Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.029
Filter
1.
Water Environ Res ; 96(6): e11054, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38828755

ABSTRACT

The land application of sewage sludge from wastewater treatment plants has been recognized as a major source of microplastic contamination in soil. Nevertheless, the fate and behavior of microplastics in soil remain uncertain, particularly their distribution and transport, which are poorly understood. This study does a bibliometric analysis and visualization of relevant research publications using the CiteSpace software. It explores the limited research available on the topic, highlighting the potential for it to emerge as a research hotspot in the future. Chinese researchers and institutions are paying great attention to this field and are promoting close academic cooperation among international organizations. Current research hot topics mainly involve microplastic pollution caused by the land application of sewage sludge, as well as the detection, environmental fate, and removal of microplastics in soil. The presence of microplastics in sludge, typically ranging from tens of thousands to hundreds of thousands of particles (p)/kg, inevitably leads to their introduction into soil upon land application. In China, the estimated annual accumulation of microplastics in the soil due to sludge use is approximately 1.7 × 1013 p. In European countries, the accumulation ranges from 8.6 to 71 × 1013 p. Sludge application has significantly elevated soil microplastic concentrations, with higher application rates and frequencies resulting in up to several-fold increases. The primary forms of microplastics found in soils treated with sludge are fragments and fibers, primarily in white color. These microplastics consist primarily of components such as polyamide, polyethylene, and polypropylene. The vertical transport behavior of microplastics is influenced by factors such as tillage, wind, rainfall, bioturbation, microplastic characteristics (e.g., fraction, particle size, and shape), and soil physicochemical properties (e.g., organic matter, porosity, electrical conductivity, and pH). Research indicates that microplastics can penetrate up to 90 cm into the soil profile and persist for decades. Microplastics in sewage sludge-amended soils pose potential long-term threats to soil ecosystems and even human health. Future research should focus on expanding the theoretical understanding of microplastic behavior in these soils, enabling the development of comprehensive risk assessments and informed decision-making for sludge management practices. PRACTITIONER POINTS: Microplastics in sewage sludge range from tens to hundreds of thousands per kilogram. Sludge land application contributes significantly to soil microplastic pollution. The main forms of microplastics in sludge-amended soils are fragments and fibers. Microplastics are mainly composed of polyamide, polyethylene, and polypropylene. Microplastics can penetrate up to 90 cm into the soil profile and persist for decades.


Subject(s)
Microplastics , Sewage , Soil Pollutants , Soil , Sewage/chemistry , Microplastics/analysis , Soil Pollutants/analysis , Soil/chemistry , Bibliometrics , Environmental Monitoring
2.
Water Sci Technol ; 89(10): 2593-2604, 2024 May.
Article in English | MEDLINE | ID: mdl-38822602

ABSTRACT

The number of published literature on the effect of ultrasonic cavitation and advanced oxidation pretreatment on the dewatering performance of anaerobically digested sludge is very limited. This study aims at determining the optimum operating conditions of large-scale filtering centrifuges in wastewater treatment plants. The optimum dose of hydrogen peroxide, ultrasonic power, ultrasonic duration, ultrasonic pulse and particle size distribution for improved dewatering performance were determined in this study. In addition, shear stress-shear rate and viscosity-shear rate rheograms were developed to show the rheological flow properties for varying ultrasonic power and treatment duration. Optimum sonication power, time, pulse and amplitude were determined to be 14 W, 1 min, 55/5 and 20%, respectively. At a pH of 6.8, the optimum concentration of hydrogen peroxide was found to be 43.5 g/L. The optimum hydrogen peroxide dose in the combined conditioning experiments was determined to be 500 mg/L at a pH of 3. Under these optimum conditions, capillary suction time was reduced significantly by 71.1%. This study helps to reduce polymer consumption and provides the optimum pretreatment and dewatering operating conditions, and better monitoring and control in the dewatering unit has significant impact in the overall economy of wastewater treatment plants.


