Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.622
Filter
1.
Sci Rep ; 14(1): 12041, 2024 05 27.
Article in English | MEDLINE | ID: mdl-38802478

ABSTRACT

Since the ingestion of both natural and anthropogenic microfibers produces a deleterious effect on aquatic organisms, it is crucial to explore the emission of these pollutants by WWTPs into the receiving water bodies, such as rivers. Cellulose- and petroleum-based microfibers, as well as microplastic particles, were collected from the effluent of a municipal WWTP operating with activated sludge technology in Budapest, Hungary. During two sampling campaigns organized in February and April of 2023 on different working days and at different times of the day, 123-145 L of effluent was sieved and filtered. The organic matter was removed by hydrogen-peroxide treatment. All fibers and particles larger than 10 µm were counted, and using a fluorescence microscope, the fibers were geometrically characterized in terms of length and diameter. Each fiber was individually identified by transflection-FT-IR method. The fiber concentration varied in the range of 1.88-2.84 and 4.25-6.79 items/L during the 7th and the 16th week of 2023, respectively. In February and April, the proportion of microfibers in the solid particles was 78.3 and 94.7%, respectively. In the effluent the cellulose-based microfibers were dominant (53-91%), while among the petroleum-based microfibers, polyester occurred most often. The median length of cellulose-based fibers was considerably higher in April than in February (650 vs. 1250 µm), and simultaneously the median diameter also increased from 21 to 29 µm. This behaviour was also seen, albeit to a lesser extent, in connection to microfibers derived from petroleum. The treated wastewater's daily microfiber transport to the Danube River varied between 0.44 - 0.69 and 0.94-1.53 billion in February and April 2023, respectively.


Subject(s)
Wastewater , Hungary , Wastewater/chemistry , Cellulose/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Water Purification/methods , Microplastics/analysis , Waste Disposal, Fluid/methods , Petroleum/analysis , Sewage/analysis
2.
Chemosphere ; 359: 142206, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38710411

ABSTRACT

Microplastics (MPs) have recently been documented as an emerging pollutant that poses a critical threat to environment. Wastewater treatment plants (WWTPs) are commonly regarded as significant contributors to the presence of MPs. This study aimed to assess the MPs load of three wastewater treatment facilities in Oman using various treatments, including MBR, SBR, and CAS. Wastewater samples from influent, effluent, and sludge were collected and analyzed to determine the concentration, morphology, size, color, and polymer type of the MPs. A set of sieves with a mesh size range of 1 mm-45 µm was used to for filtration. Oxidation treatment was applied for all samples using Fenton's reagent, followed by density separation by sodium chloride solution. The Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR- FTIR) method was utilized to test 10% from each sampling point to confirm the polymer types of the MPs. The pollution load index (PLI) and hazard index (HI) have been employed to assess the risk associated with the chemical toxicity and concentration of detected particles. The PROMETHEE method was used to rank the risk of sampling sites based on different criteria that posed potential ecological and human health risks. The results indicate that the average concentrations of 0.99 MP/L, 1.38 MP/L, and 0.93 MP/L were detected in the final treated effluent of WWTP A, WWTP B, and WWTP C, respectively. These concentrations correspond to overall removal efficiencies of 82.5%, 77.4%, and 79.2% for WWTP A, WWTP B, and WWTP C, respectively Most MPs found in tertiary effluent were smaller particles (425 µm) and fiber-shaped. The major types of MPs were polypropylene (PP), low-density polyethylene (LDPE), polyurethane (PU), polyethylene terephthalate (PET), and Polyvinyl chloride (PVC). This study showed that treated effluent and sludge release significant MPs into the environment.


Subject(s)
Microplastics , Waste Disposal, Fluid , Wastewater , Water Pollutants, Chemical , Oman , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Waste Disposal, Fluid/methods , Microplastics/analysis , Environmental Monitoring , Risk Assessment , Sewage/chemistry , Sewage/analysis
3.
Molecules ; 29(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38731551

