Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.623
Filter
1.
Sci Rep ; 14(1): 13043, 2024 06 06.
Article in English | MEDLINE | ID: mdl-38844572

ABSTRACT

Hu sheep are a unique breed in our country with great reproductive potential, the extent of whose breeding has been steadily rising in recent years. The study subjects in this experiment were 8-month-old Hu sheep (n = 112). First of all, the growth performance, slaughter performance and meat quality of their eye muscle quality were assessed, meanwhile their live weight, carcass weight, body length, body height, chest circumference, chest depth and tube circumference were respectively 33.81 ± 5.47 kg, 17.43 ± 3.21 kg, 60.36 ± 4.41 cm, 63.25 ± 3.88 cm, 72.03 ± 5.02 cm, 30.70 ± 2.32 cm and 7.36 ± 0.56 cm, with a significant difference between rams and ewes (P < 0.01). Following that, transcriptome sequencing was done, and candidate genes related to growth performance were identified using the weighted co-expression network analysis (WGCNA) approach, which was used to identified 15 modules, with the turquoise and blue modules having the strongest association with growth and slaughter performance, respectively. We discovered hub genes such as ARHGAP31, EPS8, AKT3, EPN1, PACS2, KIF1C, C12H1orf115, FSTL1, PTGFRN and IFIH1 in the gene modules connected with growth and slaughter performance. Our research identifies the hub genes associated with the growth and slaughter performance of Hu sheep, which play an important role in their muscle growth, organ and cartilage development, blood vessel development and energy metabolic pathways. Our findings might lead to the development of potentially-useful biomarkers for the selection of growth and slaughterer performance-related attributes of sheep and other livestock.


Subject(s)
Gene Regulatory Networks , Animals , Sheep/genetics , Sheep/growth & development , Female , Transcriptome , Gene Expression Profiling , Male , Breeding , Body Weight/genetics , Meat
2.
Trop Anim Health Prod ; 56(4): 152, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722369

ABSTRACT

Supplementing livestock grazing communal rangelands with leaf-meals from Acacia trees, which are currently considered as problematic invasive alien plants globally, may be a sustainable way of exploiting their desirable nutritional and anthelmintic properties. The current study evaluated worm burdens and growth performance of lambs grazing low-quality communal rangelands supplemented with leaf-meals prepared from the invasive alien plant species; Acacia mearnsii or A. dealbata. Forty, three-month-old ewe lambs weighing an average of 18.9 ± 0.60 kg were randomly allocated to four supplementary diets: (1) rangeland hay only (control), (2) commercial protein supplement plus rangeland hay, (3) A. mearnsii leaf-meal plus rangeland hay and (4) A. dealbata leaf-meal plus rangeland hay. All the supplementary diets were formulated to meet the lambs' minimum maintenance requirements for protein. All the lambs were grazed on communal rangelands daily from 0800 to 1400 after which they were penned to allow them access to their respective supplementary diets until 08:00 the following morning. The respective supplementary diets were offered at the rate of 400 g ewe- 1 day- 1 for 60 days. Lambs fed the commercial protein supplement had the highest dry matter intake followed by those fed the Acacia leaf-meals and the control diet, respectively (P ≤ 0.05). Relative to the other supplementary diets, lambs fed the commercial protein supplement and A. dealbata leaf-meal had higher (P ≤ 0.05) final body weight and average daily gains. Dietary supplementation did not affect lamb faecal worm egg counts over the study period (P > 0.05). There was no association between supplementary diets and lamb FAMACHA© scores (P > 0.05). It was concluded that supplementation of Acacia dealbata versus Acacia mearnsii has the potential to emulate commercial protein in maintaining growth performance of lambs grazing communal rangelands in the dry season.


