an increase in P. microcarpus-colonized root tips. These results support a very early putative role of fungal-produced terpenes in the establishment of symbiosis between mycorrhizal fungi and their hosts.


Subject(s)
Basidiomycota , Mycorrhizae , Sesquiterpenes , Mycorrhizae/physiology , Plant Roots/metabolism , Phylogeny , Symbiosis/physiology , Sesquiterpenes/metabolism
9.
Bioorg Chem ; 146: 107308, 2024 May.
Article in English | MEDLINE | ID: mdl-38531151

ABSTRACT

Genome mining of the Actinomycete Crossiella cryophila facilitated the discovery of a minimal terpenoid biosynthetic gene cluster of cry consisting of a class I terpene cyclase CryA and a CYP450 monooxygenase CryB. Heterologous expression of cry allowed the isolation and characterization of two new sesquiterpenoids, ent-viridiflorol (1) and cryophilain (2). Notably, cryophilain (2) possesses a 5/7/3-fused tricyclic skeleton bearing a distinctive bridgehead hydroxy group. The combined in vivo and in vitro experiments revealed that CryA, the first ent-viridiflorol terpene cyclase, catalyzes farnesyl diphosphate to form the 5/7/3 sesquiterpene core scaffold and P450 CryB serves as a tailoring enzyme responsible for installing a hydroxy group at the bridgehead carbon.


Subject(s)
Actinobacteria , Actinomycetales , Sesquiterpenes , Terpenes , Sesquiterpenes/metabolism , Actinobacteria/genetics , Actinobacteria/metabolism , Actinomycetales/metabolism , Cytochrome P-450 Enzyme System/metabolism
10.
Org Lett ; 26(15): 2934-2938, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38551481

ABSTRACT

Natural sesquiterpenoid lactones are prominent scaffolds in drug discovery. Despite the progress made in their synthesis, their extensive oxidative decoration makes their chemo- and stereoselective syntheses highly challenging. Herein, we report our effort to mimic part of the oxidase phase used in the costunolide pathway to achieve the protecting-group-free total synthesis of santamarine, dehydrocostus lactone, estafiatin, and nine more related natural sesquiterpenoid lactones by using dioxygen as the sole oxidant.


Subject(s)
Oxidoreductases , Sesquiterpenes , Oxidants , Oxygen , Lactones/metabolism , Sesquiterpenes/metabolism
11.
J Neurosci ; 44(14)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38429108

ABSTRACT

Treatments accelerating axon regeneration in the nervous system are still clinically unavailable. However, parthenolide promotes adult sensory neurons' axon growth in culture by inhibiting microtubule detyrosination. Here, we show that overexpression of vasohibins increases microtubule detyrosination in growth cones and compromises growth in culture and in vivo. Moreover, overexpression of these proteins increases the required parthenolide concentrations to promote axon regeneration. At the same time, the partial knockdown of endogenous vasohibins or their enhancer SVBP in neurons facilitates axon growth, verifying them as pharmacological targets for promoting axon growth. In vivo, repeated intravenous application of parthenolide or its prodrug di-methyl-amino-parthenolide (DMAPT) markedly facilitates the regeneration of sensory, motor, and sympathetic axons in injured murine and rat nerves, leading to acceleration of functional recovery. Moreover, orally applied DMAPT was similarly effective in promoting nerve regeneration. Thus, pharmacological inhibition of vasohibins facilitates axon regeneration in different species and nerves, making parthenolide and DMAPT the first promising drugs for curing nerve injury.