ABSTRACT

The aim of this study is to solve the problems of the complicated pretreatment and high analytical cost in the detection technology of trace drugs and their metabolites in municipal wastewater. A high-performance magnetic sorbent was fsynthesized for the enrichment of trace drugs and their metabolites in wastewater to develop a magnetic solid-phase extraction pretreatment combined with the acoustic ejection mass spectrometry (AEMS) analytical method. The magnetic nanospheres were successfully prepared by magnetic nanoparticles modified with divinylbenzene and vinylpyrrolidone. The results showed that the linear dynamic range of 17 drugs was 1-500 ng/mL, the recovery was 44-100%, the matrix effect was more than 51%, the quantification limit was 1-2 ng/mL, and the MS measurement was fast. It can be seen that the developed magnetic solid-phase extraction (MSPE) method is a good solution to the problems of the complicated pretreatment and analytical cost in the analysis of drugs in wastewater. The developed magnetic material and acoustic excitation pretreatment coupled with mass spectrometry analysis method can realize the low-cost, efficient enrichment, and fast analysis of different kinds of drug molecules in urban sewage.


Subject(s)
Illicit Drugs , Mass Spectrometry , Sewage , Solid Phase Extraction , Sewage/analysis , Sewage/chemistry , Solid Phase Extraction/methods , Mass Spectrometry/methods , Illicit Drugs/analysis , Water Pollutants, Chemical/analysis , Wastewater/analysis , Wastewater/chemistry , Magnetite Nanoparticles/chemistry
4.
Waste Manag ; 183: 253-259, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38776827

ABSTRACT

The N2O emissions resulting from sludge incineration are estimated using the default values published by the Intergovernmental Panel on Climate Change (IPCC), which may differ significantly from the actual emissions. In this investigation, N2O emissions from four sludge incineration lines in two plants were monitored for varying durations. The variation in N2O emission factors (EFs) between incineration lines of the same plant was much smaller than the difference between different plants. Data on N2O EFs obtained from brief monitoring may contain variabilities of up to 30%. N2O EFs were more sensitive to temperature changes at low temperatures, necessitating extended monitoring periods to improve the reliability of N2O monitoring outcomes in cases of low furnace temperatures. Excessive use of the SNCR system to reduce NOx emissions resulted in concentrations of N2O and NH3 in the exhaust gases exceeding NOx levels. In the case of furnace temperature control and advanced reburning technology, it is advisable to utilize actual monitoring data or the smaller default values provided by the IPCC in China. Otherwise, the estimated N2O emissions may exceed the actual emissions.


Subject(s)
Air Pollutants , Incineration , Nitrous Oxide , Sewage , China , Incineration/methods , Sewage/analysis , Air Pollutants/analysis , Nitrous Oxide/analysis , Environmental Monitoring/methods , Temperature
5.
Waste Manag ; 183: 278-289, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38781819

ABSTRACT

Convective drying is an effective method for reducing the moisture content of the sludge. Fewer studies have discussed the effect of sludge physicochemical properties on drying compared to air parameters. Eleven types of sludge were collected, and ultimate analysis, proximate analysis, and heat value analysis were performed. Meanwhile, the maximum drying rate (umax) of sludge convection drying at 70 °C was determined. The results showed that the cumulative variance contribution of the two extracted principal components (PCs) was 92.5 %. Then, a regression model of umax was developed based on the extracted PCs. The coefficient of determination of this model was 0.788, and the difference was statistically significant, with a negative correlation between umax and PC2. Further, the principal component score plot enabled the traceability of the integrated sludge, and based on this classification results, the drying characteristics of various types of sludge were discussed, and a high correlation (R2 = 0.9590) between the initial moisture content of sludge and umax was found. Mathematical models between sludge physicochemical properties and drying characteristics can be effectively developed from both sludge composition and type scales. This exploration deepened the knowledge of sludge drying and facilitates the prediction of drying rate.


Subject(s)
Desiccation , Sewage , Sewage/chemistry , Sewage/analysis , Desiccation/methods , Models, Theoretical , Waste Disposal, Fluid/methods
6.
Water Sci Technol ; 89(6): 1512-1525, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38557715

ABSTRACT

This study aims to investigate the differences in intra-urban catchments with different characteristics through real-time wastewater monitoring. Monitoring stations were installed in three neighbourhoods of Barcelona to measure flow, total chemical oxygen demand (COD), pH, conductivity, temperature, and bisulfide (HS-) for 1 year. Typical wastewater profiles were obtained for weekdays, weekends, and holidays in the summer and winter seasons. The results reveal differences in waking up times and evening routines, commuting behaviour during weekends and holidays, and water consumption. The pollutant profiles contribute to a better understanding of pollution generation in households and catchment activities. Flows and COD correlate well at all stations, but there are differences in conductivity and HS- at the station level. The article concludes by discussing the operational experience of the monitoring stations.