Subject(s)
Hydrogen Peroxide , Oxidation-Reduction , Sewage , Waste Disposal, Fluid , Sewage/chemistry , Hydrogen Peroxide/chemistry , Waste Disposal, Fluid/methods , Ultrasonics/methods , Hydrogen-Ion Concentration
3.
Water Sci Technol ; 89(10): 2812-2822, 2024 May.
Article in English | MEDLINE | ID: mdl-38822616

ABSTRACT

The sequential extraction routes of biogenic materials from sewage sludge (SS) were investigated. Physical methods (ultrasound, heating) and chemical methods (sodium hydroxide, sodium carbonate) were used to extract extracellular polymeric substances (EPS) and alginate-like extracellular polymers (ALEs) from SS. The residues after extraction were further subjected to physical methods (heating) and chemical methods (sulfuric acid, sodium hydroxide) for protein extraction. A comparison was made between sequential extraction routes and direct extraction of biomaterials from sludge in terms of extraction quantity, material properties, and applicability. The results showed that sequential extraction of biomaterials is feasible. The highest extraction quantities were obtained when using sodium carbonate for EPS and ALE extraction and sodium hydroxide for protein, reaching 449.80 mg/gVSS, 109.78 mg/gVSS, and 5447.08 mg/L, respectively. Sequential extraction procedures facilitate the extraction of biomaterials. Finally, suitable extraction methods for different application scenarios were analyzed.


Subject(s)
Sewage , Sewage/chemistry , Sodium Hydroxide/chemistry , Chemical Fractionation/methods , Carbonates/chemistry , Feasibility Studies
4.
Water Environ Res ; 96(5): e11032, 2024 May.
Article in English | MEDLINE | ID: mdl-38698675

ABSTRACT

In recent years, ceramic membranes have been increasingly used in membrane bioreactors (MBRs). However, membrane fouling was still the core issue restricting the large-scale engineering application of ceramic MBRs. As a novel and alternative technology, ultrasonic could be used to control membrane fouling. This research focused on the efficiency and mechanism of ultrasonic controlling membrane fouling in ceramic MBRs. The results showed that ultrasonic reduced the sludge concentration in MBR, and the average particle size of sludge was always in a high range. The sludge activity of the system was stable at 6-9 (mg O2·(g MLSS·h)-1), indicating that ultrasonic did not destroy the activity of microorganisms in the system. The extracellular polymer substance (EPS) of the ultrasonic group was slightly higher than that of the control group, while the soluble microbial product (SMP) content was relatively stable. The ceramic membrane of the ultrasonic group has a partial retention effect on the organic components. The application of ultrasonic slowed down the decrease of the hydrophilicity of the ceramic membrane. The main pollutants on the membrane surface exist in the form of aromatic and heteroaromatic rings, alkynes, and so forth. Ultrasonic removes the amide substances from the membrane surface. Membrane fouling resistance is mainly due to membrane pore blockage, accounting for 75.53%. PRACTITIONER POINTS: Enrich the research on the mechanism of ultrasonic technology in membrane fouling control. The MBR can still operate normally with ultrasonic applied. The time for the ceramic membrane to reach the fouling end point is 2.4 times that without ultrasonic. The main cause of membrane fouling was pore blocking, accounting for 75.53%.


Subject(s)
Bioreactors , Ceramics , Membranes, Artificial , Ceramics/chemistry , Waste Disposal, Fluid/methods , Sewage/chemistry , Biofouling/prevention & control
5.
Water Sci Technol ; 89(9): 2342-2366, 2024 May.
Article in English | MEDLINE | ID: mdl-38747953

ABSTRACT

To investigate the influence of carbonization process parameters on the characteristics of municipal sludge carbonization products, this study selected carbonization temperatures of 300-700 °C and carbonization times of 0.5-1.5 h to carbonize municipal sludge. The results showed that with an increase in temperature and carbonization time, the sludge was carbonized more completely, and the structure and performance characteristics of the sludge changed significantly. Organic matter was continuously cracked, the amorphous nature of the material was reduced, its morphology was transformed into an increasing number of regular crystalline structures, and the content of carbon continued to decrease, from the initial 52.85 to 38.77%, while the content of inorganic species consisting continued to increase. The conductivity was reduced by 87.8%, and the degree of conversion of salt ions into their residual and insoluble states was significant. Natural water absorption in the sludge decreased from 8.13 to 1.29%, and hydrophobicity increased. The dry-basis higher calorific value decreased from 8,703 to 3,574 kJ/kg. Heavy metals were concentrated by a factor of 2-3, but the content of the available state was very low. The results of this study provide important technological support for the selection of suitable carbonization process conditions and for resource utilization.


