Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 196
Filter
1.
Am Nat ; 203(6): 713-725, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38781526

ABSTRACT

AbstractSexual selection has been suggested to influence the expression of male behavioral consistency. However, despite predictions, direct experimental support for this hypothesis has been lacking. Here, we investigated whether sexual selection altered male behavioral consistency in Drosophila melanogaster-a species with both pre- and postcopulatory sexual selection. We took 1,144 measures of locomotor activity (a fitness-related trait in D. melanogaster) from 286 flies derived from replicated populations that have experimentally evolved under either high or low levels of sexual selection for >320 generations. We found that high sexual selection males were more consistent (decreased within-individual variance) in their locomotor activity than male conspecifics from low sexual selection populations. There were no differences in behavioral consistency between females from the high and low sexual selection populations. Furthermore, while females were more behaviorally consistent than males in the low sexual selection populations, there were no sex differences in behavioral consistency in high sexual selection populations. Our results demonstrate that behavioral plasticity is reduced in males from populations exposed to high levels of sexual selection. Disentangling whether these effects represent an evolved response to changes in the intensity of selection or are manifested through nongenetic parental effects represents a challenge for future research.


Subject(s)
Drosophila melanogaster , Sexual Selection , Animals , Drosophila melanogaster/physiology , Male , Female , Locomotion , Sexual Behavior, Animal , Mating Preference, Animal
2.
Proc Natl Acad Sci U S A ; 121(20): e2317305121, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38709919

ABSTRACT

Infanticide and adoption have been attributed to sexual selection, where an individual later reproduces with the parent whose offspring it killed or adopted. While sexually selected infanticide is well known, evidence for sexually selected adoption is anecdotal. We report on both behaviors at 346 nests over 27 y in green-rumped parrotlets (Forpus passerinus) in Venezuela. Parrotlets are monogamous with long-term pair bonds, exhibit a strongly male-biased adult sex ratio, and nest in cavities that are in short supply, creating intense competition for nest sites and mates. Infanticide attacks occurred at 256 nests in two distinct contexts: 1) Attacks were primarily committed by nonbreeding pairs (69%) attempting to evict parents from the cavity. Infanticide attacks per nest were positively correlated with population size and evicting pairs never adopted abandoned offspring. Competition for limited nest sites was a primary cause of eviction-driven infanticide, and 2) attacks occurred less frequently at nests where one mate died (31%), was perpetrated primarily by stepparents of both sexes, and was independent of population size. Thus, within a single species and mating system, infanticide occurred in multiple contexts due to multiple drivers. Nevertheless, 48% of stepparents of both sexes adopted offspring, and another 23% of stepfathers exhibited both infanticide and long-term care. Stepfathers were often young males who subsequently nested with widows, reaching earlier ages of first breeding than competitors and demonstrating sexually selected adoption. Adoption and infanticide conferred similar fitness benefits to stepfathers and appeared to be equivalent strategies driven by limited breeding opportunities, male-biased sex ratios, and long-term monogamy.


Subject(s)
Parrots , Animals , Male , Female , Venezuela , Parrots/physiology , Nesting Behavior/physiology , Sex Ratio , Sexual Behavior, Animal/physiology , Sexual Selection
3.
Evolution ; 78(6): 1201-1202, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38666728

ABSTRACT

In a recent study, Tschol et al. (2024) present a model that investigates how 2 different forms of sexual selection, selection for traits that increase mate encounters and selection for traits that enhance one's ability to compete for mates, affect geographical range limits. The model demonstrates that range limits expand in response to selection on mate-encountering traits and contract when selection acts on reproductive competitiveness. When traits coevolve, range limits depend on the mating system. This study demonstrates the importance of accounting for sexual selection and intraspecific interactions when investigating eco-evolutionary dynamics of geographic range limits.