Subject(s)
Axons , Sesquiterpenes , Mice , Rats , Animals , Axons/physiology , Nerve Regeneration/physiology , Microtubules/metabolism , Sesquiterpenes/pharmacology , Sesquiterpenes/metabolism
12.
Chem Biodivers ; 21(3): e202301779, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38426669

ABSTRACT

Plant-insect interactions are a driving force into ecosystem evolution and community dynamics. Many insect herbivores enter diapause, a developmental arrest stage in anticipation of adverse conditions, to survive and thrive through seasonal changes. Herein, we investigated the roles of medium- to non-polar metabolites during larval development and diapause in a specialist insect herbivore, Chlosyne lacinia, reared on Aldama robusta leaves. Varying metabolites were determined using gas chromatography-mass spectrometry (GC-MS)-based metabolomics. Sesquiterpenes and steroids were the main metabolites putatively identified in A. robusta leaves, whereas C. lacinia caterpillars were characterized by triterpenes, steroids, fatty acids, and long-chain alkanes. We found out that C. lacinia caterpillars biosynthesized most of the identified steroids and fatty acids from plant-derived ingested metabolites, as well as all triterpenes and long-chain alkanes. Steroids, fatty acids, and long-chain alkanes were detected across all C. lacinia instars and in diapausing caterpillars. Sesquiterpenes and triterpenes were also detected across larval development, yet they were not detected in diapausing caterpillars, which suggested that these metabolites were converted to other molecules prior to the diapause stage. Our findings shed light on the chemical content variation across C. lacinia development and diapause, providing insights into the roles of metabolites in plant-insect interactions.


Subject(s)
Diapause , Lepidoptera , Sesquiterpenes , Triterpenes , Animals , Gas Chromatography-Mass Spectrometry , Ecosystem , Metabolomics/methods , Steroids/metabolism , Sesquiterpenes/metabolism , Fatty Acids/metabolism , Alkanes , Triterpenes/metabolism , Larva
13.
J Agric Food Chem ; 72(13): 6871-6888, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38526460

ABSTRACT

Sesquiterpenes comprise a diverse group of natural products with a wide range of applications in cosmetics, food, medicine, agriculture, and biofuels. Heterologous biosynthesis is increasingly employed for sesquiterpene production, aiming to overcome the limitations associated with chemical synthesis and natural extraction. Sesquiterpene synthases (STSs) play a crucial role in the heterologous biosynthesis of sesquiterpene. Under the catalysis of STSs, over 300 skeletons are produced through various cyclization processes (C1-C10 closure, C1-C11 closure, C1-C6 closure, and C1-C7 closure), which are responsible for the diversity of sesquiterpenes. According to the cyclization types, we gave an overview of advances in understanding the mechanism of STSs cyclization from the aspects of protein crystal structures and site-directed mutagenesis. We also summarized the applications of engineering STSs in the heterologous biosynthesis of sesquiterpene. Finally, the bottlenecks and potential research directions related to the STSs cyclization mechanism and application of modified STSs were presented.


Subject(s)
Alkyl and Aryl Transferases , Sesquiterpenes , Sesquiterpenes/metabolism , Cyclization , Catalysis , Alkyl and Aryl Transferases/genetics , Alkyl and Aryl Transferases/metabolism
14.
J Agric Food Chem ; 72(10): 5416-5427, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38477043

ABSTRACT

Schizophyllum commune, a fleshy fungus, is an important medicinal and food-homologous mushroom in China. In this work, eight undescribed sesquiterpenes schizomycins A-H (1-8) and one new meroterpenoid schizomycin I (9) together with three known analogues (10-12) were isolated from fruiting bodies of S. commune. Their planar structures were established by extensive spectroscopic and mass spectrometric data. The absolute configurations of compounds 1, 2, and 4 were determined by single crystal X-ray diffraction, and compounds 3 and 5-9 were confirmed by electronic circular dichroism calculations. Anti-inflammatory activities of all isolated compounds were evaluated for their inhibitory effects on IL-6 and IL-1ß production in RAW 264.7 cells. Among them, compound 7 exhibited significant IL-6 inhibitory activity with an IC50 value of 3.6 µM. The results of molecular docking showed that compound 7 interacts with amino acid residues (Gly117, Lys118, Asp120, Thr166, and Try168) of the IL-6 receptor protein through hydrogen bonding.