Subject(s)
Carbon , Sewage , Temperature , Sewage/chemistry , Carbon/chemistry , Waste Disposal, Fluid/methods , Time Factors , Metals, Heavy/chemistry
6.
Molecules ; 29(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38731551

ABSTRACT

The aim of this study is to solve the problems of the complicated pretreatment and high analytical cost in the detection technology of trace drugs and their metabolites in municipal wastewater. A high-performance magnetic sorbent was fsynthesized for the enrichment of trace drugs and their metabolites in wastewater to develop a magnetic solid-phase extraction pretreatment combined with the acoustic ejection mass spectrometry (AEMS) analytical method. The magnetic nanospheres were successfully prepared by magnetic nanoparticles modified with divinylbenzene and vinylpyrrolidone. The results showed that the linear dynamic range of 17 drugs was 1-500 ng/mL, the recovery was 44-100%, the matrix effect was more than 51%, the quantification limit was 1-2 ng/mL, and the MS measurement was fast. It can be seen that the developed magnetic solid-phase extraction (MSPE) method is a good solution to the problems of the complicated pretreatment and analytical cost in the analysis of drugs in wastewater. The developed magnetic material and acoustic excitation pretreatment coupled with mass spectrometry analysis method can realize the low-cost, efficient enrichment, and fast analysis of different kinds of drug molecules in urban sewage.


Subject(s)
Illicit Drugs , Mass Spectrometry , Sewage , Solid Phase Extraction , Sewage/analysis , Sewage/chemistry , Solid Phase Extraction/methods , Mass Spectrometry/methods , Illicit Drugs/analysis , Water Pollutants, Chemical/analysis , Wastewater/analysis , Wastewater/chemistry , Magnetite Nanoparticles/chemistry
7.
Environ Monit Assess ; 196(6): 576, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789652

ABSTRACT

Phosphorus pollution poses a significant challenge in addressing water contamination. The coagulant is one of the effective methods to remove phosphorus from wastewater. Abundant Al and Fe oxides in sludge residue make it have great potential to synthesize water treatment coagulants. However, the utilization of sludge residue for preparation of coagulant was seldom investigated. In this study, we fabricated a novel coagulant, polyaluminum ferric chloride (SM-PAC), using sludge residue as a raw material through acid leaching and polymerization processes. Characterization results confirm that the parameters of SM-PAC meet the specifications outlined in the national standard (GB/T 22627-2022). We investigated the effects of pH, dosage, initial phosphorus concentration, and contact time on the removal efficiency of SM-PAC. As anticipated, the prepared SM-PAC exhibited a significant efficacy in removing phosphorus, meeting the discharge standards set for municipal sewage. Furthermore, the adsorption kinetics analysis suggests that the predominant mode of phosphorus adsorption on SM-PAC is chemical adsorption. Furthermore, the SM-PAC was employed in the actual wastewater treatment plant and exhibited excellent efficiency in phosphorus removal. The utilization of SM-PAC can not only effectively address the issue of sludge disposal but also achieve the goal of "treating waste with waste." It is expected that the proposed method of reusing sludge residue as a resource can provide a sustainable way to synthesize a coagulant for phosphorus removal.