Subject(s)
Acacia , Animal Feed , Diet , Dietary Supplements , Plant Leaves , Animals , Animal Feed/analysis , Plant Leaves/chemistry , Dietary Supplements/analysis , Female , South Africa , Diet/veterinary , Sheep, Domestic/growth & development , Sheep, Domestic/physiology , Sheep Diseases/prevention & control , Sheep Diseases/parasitology , Sheep/growth & development , Sheep/physiology , Feces , Random Allocation , Parasite Egg Count/veterinary , Animal Nutritional Physiological Phenomena
3.
Genes (Basel) ; 15(5)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38790179

ABSTRACT

A genomic study was conducted to uncover the selection signatures in sheep that show extremely significant differences in growth traits under the same breed, age in months, nutrition level, and management practices. Hu sheep from Gansu Province and Gangba sheep from the Tibet Autonomous Region in China were selected. We collected whole-genome data from 40 sheep individuals (24 Hu sheep and 16 Gangba sheep), through whole-genome sequencing. Selection signals were analyzed using parameters such as FST, π ratio, and Tajima's D. We have identified several candidate genes that have undergone strong selection, particularly those associated with growth traits. Specifically, five growth-related genes were identified in both the Hu sheep group (HDAC1, MYH7B, LCK, ACVR1, GNAI2) and the Gangba sheep group (RBBP8, ACSL3, FBXW11, PLAT, CRB1). Additionally, in a genomic region strongly selected in both the Hu and Gangba sheep groups (Chr 22: 51,425,001-51,500,000), the growth-associated gene CYP2E1 was identified, further highlighting the genetic factors influencing growth characteristics in these breeds. This study analyzes the genetic basis for significant differences in sheep phenotypes, identifies candidate genes related to sheep growth traits, lays the foundation for molecular genetic breeding in sheep, and accelerates the genetic improvement in livestock.


Subject(s)
Whole Genome Sequencing , Animals , Sheep/genetics , Sheep/growth & development , Whole Genome Sequencing/methods , Breeding , Selection, Genetic , Phenotype , Polymorphism, Single Nucleotide , Genome/genetics
4.
Trop Anim Health Prod ; 56(5): 181, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822166

ABSTRACT

Nonstructural carbohydrates (NSC) are readily fermentable in the rumen and, are a critical factor while preparing protracted feed for higher animal performance. Four isocaloric and isonitrogenous complete feeds were prepared for this investigation to contain varying levels of nonstructural carbohydrates viz., 40.13 (NSC1), 45.21 (NSC2), 50.00 (NSC3) and 55.85 (NSC4) per cent, respectively. The four isocaloric and isonitrogenous complete feeds were tested in 32 Mecheri ram lambs (around three months of age) in a completely randomised block design (n = 8), and the lambs were fed their respective feed for six months. The study revealed that the increased NSC level in the complete diet increased the body weight and weight gain linearly (P < 0.05). The dietary NSC level affected the dry matter consumption in a quadratic manner (P < 0.05) and the lambs of the NSC4 group consumed significantly (P < 0.05) less DM compared to other dietary groups. The overall average feed conversion efficiency differed significantly (P < 0.05) among dietary groups. The correlation between dietary NSC level and faecal score was quadratic (r2 = 62.7, P < 0.05). The rumen pH, total nitrogen and NH3-N concentration were linearly decreased (P < 0.05) and the molar proportion of total short-chain fatty acids and propionic acid were increased (P < 0.05). The energy loss expressed as methane production was significantly (P < 0.01) lower for the high NSC diet-fed lambs. The lambs fed on a low NSC diet had significantly (P < 0.05) lower carcass weights, dressing percentage and loin eye area. The per cent share of rumen weight in the total fore stomach and the rumen papillae measurements length, width and surface area were significantly (P < 0.05) higher in high NSC diet-fed lambs. Increased levels of NSC in the diet increased (P < 0.05) fat deposition in the internal organs. The saturated fatty acids content in the meat was significantly (P < 0.05) lowered, whereas, the oleic acid and linoleic acid were increased (P < 0.05) as the NSC level increased in the diet. The study revealed that as the level of NSC increased in the complete diet there was a concomitant improvement in the final body weight, ADG and feed efficiency of post-weaned Mecheri lambs. It can therefore be recommended that the complete feed with 50 per cent NSC levels would be optimum to reap maximum returns from fattening Mecheri lambs.