Subject(s)
Ascomycota , Schizophyllum , Sesquiterpenes , Schizophyllum/chemistry , Schizophyllum/metabolism , Interleukin-6/metabolism , Molecular Docking Simulation , Circular Dichroism , Fruiting Bodies, Fungal , Sesquiterpenes/metabolism , Molecular Structure
15.
Biochemistry ; 63(6): 797-805, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38420671

ABSTRACT

The sesquiterpene cyclase epi-isozizaene synthase (EIZS) from Streptomyces coelicolor catalyzes the metal-dependent conversion of farnesyl diphosphate (FPP) into the complex tricyclic product epi-isozizaene. This remarkable transformation is governed by an active site contour that serves as a template for catalysis, directing the conformations of multiple carbocation intermediates leading to the final product. Mutagenesis of residues defining the active site contour remolds its three-dimensional shape and reprograms the cyclization cascade to generate alternative cyclization products. In some cases, mutagenesis enables alternative chemistry to quench carbocation intermediates, e.g., through hydroxylation. Here, we combine structural and biochemical data from previously characterized EIZS mutants to design and prepare F95S-F198S EIZS, which converts EIZS into an α-bisabolol synthase with moderate fidelity (65% at 18 °C, 74% at 4 °C). We report the complete biochemical characterization of this double mutant as well as the 1.47 Å resolution X-ray crystal structure of its complex with three Mg2+ ions, inorganic pyrophosphate, and the benzyltriethylammonium cation, which partially mimics a carbocation intermediate. Most notably, the two mutations together create an active site contour that stabilizes the bisabolyl carbocation intermediate and positions a water molecule for the hydroxylation reaction. Structural comparison with a naturally occurring α-bisabolol synthase reveals common active site features that direct α-bisabolol generation. In showing that EIZS can be redesigned to generate a sesquiterpene alcohol product instead of a sesquiterpene hydrocarbon product, we have expanded the potential of EIZS as a platform for the development of designer cyclases that could be utilized in synthetic biology applications.


Subject(s)
Carbon-Carbon Lyases , Sesquiterpenes , Sesquiterpenes/metabolism , Monocyclic Sesquiterpenes
16.
J Nat Prod ; 87(4): 893-905, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38417166

ABSTRACT

The bridged polycyclic sesquiterpenoids derived from sativene, isosativene, and longifolene have unique structures, and many chemical synthesis approaches with at least 10 steps have been reported. However, their biosynthetic pathway remains undescribed. A minimal biosynthetic gene cluster (BGC), named bip, encoding a sesquiterpene cyclase (BipA) and a cytochrome P450 (BipB) is characterized to produce such complex sesquiterpenoids with multiple carbon skeletons based on enzymatic assays, heterologous expression, and precursor experiments. BipA is demonstrated as a versatile cyclase with (-)-sativene as the dominant product and (-)-isosativene and (-)-longifolene as minor ones. BipB is capable of hydroxylating different enantiomeric sesquiterpenes, such as (-)-longifolene and (+)-longifolene, at C-15 and C-14 in turn. The C-15- or both C-15- and C-14-hydroxylated products are then further oxidized by unclustered oxidases, resulting in a structurally diverse array of sesquiterpenoids. Bioinformatic analysis reveals the BipB homologues as a discrete clade of fungal sesquiterpene P450s. These findings elucidate the concise and divergent biosynthesis of such intricate bridged polycyclic sesquiterpenoids, offer valuable biocatalysts for biotransformation, and highlight the distinct biosynthetic strategy employed by nature compared to chemical synthesis.


Subject(s)
Cytochrome P-450 Enzyme System , Multigene Family , Molecular Structure , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme System/genetics , Sesquiterpenes/metabolism , Sesquiterpenes/chemistry , Biosynthetic Pathways/genetics , Polycyclic Sesquiterpenes/chemistry , Polycyclic Sesquiterpenes/metabolism , Stereoisomerism
17.
Bioresour Technol ; 396: 130432, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38346593