Subject(s)
Environmental Monitoring , Wastewater , Environmental Monitoring/methods , Sewage/analysis , Rain , Biological Oxygen Demand Analysis , Cities
7.
J Hazard Mater ; 470: 134203, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38581874

ABSTRACT

Wastewater treatment plants (WWTPs) have been recognized as secondary sources of per- and polyfluoroalkyl substances (PFAS) released into the environment. In this study, PFAS concentrations were measured in effluent and biosolids samples collected from 75 WWTPs across Australia during the 2016 Census period, which covers more than half of the Australian population. Twelve PFAS compounds, including six C5-C10 perfluoroalkyl carboxylic acids (PFCAs), four perfluoro sulfonic acids (PFSAs) such as perfluorobutane sulfonate (PFBS), perfuorohexane sulfonic (PFHxS), perfluorooctane sulfonic acid (PFOS), and perfluorodecane sulfonic acid (PFDS), and one fluorotelomer sulfonic acid (6:2 FTS), were detected in the effluent, with concentrations up to 504 ng/L (PFHxS). Among these, perfluorooctanoic acid (PFOA), perfluorohexanoic acid (PFHxA), and perfluoropentanic acid (PFPeA) exhibited the highest median concentrations. In the biosolids, a total of 21 PFAS compounds were detected, encompassing ten C4-C14 PFCAs, four PFSAs, two FTS (6:2 and 8:2 FTS), perfluorooctane sulfonamide (PFOSA), two perfluorooctane sulfonamido acetic acid (NMethyl FOSAA and NEthyl FOSAA), and two perfluorooctane sulfonamido ethanol (FOSE), with dry weight (dw) concentrations approaching 235 ng/g (PFOS). The highest median and mean concentrations were observed for perfluorodecanoic acid (PFDA) and PFOS. An annual discharge of approximately 250 kg of the total 21 PFAS compounds was estimated through the effluent and biosolids of the participating WWTPs. Notably, PFOS and 6:2 FTS constituted the largest proportion of total PFAS in the WWTPs' output. While PFCAs were higher in effluent concentrations compared to influent levels across most WWTPs (92% of WWTPs for ∑8PFCAs), the concentrations of PFSAs either decreased or remained relatively stable (in 80% of WWTPs for ∑4PFSAs) throughout the wastewater treatment process.


Subject(s)
Fluorocarbons , Waste Disposal, Fluid , Wastewater , Water Pollutants, Chemical , Australia , Fluorocarbons/analysis , Water Pollutants, Chemical/analysis , Wastewater/chemistry , Environmental Monitoring , Sewage/analysis , Alkanesulfonic Acids/analysis
8.
J Environ Manage ; 357: 120732, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38560954

ABSTRACT

Pharmaceutical compounds (PhCs) pose a growing concern with potential environmental impacts, commonly introduced into the environment via wastewater treatment plants (WWTPs). The occurrence, removal, and season variations of 60 different classes of PhCs were investigated in the baffled bioreactor (BBR) wastewater treatment process during summer and winter. The concentrations of 60 PhCs were 3400 ± 1600 ng/L in the influent, 2700 ± 930 ng/L in the effluent, and 2400 ± 120 ng/g dw in sludge. Valsartan (Val, 1800 ng/L) was the main contaminant found in the influent, declining to 520 ng/L in the effluent. The grit chamber and BBR tank were substantially conducive to the removal of VAL. Nonetheless, the BBR process showcased variable removal efficiencies across different PhC classes. Sulfadimidine had the highest removal efficiency of 87 ± 17% in the final effluent (water plus solid phase). Contrasting seasonal patterns were observed among PhC classes within BBR process units. The concentrations of many PhCs were higher in summer than in winter, while some macrolide antibiotics exhibited opposing seasonal fluctuations. A thorough mass balance analysis revealed quinolone and sulfonamide antibiotics were primarily eliminated through degradation and transformation in the BBR process. Conversely, 40.2 g/d of macrolide antibiotics was released to the natural aquatic environment via effluent discharge. Gastric acid and anticoagulants, as well as cardiovascular PhCs, primarily experienced removal through sludge adsorption. This study provides valuable insights into the intricate dynamics of PhCs in wastewater treatment, emphasizing the need for tailored strategies to effectively mitigate their release and potential environmental risks.