Subject(s)
Phosphorus , Recycling , Sewage , Waste Disposal, Fluid , Water Pollutants, Chemical , Phosphorus/analysis , Phosphorus/chemistry , Sewage/chemistry , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Recycling/methods , Adsorption , Ferric Compounds/chemistry , Wastewater/chemistry
8.
Environ Sci Pollut Res Int ; 31(24): 35249-35265, 2024 May.
Article in English | MEDLINE | ID: mdl-38720130

ABSTRACT

Nine biochars were produced by co-pyrolysis of sawdust and biological sludge following the "design of experiment" approach. Two kinds of sludge (both deriving from the treatment of mixed industrial-municipal wastewater) and two types of woody waste were selected as categorical predicting variables, while contact time, pyrolysis temperature, and sludge percentage were used as quantitative variables. Biochars were analysed for their product characteristics and environmental compatibility based on the European Standards (EN 12915-1:2009) for materials intended for water treatment (i.e. ash content, water leachable polycyclic aromatic hydrocarbons (PAHs) and elements), as well as for specific surface area (SSA), using them as response variables of a multivariate partial least square multiple regression, whose results provided interesting insights on the relationships between pyrolysis conditions and biochar characteristics. Biochars produced with sludge and/or providing the highest SSA values (258-370 m2 g-1) were selected to undergo a sustainable chemical treatment using a by-product of the gasification of woody biomass, complying in all cases with European Standards and achieving therefore the end-of-waste status for sewage sludge. The biochar deriving from the highest percentage of sludge (30% by weight) and with the highest SSA (390 m2 g-1) was thermally activated achieving SSA of 460 m2 g-1 and then tested for the sorption of direct yellow 50 and methylene blue in ultrapure water and real wastewater, compared to a commercial activated carbon (AC). The biochar showed Langmuir sorption maxima (Qm) 2-9 times lower than AC, thus highlighting promising sorption performances. Qm for methylene blue in wastewater (28 mg‧g-1) was confirmed by column breakthrough experiments.


Subject(s)
Charcoal , Coloring Agents , Pyrolysis , Sewage , Wood , Charcoal/chemistry , Sewage/chemistry , Coloring Agents/chemistry , Wood/chemistry , Adsorption , Waste Disposal, Fluid/methods
9.
Water Res ; 257: 121690, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38723351

ABSTRACT

Densification is a novel intensification strategy with the potential to improve treatment capacity within existing continuous-flow (CF) water resource recovery facilities at low capital and operating costs and at relatively small particle sizes compared to typical aerobic granular sludge (AGS) systems. To achieve densification, biological selection principles derived from selector design and AGS concepts have been coupled with physical selection via hydrocyclones at full-scale CF facilities to promote the growth and retention of granules. This combination lowers the sludge volume index (SVI) through superior sludge settling and paves the way for optimized nutrient removal and energy efficiency in low dissolved oxygen conditions. This paper sheds light on the benefits of densification. It delves into areas of advancement to further its implementation: hydrocyclone design, selector zone design, operational guidelines, and the target range for particle sizes and granule fractions.


Subject(s)
Sewage , Waste Disposal, Fluid , Sewage/chemistry , Waste Disposal, Fluid/methods , Particle Size , Bioreactors
10.
Bioresour Technol ; 401: 130760, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692376

ABSTRACT

This study aims to apply the Absorbing oxygen carriers (AOCs) to induce the migration and transformation of phosphorus compounds during the microwave thermal conversion of sludge so the hard-to-extract organic phosphorus (OP) can be converted to easy-to-extract inorganic phosphorus (IP) and be enriched onto the sludge char. The AOCs were recycled by screen separation from the IP-rich sludge char, with the latter being a renewable phosphorus source from sludge. The AOCs in this novel process enhanced the conversion efficiency of OP into non-apatite inorganic phosphorus (NAlP), which was further converted to apatite inorganic phosphorus (AP). Most phosphorus in the sludge char is presented in the form of orthophosphate.