ABSTRACT

Cyanobacteria are the prospective biosolar cell factories to produce a range of bioproducts through CO2 sequestration. Farnesene is a sesquiterpene with an array of applications in biofuels, pest management, cosmetics, flavours and fragrances. This is the first time a codon-optimized farnesene synthase (AFS) gene is engineered into the genomic neutral site of Synechococcus elongatus UTEX 2973 for farnesene synthesis through its endogenous methylerythritol phosphate (MEP) pathway, rendering UTEX AFS strain. Similarly, bottleneck gene(s) of the MEP pathway, 1-deoxy-D-xylulose-5-phosphate synthase (dxs) and/or fusion of isopentenyl diphosphate isomerase and farnesyl diphosphate synthase (idispA) were engineered engendering UTEX AFS::dxs, UTEX AFS::idispA and UTEX AFS::dxs::idispA strains. UTEX AFS::dxs::idispA achieves farnesene productivity of 2.57 mg/L/day, the highest among engineered cyanobacterial strains studied so far. It demonstrates farnesene production, which is 31.3-times higher than the UTEX AFS strain. Moreover, the engineered strains show similar productivity over a three-month period, stipulating the genetic stability of the strains.


Subject(s)
Sesquiterpenes , Synechococcus , Carbon Dioxide/metabolism , Prospective Studies , Sesquiterpenes/metabolism , Synechococcus/genetics , Synechococcus/metabolism , Metabolic Engineering
18.
Cardiovasc Res ; 120(7): 723-734, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38395031

ABSTRACT

AIMS: The microtubule (MT) network plays a major role in the transport of the cardiac sodium channel Nav1.5 to the membrane, where the latter associates with interacting proteins such as dystrophin. Alterations in MT dynamics are known to impact on ion channel trafficking. Duchenne muscular dystrophy (DMD), caused by dystrophin deficiency, is associated with an increase in MT detyrosination, decreased sodium current (INa), and arrhythmias. Parthenolide (PTL), a compound that decreases MT detyrosination, has shown beneficial effects on cardiac function in DMD. We here investigated its impact on INa and Nav1.5 subcellular distribution. METHODS AND RESULTS: Ventricular cardiomyocytes (CMs) from wild-type (WT) and mdx (DMD) mice were incubated with either 10 µM PTL, 20 µM EpoY, or dimethylsulfoxide (DMSO) for 3-5 h, followed by patch-clamp analysis to assess INa and action potential (AP) characteristics in addition to immunofluorescence and stochastic optical reconstruction microscopy (STORM) to investigate MT detyrosination and Nav1.5 cluster size and density, respectively. In accordance with previous studies, we observed increased MT detyrosination, decreased INa and reduced AP upstroke velocity (Vmax) in mdx CMs compared to WT. PTL decreased MT detyrosination and significantly increased INa magnitude (without affecting INa gating properties) and AP Vmax in mdx CMs, but had no effect in WT CMs. Moreover, STORM analysis showed that in mdx CMs, Nav1.5 clusters were decreased not only in the grooves of the lateral membrane (LM; where dystrophin is localized) but also at the LM crests. PTL restored Nav1.5 clusters at the LM crests (but not at the grooves), indicating a dystrophin-independent trafficking route to this subcellular domain. Interestingly, Nav1.5 cluster density was also reduced at the intercalated disc (ID) region of mdx CMs, which was restored to WT levels by PTL. Treatment of mdx CMs with EpoY, a specific MT detyrosination inhibitor, also increased INa density, while decreasing the amount of detyrosinated MTs, confirming a direct mechanistic link. CONCLUSION: Attenuating MT detyrosination in mdx CMs restored INa and enhanced Nav1.5 localization at the LM crest and ID. Hence, the reduced whole-cell INa density characteristic of mdx CMs is not only the consequence of the lack of dystrophin within the LM grooves but is also due to reduced Nav1.5 at the LM crest and ID secondary to increased baseline MT detyrosination. Overall, our findings identify MT detyrosination as a potential therapeutic target for modulating INa and subcellular Nav1.5 distribution in pathophysiological conditions.