Subject(s)
Sexual Selection , Animals , Mating Preference, Animal , Biological Evolution , Selection, Genetic , Models, Genetic
4.
Am Nat ; 203(5): 590-603, 2024 May.
Article in English | MEDLINE | ID: mdl-38635363

ABSTRACT

AbstractThe mechanisms underlying the divergence of reproductive strategies between closely related species are still poorly understood. Additionally, it is unclear which selective factors drive the evolution of reproductive behavioral variation and how these traits coevolve, particularly during early divergence. To address these questions, we quantified behavioral differences in a recently diverged pair of Nova Scotian three-spined stickleback (Gasterosteus aculeatus) populations, which vary in parental care, with one population displaying paternal care and the other lacking this. We compared both populations, and a full reciprocal F1 hybrid cross, across four major reproductive stages: territoriality, nesting, courtship, and parenting. We identified significant divergence in a suite of heritable behaviors. Importantly, F1 hybrids exhibited a mix of behavioral patterns, some of which suggest sex linkage. This system offers fresh insights into the coevolutionary dynamics of reproductive behaviors during early divergence and offers support for the hypothesis that coevolutionary feedback between sexual selection and parental care can drive rapid evolution of reproductive strategies.


Subject(s)
Reproduction , Smegmamorpha , Animals , Territoriality , Smegmamorpha/genetics , Sexual Selection
5.
PeerJ ; 12: e16956, 2024.
Article in English | MEDLINE | ID: mdl-38495761

ABSTRACT

Background: Sexual dimorphism, driven by sexual selection, leads to varied morphological distinctions in male and female insects, providing insights into selection pressures across species. However, research on the morphometric variability within specific taxa of tiger beetles (Coleoptera: Cicindelidae), particularly arboreal and semi-arboreal species, remains very limited. Methods: We investigate sexual dimorphism in six semi-arboreal Therates tiger beetle taxa from the Philippines, focusing on morphological traits. We employed morphometric measurements and multivariate analyses to reveal patterns of sexual dimorphism between sexes within the taxa. Results: Our results indicate significant sexual dimorphism in elytra width, with females consistently displaying broader elytra, potentially enhancing fecundity. Notable sexual size dimorphism was observed in Therates fulvipennis bidentatus and T. coracinus coracinus, suggesting heightened sexual selection pressures on male body size. Ecological factors, mating behavior, and female mate choice might contribute to the observed morphological variation. These findings emphasize the need for further studies to comprehend mating dynamics, mate choice, and ecological influences on morphological variations in semi-arboreal and arboreal tiger beetles.


Subject(s)
Coleoptera , Sex Characteristics , Female , Male , Animals , Philippines , Sexual Selection , Biodiversity , Trees
6.
Evolution ; 78(5): 835-848, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38436989

ABSTRACT

Understanding how the early stages of sexual signal diversification proceed is critically important because these microevolutionary dynamics directly shape species trajectories and impact macroevolutionary patterns. Unfortunately, studying this is challenging because signals involve complex interactions between behavior, morphology, and physiology, much of which can only be measured in real-time. In Hawaii, male Pacific field cricket song attracts both females and a deadly parasitoid fly. Over the past two decades, there has been a marked increase in signal variation in Hawaiian populations of these crickets, including novel male morphs with distinct mating songs. We capitalize on this rare opportunity to track changes in morph composition over time in a population with three novel morphs, investigating how mate and parasitoid attraction (components of sexual and natural selection) may shape signal evolution. We find dramatic fluctuation in morph proportions over the three years of the study, including the arrival and rapid increase of one novel morph. Natural and sexual selection pressures act differently among morphs, with some more attractive to mates and others more protected from parasitism. Collectively, our results suggest that differential protection from parasitism among morphs, rather than mate attraction, aligns with recent patterns of phenotypic change in the wild.