Subject(s)
Microwaves , Oxygen , Phosphorus , Sewage , Sewage/chemistry , Oxygen/chemistry , Temperature
11.
Sci Rep ; 14(1): 10723, 2024 05 10.
Article in English | MEDLINE | ID: mdl-38730012

ABSTRACT

Our study investigates the effects of iron oxide (Fe3O4) nanoparticles combined microwave pretreatment on the anaerobic digestibility and soluble chemical oxygen demand (SCOD) of meat industry sludge. One of our main objectives was to see whether the different microwave-based pretreatment procedures can enhance biogas production by improving the biological availability of organic compounds. Results demonstrated that combining microwave irradiation with magnetic iron oxide nanoparticles considerably increased SCOD (enhancement ratio was above 1.5), the rate of specific biogas production, and the total cumulative specific biogas volume (more than a threefold increment), while having no negative effect on the biomethane content. Furthermore, the assessment of the sludge samples' dielectric properties (dielectric constant and loss factor measured at the frequency of 500 MHz) showed a strong correlation with SCOD changes (r = 0.9942, R2 = 0.99), offering a novel method to evaluate pretreatment efficiency.


Subject(s)
Magnetic Iron Oxide Nanoparticles , Microwaves , Sewage , Sewage/chemistry , Magnetic Iron Oxide Nanoparticles/chemistry , Anaerobiosis , Meat/analysis , Biological Oxygen Demand Analysis , Biofuels/analysis , Food Industry , Industrial Waste
12.
J Environ Manage ; 359: 120986, 2024 May.
Article in English | MEDLINE | ID: mdl-38696849

ABSTRACT

The efficient, safe and eco-friendly disposal of the chromium-containing sludge (CCS) has attracted an increasing concern. In this study, Co-processing of CCS was developed via employing sintering and ironmaking combined technology for its harmless disposal and resource utilization. Crystalline phase and valence state transformation of chromium (Cr), technical feasibility assessment, leaching risk, characteristics of sintered products, and pollutant release during CCS co-processing were investigated through a series of laboratory-scale sintering pot experiments and large scale industrial trials. The results showed that the content of Cr(VI) in sintered products first increased then decreased with increasing temperature ranges of 300 °C-800 °C, and reached a maximum of 2189.64 mg/kg at 500 °C. 99.99% of Cr(VI) can be reduced to Cr(III) at above 1000 °C, which was attributed to the transformation of the Cr(VI)-containing crystalline phases (such as, MgCrO4 and CaCrO4) to the (Mg, Fe2+)(Cr, Al, Fe3+)2O4. The industrial trial results showed that adding 0.5 wt‰ CCS to sintering feed did not have adverse effects on the properties of the sintered ore and the plant's operating stability. The tumbler index of sinter was above 78% and the leaching concentrations of TCr (0.069 mg/L) was significantly lower than the Chinese National Standard of 1.0 mg/L (GB5085.3-2007). The TCr contents of sintering dust and blast furnace gas (BFG) scrubbing water were less than 0.19 wt‰ and 0.11 mg/L, respectively, which was far below the regulatory limit (1.5 mg/L, GB13456-2012). The mass balance evaluation results indicated that at least 89.9% of the Cr in the CCS migrated into the molten iron in the blast furnace (BF), which became a useful supplement to the molten iron. This study provided a new perspective strategy for the safe disposal and resource utilization of CCS in iron and steel industry.


Subject(s)
Chromium , Sewage , Chromium/chemistry , Sewage/chemistry , Iron/chemistry
13.
Chemosphere ; 358: 142209, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697564