Subject(s)
Action Potentials , Disease Models, Animal , Mice, Inbred mdx , Microtubules , Muscular Dystrophy, Duchenne , Myocytes, Cardiac , NAV1.5 Voltage-Gated Sodium Channel , Animals , NAV1.5 Voltage-Gated Sodium Channel/metabolism , NAV1.5 Voltage-Gated Sodium Channel/genetics , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Action Potentials/drug effects , Microtubules/metabolism , Microtubules/drug effects , Microtubules/pathology , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/pathology , Tubulin Modulators/pharmacology , Mice, Inbred C57BL , Cells, Cultured , Sesquiterpenes/pharmacology , Sesquiterpenes/metabolism , Male , Sodium/metabolism
19.
Sci Rep ; 14(1): 4791, 2024 02 27.
Article in English | MEDLINE | ID: mdl-38413638

ABSTRACT

Species from genus Artemisia are widely distributed throughout temperate regions of the northern hemisphere and many cultures have a long-standing traditional use of these plants as herbal remedies, liquors, cosmetics, spices, etc. Nowadays, the discovery of new plant-derived products to be used as food supplements or drugs has been pushed by the exploitation of bioprospection approaches. Often driven by the knowledge derived from the ethnobotanical use of plants, bioprospection explores the existing biodiversity through integration of modern omics techniques with targeted bioactivity assays. In this work we set up a bioprospection plan to investigate the phytochemical diversity and the potential bioactivity of five Artemisia species with recognized ethnobotanical tradition (A. absinthium, A. alba, A. annua, A. verlotiorum and A. vulgaris), growing wild in the natural areas of the Verona province. We characterized the specialized metabolomes of the species (including sesquiterpenoids from the artemisinin biosynthesis pathway) through an LC-MS based untargeted approach and, in order to identify potential bioactive metabolites, we correlated their composition with the in vitro antioxidant activity. We propose as potential bioactive compounds several isomers of caffeoyl and feruloyl quinic acid esters (e.g. dicaffeoylquinic acids, feruloylquinic acids and caffeoylferuloylquinic acids), which strongly characterize the most antioxidant species A. verlotiorum and A. annua. Morevoer, in this study we report for the first time the occurrence of sesquiterpenoids from the artemisinin biosynthesis pathway in the species A. alba.


Subject(s)
Artemisia , Artemisinins , Sesquiterpenes , Artemisia/chemistry , Bioprospecting , Artemisinins/metabolism , Sesquiterpenes/metabolism
20.
Planta ; 259(3): 58, 2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38308700

ABSTRACT

MAIN CONCLUSION: The study demonstrated that Artemisia pallens roots can be a source of terpene-rich essential oil and root-specific ApTPS1 forms germacrene A contributing to major root volatiles. Davana (Artemisia pallens Bess) is a valuable aromatic herb within the Asteraceae family, highly prized for its essential oil (EO) produced in the aerial parts. However, the root volatile composition, and the genes responsible for root volatiles have remained unexplored until now. Here, we show that A. pallens roots possess distinct oil bodies and yields ~ 0.05% of EO, which is primarily composed of sesquiterpenes ß-elemene, neryl isovalerate, ß-selinene, and α-selinene, and trace amounts of monoterpenes ß-myrcene, D-limonene. This shows that, besides aerial parts, roots of davana can also be a source of unique EO. Moreover, we functionally characterized a terpene synthase (ApTPS1) that exhibited high in silico expression in the root transcriptome. The recombinant ApTPS1 showed the formation of ß-elemene and germacrene A with E,E-farnesyl diphosphate (FPP) as a substrate. Detailed analysis of assay products revealed that ß-elemene was the thermal rearrangement product of germacrene A. The functional expression of ApTPS1 in Saccharomyces cerevisiae confirmed the in vivo germacrene A synthase activity of ApTPS1. At the transcript level, ApTPS1 displayed predominant expression in roots, with significantly lower level of expression in other tissues. This expression pattern of ApTPS1 positively correlated with the tissue-specific accumulation level of germacrene A. Overall, these findings provide fundamental insights into the EO profile of davana roots, and the contribution of ApTPS1 in the formation of a major root volatile.


Subject(s)
Artemisia , Oils, Volatile , Sesquiterpenes, Germacrane , Sesquiterpenes , Sesquiterpenes/metabolism , Terpenes , Oils, Volatile/chemistry , Saccharomyces cerevisiae/metabolism , Artemisia/genetics , Artemisia/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...