Subject(s)
Gryllidae , Animals , Gryllidae/physiology , Gryllidae/genetics , Male , Female , Selection, Genetic , Sexual Selection , Biological Evolution , Mating Preference, Animal , Hawaii , Vocalization, Animal , Diptera/physiology
7.
J Hist Biol ; 57(1): 89-112, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38446269

ABSTRACT

This study situates Henry Havelock Ellis's sexological research within the nineteenth-century evolutionary debates, especially the discussion over sexual selection's applicability to humanity. For example, Ellis's monograph on sexual behavior, Sexual Inversion (1897), treated inborn homosexuality as a natural variation of evolutionary mechanisms. This book was situated within a longer study of human sexuality in relation to evolutionary selection. His later works dealt even more directly with Charles Darwin's concept of selection, such as Sexual Selection in Man (1905). Through Sexual Selection in Man, Ellis asserted that sexual attraction stemmed from a physical cause rather than an innate aesthetic sense. I argue that Ellis's best-known historical publications, including his work on sexual inversion, were intended to intervene in the contemporary evolutionary debates. This analysis also identifies a specific point where evolutionary theory informed the foundation of sexology as a scientific discipline.


Subject(s)
Biological Evolution , Sexology , History, 19th Century , Humans , Sexology/history , Sexual Selection , History, 20th Century , Male , Sexual Behavior/history , Female
8.
Evolution ; 78(6): 1150-1160, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38525953

ABSTRACT

Understanding the evolution of traits subject to trade-offs is challenging because phenotypes can (co)vary at both the among- and within-individual levels. Among-individual covariation indicates consistent, possibly genetic, differences in how individuals resolve the trade-off, while within-individual covariation indicates trait plasticity. There is also the potential for consistent among-individual differences in behavioral plasticity, although this has rarely been investigated. We studied the sources of (co)variance in two characteristics of an acoustic advertisement signal that trade-off with one another and are under sexual selection in the gray treefrog, Hyla chrysoscelis: call duration and call rate. We recorded males on multiple nights calling spontaneously and in response to playbacks simulating different competition levels. Call duration, call rate, and their product, call effort, were all repeatable both within and across social contexts. Call duration and call rate covaried negatively, and the largest covariance was at the among-individual level. There was extensive plasticity in calling with changes in social competition, and we found some evidence for among-individual variance in call rate plasticity. The significant negative among-individual covariance in trait values is perpendicular to the primary direction of sexual selection in this species, indicating potential limits on the response to selection.


Subject(s)
Vocalization, Animal , Animals , Male , Sexual Selection , Hylobatidae/genetics , Hylobatidae/physiology , Mating Preference, Animal , Phenotype
9.
Evolution ; 78(6): 1054-1066, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38441178

ABSTRACT

Bird song is a classic example of a sexually selected trait, but much of the work relating individual song components to fitness has not accounted for song typically being composed of multiple, often-correlated components, necessitating a multivariate approach. We explored the role of sexual selection in shaping the complex male song of house wrens (Troglodytes aedon) by simultaneously relating its multiple components to fitness using multivariate selection analysis, which is widely used in insect and anuran studies but not in birds. The analysis revealed significant variation in the form and strength of selection acting on song across different selection episodes, from nest-site defense to recruitment of offspring to the breeding population. Males that sang more song typically employed in close communication sired more offspring that were subsequently recruited to the breeding population than those that sang more far-communication song. However, this relationship was not consistent across earlier selection episodes, as evidenced by non-linear selection acting on these song components in other contexts. Collectively, our results present a complex picture of multivariate selection on male song structure that would not be evident using univariate approaches and suggest possible trade-offs within and among song components at different points of the breeding season.


Subject(s)
Songbirds , Vocalization, Animal , Animals , Male , Songbirds/physiology , Songbirds/genetics , Selection, Genetic , Animal Migration , Female , Sexual Selection
10.
Science ; 383(6689): 1368-1373, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38513020

ABSTRACT

Visual preferences are important drivers of mate choice and sexual selection, but little is known of how they evolve at the genetic level. In this study, we took advantage of the diversity of bright warning patterns displayed by Heliconius butterflies, which are also used during mate choice. Combining behavioral, population genomic, and expression analyses, we show that two Heliconius species have evolved the same preferences for red patterns by exchanging genetic material through hybridization. Neural expression of regucalcin1 correlates with visual preference across populations, and disruption of regucalcin1 with CRISPR-Cas9 impairs courtship toward conspecific females, providing a direct link between gene and behavior. Our results support a role for hybridization during behavioral evolution and show how visually guided behaviors contributing to adaptation and speciation are encoded within the genome.