ABSTRACT

Elevated usage of pharmaceutical products leads to the accumulation of emerging contaminants in sewage. In the current work, Ganoderma lucidum (GL) was used to remove pharmaceutical compounds (PCs), proposed as a tertiary method in sewage treatment plants (STPs). The PCs consisted of a group of painkillers (ketoprofen, diclofenac, and dexamethasone), psychiatrists (carbamazepine, venlafaxine, and citalopram), beta-blockers (atenolol, metoprolol, and propranolol), and anti-hypertensives (losartan and valsartan). The performance of 800 mL of synthetic water, effluent STP, and hospital wastewater (HWW) was evaluated. Parameters, including treatment time, inoculum volume, and mechanical agitation speed, have been tested. The toxicity of the GL after treatment is being studied based on exposure levels to zebrafish embryos (ZFET) and the morphology of the GL has been observed via Field Emission Scanning Electron Microscopy (FESEM). The findings conclude that GL can reduce PCs from <10% to >90%. Diclofenac and valsartan are the highest (>90%) in the synthetic model, while citalopram and propranolol (>80%) are in the real wastewater. GL effectively removed pollutants in 48 h, 1% of the inoculum volume, and 50 rpm. The ZFET showed GL is non-toxic (LC50 is 209.95 mg/mL). In the morphology observation, pellets GL do not show major differences after treatment, showing potential to be used for a longer treatment time and to be re-useable in the system. GL offers advantages to removing PCs in water due to their non-specific extracellular enzymes that allow for the biodegradation of PCs and indicates a good potential in real-world applications as a favourable alternative treatment.


Subject(s)
Reishi , Wastewater , Water Pollutants, Chemical , Zebrafish , Wastewater/chemistry , Water Pollutants, Chemical/toxicity , Animals , Reishi/metabolism , Waste Disposal, Fluid/methods , Pharmaceutical Preparations/analysis , Pharmaceutical Preparations/metabolism , Malaysia , Sewage/chemistry , Sewage/microbiology , Biodegradation, Environmental , Diclofenac/toxicity
14.
J Environ Manage ; 359: 120947, 2024 May.
Article in English | MEDLINE | ID: mdl-38718599

ABSTRACT

This article presents ways of recovering waste in the form of anaerobically digested and dried sewage sludge (average humidity approx. 6 wt%) by carbonization at various temperatures in the range of 400-900 °C. The resulting products, biochars, are investigated in terms of yield, surface properties and Raman spectra analysis. The sorption capacity of biochars differs depending on the carbonization temperature. The experimental amount of adsorbed CO2 slowly increases with the carbonization temperature from 0.212 mmol/g at 400 °C to the highest value of 0.415 mmol/g, which is achieved at 900 °C by slow carbonization at a rate of 10 °C/min. Additionally, there is a strong positive dependence of the adsorption capacity on the micropore volume. Higher carbonization temperatures support the powerful formation of micropores and improve their sorption capacity.


Subject(s)
Charcoal , Sewage , Temperature , Sewage/chemistry , Adsorption , Charcoal/chemistry
15.
Chemosphere ; 358: 142265, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38719121

ABSTRACT

Electro-dewatering of sewage sludge with pulsating voltage was conducted under the two different wave shapes (square wave (SQW) and half-sine wave (HSW)) to investigate the influence of wave shape and duty cycle on sludge dewatering performance. The results indicated that, under the same average voltage, the moisture content of dewatered sludge with HSW was 10.3%-35.4% lower than that with SQW, suggesting the better dewatering performance of HSW. The optimal dewatering performance was achieved at duty cycle of 80% for SQW and 60% for SHW. The chemical oxygen demand of filtrate from HSW could be 13% higher than that from SQW, indicating the higher capacity of HSW in breaking sludge cells/floc structure. The applied voltage during electrochemical treatment promoted the hydrolysis of protein in filtrate, and the main components in the electro-dewatered filtrate were fulvic acid- and humic acid-like substances. The specific energy consumption for sludge electro-dewatering were 0.015-0.269 kWh/(kg removed water), and it was almost in linear relationship with duty cycle. By overall considering the energy consumption and electro-dewatering performance, the condition of 60% duty cycle with HSW was obviously better than other conditions, which provides a meaningful guidance for future application of sludge electro-dewatering technology with pulsating voltage.