Subject(s)
Water Pollutants, Chemical , Water Purification , Wastewater , Sewage/analysis , Waste Disposal, Fluid , Seasons , Water Pollutants, Chemical/analysis , Environmental Monitoring , Anti-Bacterial Agents/analysis , Risk Assessment , Macrolides/analysis , Pharmaceutical Preparations
9.
Article in English | MEDLINE | ID: mdl-38581929

ABSTRACT

Nandrolone (NT) is a type of androgen anabolic steroid that is often illegally used in cattle farming, leading to unpredictable harm to human health via the food chain. In this study, a rapid detection method for NT in the samples of cattle farming was established using a portable mass spectrometer. The instrument parameters were optimized, including a thermal desorption temperature of 220 °C, a pump speed of 30 %, an APCI ionization voltage of 3900 v, and an injection volume of 6 µL. The samples of bovine urine, feed, sewage, and tissue were selected, and extracted using a solution of methanol:acetonitrile (1:1, v/v), followed by spiking a NT standard solution (1000 ng·mL-1) and ionization through the APCI ion source for detection. The results showed that NT could not be detected in beef and feed due to the complexity of the matrix, while clear signals of NT ions were observed in bovine urine and sewage samples, with LODs of 1000 and 100 ng·mL-1, respectively. Furthermore, quantitative analysis was attempted, and a good linear relationship (R2 = 0.9952) was observed for NT in sewage within the range of 100 to 1000 ng·mL-1. At spiked levels of 100, 500, 1000 and 2000 ng mL-1, the recovery rates ranged from 74.3 % to 92.8 %, with a relative standard deviation (n = 6) of less than 15 %. In conclusion, this detection method offers the advantages of simplicity, rapidity, strong timeliness, and specificity, making it suitable for on-site detection. It can be used for qualitative screening of nandrolone in bovine urine and quantitative analysis of nandrolone in sewage.


Subject(s)
Limit of Detection , Nandrolone , Cattle , Animals , Nandrolone/analysis , Nandrolone/urine , Linear Models , Reproducibility of Results , Mass Spectrometry/methods , Sewage/chemistry , Sewage/analysis , Animal Feed/analysis , Anabolic Agents/urine , Anabolic Agents/analysis
10.
Chem Commun (Camb) ; 60(39): 5205-5208, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38652014

ABSTRACT

This work developed an aptamer-dye complex as a label-free ratiometric fluorescence sensor for rapid analysis of THC and its metabolite in sewage samples. Integrated with a portable fluorescence capture device, this sensor exhibited excellent sensitivity with visualization of as low as 0.6 µM THC via naked-eye observation, and THC analysis can be accomplished within 4 min, which would be a complementary tool for quantifying THC in sewage samples to estimate cannabis consumption.


Subject(s)
Aptamers, Nucleotide , Dronabinol , Fluorescent Dyes , Sewage , Aptamers, Nucleotide/chemistry , Dronabinol/analysis , Dronabinol/chemistry , Fluorescent Dyes/chemistry , Sewage/analysis , Sewage/chemistry , Spectrometry, Fluorescence , Biosensing Techniques
11.
Environ Res ; 251(Pt 1): 118594, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38442818

ABSTRACT

Domestic wastewater is one of the major carbon sources that cannot be ignored by human society. Against the background of carbon peaking & carbon neutrality (Double Carbon) goals, the continuous urbanization has put heavy pressure on urban drainage systems. Nevertheless, the complex subjective and objective conditions of drainage systems restrict the field monitoring, measurement, and analysis of drainage systems, which has become a great obstacle to the study of carbon emissions from drainage system. In this paper, 3389 sensor terminals of Internet of Things (IoT) are used to build a field monitoring IoT for urban domestic wastewater methane (CH4) carbon emission, with 21 main districts of Chongqing Municipality in China as the study area. Incorporating Fick's law of diffusion, this field monitoring IoT derives a measurement model for methane carbon emissions based on measured concentrations, and solves the problems of long-term and stable monitoring and measurement of methane gas in complex underground environment. With GIS spatio-temporal analysis used to analyze the spatial and temporal evolution patterns of carbon emissions from septic tanks in drainage systems, it successfully reveals the spatial and temporal distribution of methane carbon emissions from drainage systems in different seasons, as well as the relationship between methane carbon emissions from drainage systems and the latitude of direct sunlight. Applying the DTW method, it quantifies the stability of methane monitoring in drainage systems and evaluates the effects of Sampling Frequency (SF) and Number of Devices Terminal (NDT) on the stability of methane monitoring. Consequently, an intelligent management system for carbon emissions from urban domestic wastewater is constructed on the base of IoT, which integrates methane monitoring, measurement and analysis in septic tanks of drainage systems.