Subject(s)
Butterflies , Calcium-Binding Proteins , Color Vision , Genes, Insect , Genetic Introgression , Mating Preference, Animal , Sexual Selection , Animals , Female , Butterflies/genetics , Butterflies/physiology , Calcium-Binding Proteins/genetics , Color Vision/genetics , Genome , Hybridization, Genetic , Sexual Selection/genetics
11.
Evolution ; 78(5): 951-963, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38416475

ABSTRACT

Understanding what processes shape the formation of species' geographic range limits is one central objective linking ecology and evolutionary biology. One potentially key process is sexual selection; yet, theory examining how sexual selection could shape eco-evolutionary dynamics in marginal populations is still lacking. In species with separate sexes, range limits could be shaped by limitations in encountering mates at low densities. Sexual selection could therefore modulate mate limitation and resulting extinction-colonization dynamics at range margins, through evolution of mate encounter ability and/or mate competition traits, and their demographic consequences. We use a spatially explicit eco-genetic model to reveal how different forms of sexual selection can variably affect emerging range limits. Larger ranges emerged when sexual selection acted exclusively on traits increasing mate encounter probability, thus reducing female's mate limitation toward the range margins. In contrast, sexual selection via mate competition narrowed range limits due to increased trait-dependent mortality in males and elevated mate limitation for females. When mate encounter coevolved with mate competition, their combined effects on range limits depended on the mating system (polygyny vs. monogamy). Our results demonstrate that evolution of species' ranges may be importantly shaped by feedbacks between sexual selection and spatial population demography and dynamics.


Subject(s)
Biological Evolution , Sexual Selection , Animals , Female , Male , Mating Preference, Animal , Models, Genetic , Animal Distribution
12.
Proc Natl Acad Sci U S A ; 121(3): e2309825120, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38190528

ABSTRACT

The impact of sexual selection on the evolution of birds has been widely acknowledged. Although sexual selection has been hypothesized as a driving force in the occurrences of numerous morphological features across theropod evolution, this hypothesis has yet to be comprehensively tested due to challenges in identifying the sex of fossils and by the limited sample size. Confuciusornis sanctus is arguably the best-known early avialan and is represented by thousands of well-preserved specimens from the Early Cretaceous Jehol lagerstätte, which provides us with a chance to decipher the strength of sexual selection on extinct vertebrates. Herein, we present a morphometric study of C. sanctus based on the largest sample size of this taxon collected up to now. Our results indicate that the characteristic elongated paired rectrices is a sexually dimorphic trait and statistically robust inferences of the sexual dimorphism in size, shape, and allometry that have been established, providing the earliest known sexual dimorphism in avian evolution. Our findings suggest that sexual selection, in conjunction with natural selection, does act upon body size and limb length ratio in early birds, thereby promoting a deeper understanding of the role of sexual selection in large-scale phylogenetic evolution.


Subject(s)
Fossils , Sexual Selection , Animals , Phylogeny , Sex Characteristics , Body Size
13.
Proc Natl Acad Sci U S A ; 121(3): e2320846121, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38190533
14.
J Evol Biol ; 37(1): 110-122, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38285662

ABSTRACT

Animals often mimic the behaviours or signals of conspecifics of the opposite sex while courting. We explored the potential functions of a novel female-like signal type in the courtship displays of male Enchenopa treehoppers. In these plant-feeding insects, males produce plant-borne vibrational advertisement signals, to which females respond with their own duetting signals. Males also produce a signal type that resembles the female duetting responses. We experimentally tested whether this signal modifies the behaviour of receivers. First, we tested whether the female-like signal would increase the likelihood of a female response. However, females were as likely to respond to playbacks with or without them. Second, we tested whether the female-like signal would inhibit competing males, but males were as likely to produce displays after playbacks with or without them. Hence, we found no evidence that this signal has an adaptive function, despite its presence in the courtship display, where sexual selection affects signal features. Given these findings, we also explored whether the behavioural and morphological factors of the males were associated with the production of the female-like signal. Males that produced this signal had higher signalling effort (longer and more frequent signals) than males that did not produce it, despite being in worse body condition. Lastly, most males were consistent over time in producing the female-like signal or not. These findings suggest that condition-dependent or motivational factors explain the presence of the female-like signal. Alternatively, this signal might not bear an adaptive function, and it could be a way for males to warm up or practice signalling, or even be a by-product of how signals are transmitted through the plant. We suggest further work that might explain our puzzling finding that a signal in the reproductive context might not have an adaptive function.