Subject(s)
Sewage , Waste Disposal, Fluid , Sewage/chemistry , Waste Disposal, Fluid/methods , Biological Oxygen Demand Analysis , Electrochemical Techniques/methods , Humic Substances/analysis , Water/chemistry , Benzopyrans
16.
Chemosphere ; 358: 142272, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38719128

ABSTRACT

The study assessed the ecotoxicity and bioavailability of potential metals (PMs) from tannery waste sludge, alongside addressing the environmental concerns of overuse of chemical fertilizers, by comparing the impacts of organic vermicomposted tannery waste, chemical fertilizers, and sole application of tannery waste on soil and rice (Oryza sativa L.) plants. The results revealed that T3, which received high-quality vermicomposted tannery waste as an amendment, exhibited superior enzymatic characteristics compared to tannery sludge amended (TWS) treatments (T8, T9). After harvesting, vermicomposted tannery waste treatment (T3) showed a more significant decrease in PMs bioavailability. Accumulation of PMs in rice was minimal across all treatments except T8 and T9, where toxic tannery waste was present, resulting in a high-risk classification (class 5 < 0.01) according to the SAMOE risk assessment. Results from Fuzzy-TOPSIS, ANN, and Sobol sensitivity analyses (SSA) further indicated that elevated concentrations of PMs (Ni, Pb, Cr, Cu) adversely impacted soil-plant health synergy, with T3 showing a minimal risk in comparison to T8 and T9. According to SSA, microbial biomass carbon and acid phosphatase activity were the most sensitive factors affected by PMs concentrations in TWS. The results from the ANN assay revealed that the primary contributing factor of toxicity on the TWS was the exchangeable fraction of Cr. Correlation statistics underscored the significant detrimental effect of PMs' bioavailability on microbial and enzymatic parameters. Overall, the findings suggest that vermicomposting of tannery sludge waste shows potential as a viable organic amendment option in the near future.


Subject(s)
Machine Learning , Oryza , Sewage , Soil Pollutants , Tanning , Wetlands , Sewage/chemistry , Soil Pollutants/toxicity , Soil Pollutants/analysis , Metals/toxicity , Soil/chemistry , Composting/methods , Fertilizers , Animals , Metals, Heavy/toxicity , Metals, Heavy/analysis
17.
Waste Manag ; 183: 245-252, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38772135

ABSTRACT

The research was aimed at providing new knowledge in the field of chemical characteristics of solid waste generated in the process of combustion of sewage sludge in fluidized bed furnaces. The research material consisted of disposed fluidized beds (DFB), sewage sludge ash (SSA) and air pollution control residues (APC) from three Polish installations for the thermal treatment of sewage sludge. Natural radionuclides as well as anthropogenic isotope 137Cs were determined in the tested materials and the migration of a wide spectrum of trace elements to various waste fractions generated in the process of sewage sludge combustion was examined. It was observed that both radioisotopes and most of the trace elements determined accumulate in SSA and DFB, while the APC fraction contains a much smaller amount of them. The exceptions are mercury and selenium, whose volatile compounds migrate to the exhaust gas dedusting system and accumulate in the APC fraction (up to 40 mg/kg and 13 mg/kg, respectively). A potential threat from the 226Ra isotope in SSA is identified in the context of the management of this waste in the production of building materials because the typical activity of 226Ra in SSA collected from areas with very low Ra content in natural environment exceeds 1.5-6 times the activity of this isotope in conventional cement mixtures. When managing SSA and DFB, special attention should be paid to the content of metalloids such as As, B and Se, due to the high content of mobile forms of these elements in the mentioned materials.


Subject(s)
Incineration , Sewage , Solid Waste , Trace Elements , Sewage/chemistry , Trace Elements/analysis , Incineration/methods , Solid Waste/analysis , Poland , Radioisotopes/analysis , Refuse Disposal/methods , Cesium Radioisotopes/analysis
18.
Waste Manag ; 183: 278-289, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38781819

ABSTRACT

Convective drying is an effective method for reducing the moisture content of the sludge. Fewer studies have discussed the effect of sludge physicochemical properties on drying compared to air parameters. Eleven types of sludge were collected, and ultimate analysis, proximate analysis, and heat value analysis were performed. Meanwhile, the maximum drying rate (umax) of sludge convection drying at 70 °C was determined. The results showed that the cumulative variance contribution of the two extracted principal components (PCs) was 92.5 %. Then, a regression model of umax was developed based on the extracted PCs. The coefficient of determination of this model was 0.788, and the difference was statistically significant, with a negative correlation between umax and PC2. Further, the principal component score plot enabled the traceability of the integrated sludge, and based on this classification results, the drying characteristics of various types of sludge were discussed, and a high correlation (R2 = 0.9590) between the initial moisture content of sludge and umax was found. Mathematical models between sludge physicochemical properties and drying characteristics can be effectively developed from both sludge composition and type scales. This exploration deepened the knowledge of sludge drying and facilitates the prediction of drying rate.