Subject(s)
Cities , Environmental Monitoring , Internet of Things , Methane , Sewage , China , Environmental Monitoring/methods , Methane/analysis , Sewage/chemistry , Sewage/analysis , Carbon/analysis , Air Pollutants/analysis
12.
Environ Sci Technol ; 58(12): 5336-5346, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38472090

ABSTRACT

The re-emission and subsurface migration of legacy mercury (Hg) are not well understood due to limited knowledge of the driving processes. To investigate these processes at a decommissioned chlor-alkali plant, we used mercury stable isotopes and chemical speciation analysis. The isotopic composition of volatilized Hg(0) was lighter compared to the bulk total Hg (THg) pool in salt-sludge and adjacent surface soil with mean ε202HgHg(0)-THg values of -3.29 and -2.35‰, respectively. Hg(0) exhibited dichotomous directions (E199HgHg(0)-THg = 0.17 and -0.16‰) of mass-independent fractionation (MIF) depending on the substrate from which it was emitted. We suggest that the positive MIF enrichment during Hg(0) re-emission from salt-sludge was overall controlled by the photoreduction of Hg(II) primarily ligated by Cl- and/or the evaporation of liquid Hg(0). In contrast, O-bonded Hg(II) species were more important in the adjacent surface soils. The migration of Hg from salt-sludge to subsurface soil associated with selective Hg(II) partitioning and speciation transformation resulted in deep soils depleted in heavy isotopes (δ202Hg = -2.5‰) and slightly enriched in odd isotopes (Δ199Hg = 0.1‰). When tracing sources using Hg isotopes, it is important to exercise caution, particularly when dealing with mobilized Hg, as this fraction represents only a small portion of the sources.


Subject(s)
Mercury , Mercury/analysis , Sewage/analysis , Mercury Isotopes/analysis , Isotopes/analysis , Soil/chemistry , Chemical Fractionation , Environmental Monitoring
13.
Huan Jing Ke Xue ; 45(3): 1468-1479, 2024 Mar 08.
Article in Chinese | MEDLINE | ID: mdl-38471862

ABSTRACT

Pharmaceuticals and personal care products (PPCPs) are a group of emerging contaminants causing detrimental effects on aquatic living organisms even at low doses. To investigate the contamination characteristics and ecological risks of PPCPs in drains flowing into the Yellow River of Ningxia, 21 PPCPs were detected and analyzed using solid phase extraction and ultra-high performance liquid chromatography-mass spectrometry in this study. All 21 targeted compounds were detected in the drains, with total concentrations ranging from 47.52 to 1 700.96 ng·L-1. Ciprofloxacin, acetaminophen, benzophenone-3, and diethyltoluamide were the more commonly detected compounds, with detection frequencies exceeding 80%. The five highest-concentration PPCPs were acetaminophen, diethyltoluamide, caffeine, benzophenone-3, and levofloxacin, with the maximum concentrations of 597.21, 563.23, 559.00, 477.28, and 473.07 ng·L-1, respectively. Spatial analysis showed that the pollution levels of PPCPs in the drains of the four cities were different, with average concentrations of ∑PPCPs in the order of Yinchuan>Shizuishan>Wuzhong>Zhongwei. The total concentration of PPCPs before flowing into the Yellow River ranged from 124.82 to 1 046.61 ng·L-1. Source analysis showed that livestock and poultry breeding wastewater was the primary source for sulfadiazine and oxytetracycline, whereas medical wastewater was the primary source for levofloxacin and ciprofloxacin. The primary sources of triclocarban and triclosan were domestic sewage and industrial wastewater, whereas the primary source of caffeine and diethyltoluamide was domestic sewage. The pollution of diciofenac, cimetidine, triclocarban, and triclosan in the drains was positively correlated with the regional population and economic development level. The ecological risk assessment indicated that levofloxacin, diclofenac, gemfibrozil, benzophenone-3, and triclocarban posed high risks to aquatic organisms in drains flowing into the Yellow River. It is worthwhile to consider the mixture risk of the PPCPs that exhibited high risk at most sampling sites.