Subject(s)
Hemiptera , Animals , Male , Female , Hemiptera/physiology , Sexual Behavior, Animal/physiology , Animal Communication , Insecta , Sexual Selection
15.
Ecol Lett ; 27(1): e14355, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38225825

ABSTRACT

Sexual selection and the evolution of costly mating strategies can negatively impact population viability and adaptive potential. While laboratory studies have documented outcomes stemming from these processes, recent observations suggest that the demographic impact of sexual selection is contingent on the environment and therefore may have been overestimated in simple laboratory settings. Here we find support for this claim. We exposed copies of beetle populations, previously evolved with or without sexual selection, to a 10-generation heatwave while maintaining half of them in a simple environment and the other half in a complex environment. Populations with an evolutionary history of sexual selection maintained larger sizes and more stable growth rates in complex (relative to simple) environments, an effect not seen in populations evolved without sexual selection. These results have implications for evolutionary forecasting and suggest that the negative demographic impact of sexually selected mating strategies might be low in natural populations.


Subject(s)
Mating Preference, Animal , Sexual Selection , Animals , Biological Evolution , Sexual Behavior, Animal , Demography , Selection, Genetic
16.
Annu Rev Entomol ; 69: 41-57, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-37562047

ABSTRACT

Natural selection is notoriously dynamic in nature, and so, too, is sexual selection. The interactions between phytophagous insects and their host plants have provided valuable insights into the many ways in which ecological factors can influence sexual selection. In this review, we highlight recent discoveries and provide guidance for future work in this area. Importantly, host plants can affect both the agents of sexual selection (e.g., mate choice and male-male competition) and the traits under selection (e.g., ornaments and weapons). Furthermore, in our rapidly changing world, insects now routinely encounter new potential host plants. The process of adaptation to a new host may be hindered or accelerated by sexual selection, and the unexplored evolutionary trajectories that emerge from these dynamics are relevant to pest management and insect conservation strategies. Examining the effects of host plants on sexual selection has the potential to advance our fundamental understanding of sexual conflict, host range evolution, and speciation, with relevance across taxa.


Subject(s)
Insecta , Sexual Selection , Animals , Plants , Selection, Genetic
17.
Evolution ; 78(1): 86-97, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-37888875

ABSTRACT

Whether sexual selection facilitates or hampers the ability to plastically respond to novel environments might depend on population structure, via its effects on sexual interactions and associated fitness payoffs. Using experimentally evolved lines of the seed beetle Callosobruchus maculatus, we tested whether individuals evolving under different sexual selection (monogamy vs. polygamy) and population spatial structure (metapopulation vs. undivided populations) treatments differed in their response across developmental thermal conditions (control, hot, or stressful) in a range of fitness and fitness-associated traits. We found that individuals from subdivided populations had lower lifetime reproductive success at hot temperatures, but only in lines evolving under relaxed sexual selection, revealing a complex interaction between sexual selection, population structure, and thermal environmental stress on fitness. We also found an effect of population structure on several traits, including fertility and adult emergence success, under exposure to high thermal conditions. Finally, we found a strong negative effect of hot and stressful temperatures on fitness and associated traits. Our results show that population structure can exacerbate the impact of a warming climate, potentially leading to declines in population viability, but that sexual selection can buffer the negative influence of population subdivision on adaptation to warm temperatures.