Subject(s)
Desiccation , Sewage , Sewage/chemistry , Sewage/analysis , Desiccation/methods , Models, Theoretical , Waste Disposal, Fluid/methods
19.
Environ Sci Pollut Res Int ; 31(24): 35727-35743, 2024 May.
Article in English | MEDLINE | ID: mdl-38740679

ABSTRACT

The use of lignocellulosic residues, originating from sawdust, in composting sewage sludge for organic fertilizer production, is a practice of growing interest. However, few studies have explored the effect of the proportion of sawdust and sewage sludge raw materials on composting performance in the humification process. This study assessed the addition of sawdust in the sewage sludge composting process, regarding carbon content, presence of heavy metals, and humification of the organic compost. The experimental design employed was a randomized complete block design with five treatments featuring different proportions of organic residues to achieve C/N ratios between 30-1 (T1: 100% sewage sludge and 0% sawdust, T2: 86% sewage sludge and 14.0% sawdust, T3: 67% sewage sludge and 33% sawdust, T4: 55% sewage sludge and 45% sawdust, and T5: 46.5% sewage sludge and 53.5% sawdust) and five replications, totaling 25 experimental units. The addition of lignocellulosic residue in sewage sludge composting increased the levels of TOC and the C/N ratio, reduced the levels of pH, P, N, Na, Ba, and Cr, and did not interfere with the levels of K, Ca, Mg, S, CEC, labile carbon, and metals Fe, Zn, Cu, Mn, Ni, and Pb. The increase in the proportion of sawdust residue favored the degradation of aliphatic groups, increasing the presence of aromatic structures and reducing humification at the end of composting. The use of sawdust as a lignocellulosic residue in sewage sludge composting is a viable and efficient alternative to produce high-quality organomineral fertilizers.


Subject(s)
Composting , Metals, Heavy , Sewage , Sewage/chemistry , Metals, Heavy/analysis , Lignin/chemistry , Spectroscopy, Fourier Transform Infrared , Fertilizers , Metals/chemistry
20.
Bioresour Technol ; 402: 130822, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729582

ABSTRACT

Three different technological solutions, namely acidogenic fermentation and chemical extraction (alkaline or acidic), followed by precipitation with 1% Ca(OH)2, were investigated in the view of integrating phosphorus recovery into existing wastewater treatment plants. Experiments were conducted at the lab-scale using (i) sludge taken from biologically and chemically promoted phosphorus removal activated sludge processes and (ii) ashes obtained from sludge muffle incineration. Results highlighted the benefits of enhanced biological phosphorus removal (EBPR) systems rather than chemically promoted phosphorus removal in not only phosphorus extraction (up to 40% with EBPR) and recovery directly from secondary sludge (P precipitation between 66 and 92%), but after sludge incineration as well (P extraction up to 96% and precipitation above 96%). Acidogenic fermentation ensured the highest phosphorus release from EBPR sludge (equal to a concentration in solution of 122 mg/L P-PO43-), while the derived ashes had a lower level of metal contamination (particularly Fe and Al content < 2%). The phosphorus-rich product obtained by means of the recovery process showed relevant metal contamination (Cu, Zn, and Ni) under some operating conditions, suggesting the need for further treatments.


Subject(s)
Phosphorus , Sewage , Wastewater , Water Purification , Sewage/chemistry , Water Purification/methods , Wastewater/chemistry , Fermentation , Waste Disposal, Fluid/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...