Subject(s)
Benzophenones , Carbanilides , Cosmetics , Triclosan , Water Pollutants, Chemical , Acetaminophen , Aquatic Organisms , Caffeine/analysis , Ciprofloxacin , Cosmetics/analysis , Environmental Monitoring/methods , Levofloxacin/analysis , Pharmaceutical Preparations , Risk Assessment , Rivers/chemistry , Sewage/analysis , Wastewater , Water Pollutants, Chemical/analysis
14.
Mar Pollut Bull ; 201: 116244, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38489909

ABSTRACT

The discharge of sanitary sewage into the bays of the Florianópolis Metropolitan Area (Southern Brazil), has led to the contamination of oyster farms. Consequently, linear alkylbenzenes (LABs) were quantified in the sediment, and the biochemical responses in gills and digestive gland of oysters from six farms were assessed. Our findings revealed elevated levels of LABs in the sediment of the Imaruim and Serraria farms. Additionally, alterations were observed in the antioxidant enzymes: catalase, glutathione peroxidase and superoxide dismutase in both oyster tissue from the Serraria, Santo Antonio de Lisboa and Sambaqui farms. Furthermore, correlation analyses indicated strong and moderate associations between biochemical responses, organic contaminants, and certain physicochemical parameters. Consequently, our results demonstrated the activation of the antioxidant system in oysters, representing a protective response to the presence of sanitary sewage and other contaminants. Therefore, we propose the utilization of biochemical biomarkers for monitoring the environmental quality of farms.


Subject(s)
Crassostrea , Water Pollutants, Chemical , Animals , Antioxidants/analysis , Sewage/analysis , Water Pollutants, Chemical/analysis , Aquaculture , Environmental Monitoring/methods
15.
Environ Monit Assess ; 196(4): 373, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38491308

ABSTRACT

The primary objective of this study is to assess and establish benchmarks for environmental and economic sustainability of biological and advanced biological wastewater treatment plants (WWTPs) with different treatment technologies and characteristics. Furthermore, the study aims to determine the beneficial role of WWTPs to reduction of eutrophication potential. Environmental and economic sustainability of ten municipal WWTPs was assessed using life cycle assessment (LCA) and life cycle costing (LCC). In the first section of the study, LCA was performed to determine the environmental performance of the WWTPs. Furthermore, net environmental benefit (NEB) approach was implemented to reveal the beneficial role of WWTPs to eutrophication potential. In the subsequent section, LCA-based LCC was conducted by integrating the results of LCA. The most significant environmental impact was determined as marine aquatic ecotoxicity, which is highly affected from the generation and transmission of electricity consumed in the WWTPs. Wastewater recovery and co-incineration of sewage sludge in cement kiln ensure significant environmental savings on ozone layer depletion, human toxicity, acidification, photochemical oxidation, and abiotic depletion (fossil fuel) potential. Considering NEB approach, the highest NEB values were found for the WWTPs with the higher organic load and nutrient concentration in the influent. The results of LCC in WWTPs varied between 0.21 and 0.53 €/m3. External (environmental) costs were evaluated higher than internal (operational) costs for all selected WWTPs. While eutrophication was the highest among environmental costs, electricity cost was the highest among operational costs for almost all WWTPs.