Subject(s)
Coleoptera , Sexual Selection , Animals , Temperature , Sexual Behavior, Animal/physiology , Coleoptera/physiology , Reproduction
18.
Evolution ; 78(1): 26-38, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-37875133

ABSTRACT

While numerous theoretical population genetic models predict that mating assortatively by genetic "quality" will enhance the efficiency of purging of deleterious mutations and/or the spread of beneficial alleles in the gene pool, empirical examples of assortative mating by quality are surprisingly rare and often inconclusive. Here, we set out to examine whether fruit flies (Drosophila melanogaster) engage in assortative mating by body-size phenotype, a composite trait strongly associated with both reproductive success and survival and is considered a reliable indicator of natural genetic quality. Male and female flies of different body-size classes (large and small) were obtained under typical culture conditions, which allows us to use standing variation of body size without involving artificial nutritional manipulation, so that their interactions and mating patterns could be measured. While flies did not exhibit assortative courtship behavior, when patterns of offspring production were analyzed, it was found that individuals produced more offspring with partners of similar quality/body size, resulting produced from disassortative mating. Together, these results validate theoretical predictions that sexual selection can enhance the effects of natural selection and consequently the rate of adaptive evolution in a positive correlation in fitness between mates. Subsequent assays of offspring fitness indicated that assortative mating produced sons and daughters that had greater or equal reproductive success than those.


Subject(s)
Drosophila melanogaster , Mating Preference, Animal , Humans , Animals , Male , Female , Drosophila melanogaster/genetics , Sexual Selection , Reproduction , Drosophila/genetics , Germ Cells
19.
Evolution ; 78(2): 364-377, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37864838

ABSTRACT

Sexual selection is the differential reproductive success of individuals, resulting from competition for mates, mate choice, or success in fertilization. In primates, this selective pressure often leads to the development of exaggerated traits which play a role in sexual competition and successful reproduction. In order to gain insight into the mechanisms driving the development of sexually selected traits, we used an unbiased genome-wide approach across 21 primate species to correlate individual rates of protein evolution to relative testes size and sexual dimorphism in body size, 2 anatomical hallmarks of sexual selection in mammals. Among species with presumed high levels of sperm competition, we detected strong conservation of testes-specific proteins responsible for spermatogenesis and ciliary form and function. In contrast, we identified accelerated evolution of female reproductive proteins expressed in the vagina, cervix, and fallopian tubes in these same species. Additionally, we found accelerated protein evolution in lymphoid tissue, indicating that adaptive immune functions may also be influenced by sexual selection. This study demonstrates the distinct complexity of sexual selection in primates revealing contrasting patterns of protein evolution between male and female reproductive tissues.


Subject(s)
Biological Evolution , Sexual Selection , Animals , Male , Female , Semen , Primates/genetics , Mammals , Sexual Behavior, Animal
20.
Evolution ; 78(3): 511-525, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38149973

ABSTRACT

Sexual traits may be selected during multiple consecutive episodes of selection, occurring before, during, or after copulation. The overall strength and form of selection acting on traits may thus be determined by how selection (co-)varies along different episodes. However, it is challenging to measure pre- and postcopulatory phenotypic traits alongside variation in fitness components at each different episode. Here, we used a transgenic line of the transparent flatworm Macrostomum lignano expressing green fluorescent protein (GFP) in all cell types, including sperm cells, enabling in vivo sperm tracking. We assessed the mating success, sperm-transfer efficiency, and sperm fertilizing efficiency of GFP(+) focal worms in which we measured 13 morphological traits. We found linear selection on sperm production rate arising from pre- and postcopulatory components and on copulatory organ shape arising from sperm fertilizing efficiency. We further found nonlinear (mostly concave) selection on combinations of copulatory organ and sperm morphology traits arising mostly from sperm-transfer efficiency and sperm fertilizing efficiency. Our study provides a fine-scale quantification of sexual selection, showing that both the form and strength of selection can change across fitness components. Quantifying how sexual selection builds up along episodes of selection allows us to better understand the evolution of sexually selected traits.


Subject(s)
Platyhelminths , Animals , Male , Platyhelminths/genetics , Sexual Selection , Semen , Spermatozoa , Fertilization , Copulation , Sexual Behavior, Animal
SELECTION OF CITATIONS
SEARCH DETAIL
...