Subject(s)
Wastewater , Water Purification , Humans , Animals , Waste Disposal, Fluid/methods , Environmental Monitoring , Sewage/analysis , Life Cycle Stages
16.
J Environ Manage ; 355: 120514, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38460330

ABSTRACT

With improvements in urban waste management to promote sustainable development, an increasing number of waste types need to be sorted and treated separately. Due to the relatively low amount of waste generated in small- and medium-sized cities, separate treatment facilities for each waste type lack scale, waste is treated at a high cost and low efficiency. Therefore, industrial symbiosis principles are suggested to be used to guide collaborative waste treatment system of multi-source solid wastes, and co-incineration is the most commonly used technology. Most existing studies have focused on co-incineration of one certain waste type (such as sludge or medical waste) with municipal solid waste (MSW), but the systematic design and the comprehensive benefits on a whole city and park level have not been widely studied. Taking the actual operation of a multi-source waste co-incineration park in south-central China as an example, this study conducted a detailed analysis of the waste-energy-water metabolism process of MSW, sludge, food waste, and medical waste co-incineration. The environmental and economic benefits were evaluated and compared with the single decentralized waste treatment mode. The results showed that the multi-source waste co-incineration and clustering park operating model was comprehensively superior to the single treatment mode, greenhouse gases and human toxicity indicators were decreased by 11.87% and 295.74%, respectively, and the internal rate of return of the project was increased by 29.35%. This mainly benefits from the synergy of technical system and the economies of scale. Finally, this research proposed policy suggestions from systematic planning and design, technical route selection, and an innovative management mode in view of the potential challenges.


Subject(s)
Medical Waste , Refuse Disposal , Waste Management , Humans , Sewage/analysis , Cities , Food , Incineration , Solid Waste/analysis , Medical Waste/analysis , China
17.
Environ Pollut ; 346: 123622, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38395137

ABSTRACT

Hideous and persistent foams on surface water bodies are global issues with far-reaching environmental consequences. This study examines Bellandur Lake (Bengaluru, India) plagued by foam since 2005 due to surfactant-laden untreated sewage ingress. Bellandur Lake receives 258 million liters of inadequately treated sewage daily, constituting 47% of its total volume. Yearlong water quality monitoring reveals that a) high surfactant levels (up to 17.8 ± 1 ppm) and b) prevalent anoxic conditions at lake inlets. Laboratory experiments show that controlled aeration achieved >90% surfactant degradation within 30 h at 3.5 ppm of dissolved oxygen conditions, indicating the need for an aeration chamber design based on the required residence time for inline water treatment. Based on these findings, a design of an inline wastewater treatment system to be installed at sewage entry points into the lake is presented in this work. The inline system was based on experimentally validated BioWin software. Simulations show that recirculating sludge enhances treatment efficiency, achieving effective surfactant degradation in 20 h (2/3rd original time) of residence time. Predictions suggest <1 ppm surfactant levels in the receiving water body, meeting local discharge norms to prevent frothing. This holistic approach, proposed for the first time, could serve as a blueprint for managing foam-related challenges in other waterbodies, offering insights into design, stakeholder engagement, and process optimization.


Subject(s)
Sewage , Water Purification , Sewage/analysis , Lakes , Water Quality , Surface-Active Agents , Environmental Monitoring
18.
Sci Total Environ ; 921: 171134, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38401720

ABSTRACT

Sewage treatment plants (STPs) are primary sources of antibiotics in aquatic environments. However, limited research has been conducted on antibiotic attenuation in STPs and their downstream waters in low-urbanized areas. This study analyzed 15 antibiotics in the STP sewage and river water in the Zijiang River basin to quantify antibiotic transport and attenuation in the STPs and downstream. The results showed that 14 target antibiotics, except leucomycin, were detected in the STP sewage, dominated by amoxicillin (AMOX), ofloxacin, and roxithromycin. The total antibiotic concentration in the influent and effluent ranged from 158 to 1025 ng/L and 99.9 to 411 ng/L, respectively. The removal efficiency of total antibiotics ranged from 54.7 % to 75.7 % and was significantly correlated with total antibiotic concentration in the influent. The antibiotic emission from STPs into rivers was 78 kg/yr and 4.6 g/km2yr in the Zijiang River basin. The total antibiotic concentration downstream of the STP downstream was 23.6 to 213 ng/L and was significantly negatively correlated with the transport distance away from the STP outlets. Antibiotics may pose a high ecological risk to algae and low ecological risk to fish in the basin. The risk of AMOX and ciprofloxacin resistance for organisms in the basin was estimated to be moderate. This study established antibiotic removal and attenuation models in STPs and their downstream regions in a low-urbanized basin, which is important for simulating antibiotic transport in STPs and rivers worldwide.


Subject(s)
Anti-Bacterial Agents , Water Pollutants, Chemical , Animals , Anti-Bacterial Agents/analysis , Sewage/analysis , Water , Environmental Monitoring , Amoxicillin , China , Water Pollutants, Chemical/analysis
19.
Environ Sci Technol ; 58(10): 4761-4771, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38410842

ABSTRACT

This study established a unique approach to assess fecal contamination by measuring fecal sterols, especially coprostanol (5ß-cholestanol-3ß-ol, 5ß) and cholestanol (5α-cholestan-3ß-ol, 5α) and their ratio 5ß/(5ß + 5α) alongside triclosan (TCS) and methyl-triclosan (MTC) in beached plastic pellets across 40 countries. Coprostanol concentrations ranged from 3.6 to 8190 ng/g pellet with extremely high levels in densely populated areas in African countries. The 5ß/(5ß + 5α) ratio was not affected by the difference in residence time of pellets in aquatic environments, and their spatial pattern showed a positive correlation with that of sedimentary sterols, demonstrating its reliability as an indicator of fecal contamination. Pellets from populated areas of economically developing countries, i.e., Africa and Asia, with lower coverage of wastewater treatment exhibited higher 5ß/(5ß + 5α) ratios (∼0.7) corresponding to ∼1% sewage in seawater, while pellets from developed countries, i.e., the USA, Canada, Japan, and Europe, with higher coverage of modern wastewater treatment displayed lower ratios (∼0.5), corresponding to the first contact limit. Triclosan levels were higher in developing countries (0.4-1298 ng/g pellet), whereas developed countries showed higher methyl-triclosan levels (0.5-70 ng/g pellet) due to TCS conversion during secondary treatment. However, some samples from Japan and Europe displayed higher TCS levels, suggesting contributions from combined sewage overflow (CSO). Combination of 5ß/(5ß + 5α) and MTC/TCS ratios revealed extreme fecal contamination from direct input of raw sewage due to inadequate treatment facilities in some African and South and Southeast Asian countries.


Subject(s)
Triclosan/analogs & derivatives , Water Pollutants, Chemical , Cholestanol/analysis , Sewage/analysis , Reproducibility of Results , Sterols/analysis , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis
20.
Chemosphere ; 351: 141203, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38228194

ABSTRACT

Polybrominated diphenyl ethers (PBDE) are priority contaminants historically used as flame retardants. PBDEs are known to occur in wastewater biosolids posing potential concerns with the beneficial land application of the biosolids. This study evaluated the removal of 21 congeners in nine full-scale sludge treatment systems including pelletization (P), alkaline stabilization (AS), and aerobic (AE) and anaerobic (AN) digestion. It is the first study to conduct a mass balance analysis of a broad spectrum of PBDEs during physical, chemical, and biological sludge treatment. The PBDE congener pattern in raw sludge and biosolids samples was consistent with commercial formulations. The fully brominated congener BDE-209 dominated biosolids from all sites with an average concentration of 620 ng/g dry weight (dw), followed by BDE-99 (173 ng/g dw) and BDE-47 (162 ng/g dw). Mass balance analysis on the P and AS processes showed no change in PBDE mass flows with treatment. However, aerobic and anaerobic digestion processes reported significant levels of removal and formation of individual congeners, though the results were not consistent between facilities. One aerobic digestion process (AE2) reported an overall average removal of 48%, whereas the other (AE1) reported very high levels of accumulation of tri- and tetraBDE congeners. Similarly, there were significant variations in PBDE behavior across the five anaerobic digestion plants studied. The plant with the longest solids retention time (SRT) (AN1) reported a moderate removal (50%) of overall PBDE loading and lower congeners, whereas other plants (AN2-AN5) showed significant low (-19%) to high (-166%) levels of formation of lower congeners. The results suggest that reduced SRTs result in formation of lower congeners while extended SRTs can lead to moderate removal of some PBDEs. Conventional sludge treatment result in low to moderate PBDE removal and advanced thermal conversion technologies may be needed to improve the contaminant removal during sludge treatment.


Subject(s)
Flame Retardants , Water Pollutants, Chemical , Sewage/analysis , Halogenated Diphenyl Ethers/analysis , Biosolids , Water Pollutants, Chemical/analysis , Environmental Monitoring , Flame Retardants/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...