Subject(s)
Animal Feed , Diet , Rumen , Animals , Rumen/metabolism , Animal Feed/analysis , Diet/veterinary , Male , Sheep, Domestic/physiology , Sheep, Domestic/growth & development , Animal Nutritional Physiological Phenomena , Dietary Carbohydrates/administration & dosage , Dietary Carbohydrates/analysis , Fermentation , Weight Gain , Random Allocation , Hydrogen-Ion Concentration , Sheep/physiology , Sheep/growth & development
5.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-38716561

ABSTRACT

Methane (CH4) produced from enteric fermentation is a potent greenhouse gas produced by ruminant animals. Multiple measurements are required across life stages to develop an understanding of how CH4 output changes throughout the animal's lifetime. The objectives of the current study were to estimate CH4 output across life stages in sheep and to investigate the relationship between CH4 output and dry matter (DM) intake (DMI). Data were generated on a total of 266 female Suffolk and Texel animals. Methane and carbon dioxide (CO2) output, estimated using portable accumulation chambers, and DMI, estimated using the n-alkane technique outdoors and using individual penning indoors, were quantified across the animal's life stage; as lambs (<12 mo), nulliparous hoggets (12 to 24 mo) and ewes (primiparous or greater; > 24 mo). Ewes were further classified as pregnant, lactating, and dry (non-pregnant and non-lactating). Multiple measurements were taken within and across the life stages of the same animals. A linear mixed model was used to determine if CH4 and CO2 output differed across life stages and using a separate linear mixed model the factors associated with CH4 output within each life stage were also investigated. Methane, CO2 output, and DMI differed by life stage (P < 0.05), with lactating ewes producing the greatest amount of CH4 (25.99 g CH4/d) and CO2 (1711.6 g CO2/d), while also having the highest DMI (2.18 kg DM/d). Methane output differed by live-weight of the animals across all life stages (P < 0.001). As ewe body condition score increased CH4 output declined (P < 0.05). Correlations between CH4 output measured across life stages ranged from 0.26 (SE 0.08; lambs and lactating ewes) to 0.59 (SE 0.06; hoggets and pregnant ewes), while correlations between CO2 output measured across life stages ranged from 0.12 (SE 0.06; lambs and hoggets) to 0.65 (SE 0.06; hoggets and lactating ewes). DMI was moderately correlated with CH4 (0.44; SE 0.04) and CO2 output (0.59; SE 0.03). Results from this study provide estimates of CH4 output across life stages in a pasture-based sheep production system and offer valuable information for the national inventory and the marginal abatement cost curve on the optimum time to target mitigation strategies.


Obtaining accurate estimates of methane (CH4) output across life stages is important to assess how CH4 output changes throughout the production cycle in pasture-based sheep production systems. This study investigated the factors associated with CH4 output at each life stage (lambs, hoggets, pregnant, lactating, and dry ewes), the relationship between CH4 output measured across life stages and the relationship between CH4 output and dry matter intake (DMI) in an Irish lowland sheep production system. Methane and carbon dioxide (CO2) output and DMI were measured on 266 purebred Suffolk and Texel females across their lifetime. Lactating ewes produced the highest CH4 and CO2 output, along with having the highest DMI. Across all life stages, CH4 output increased with increasing live weight while CH4 output decreased as body condition score increased. Weak to moderate relationships were found between CH4 output measured across life stages, with the strength of the relationship decreasing as the time between life stages increased. A positive relationship was found between DMI and CH4 output. Results from this study lead to the development of a profile of CH4 output across the production cycle of a pasture-based sheep system.


Subject(s)
Carbon Dioxide , Lactation , Methane , Animals , Methane/metabolism , Female , Sheep/growth & development , Sheep/physiology , Carbon Dioxide/metabolism , Lactation/physiology , Pregnancy
6.
Trop Anim Health Prod ; 56(5): 172, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771474

ABSTRACT

The increasing global demand for food and the strong effect of climate change have forced animal science to advance regarding new methods of selection in search of more efficient animals in production systems. Feed consumption represents more than 70% of the costs of sheep farms, and more efficient animals can increase the farmers' profitability. One of the main measures of feed efficiency is estimated residual feed intake (RFI), created in 1963 by Robert Koch for estimation in cattle and later adapted for sheep. Animals with negative RFI values (RFI-) are more efficient than animals with positive values (RFI+), with influence on the variables of performance, carcass quality and production of enteric gases. The RFI is the most common and accepted metric of the feed efficiency trait for genetic selection, since it is independent of growth traits, unlike the feed conversion ratio. The purpose of this review article was to present updated literature information on the relationship of RFI estimates with performance measures, molecular markers, greenhouse gas production and feed efficiency, the technical aspects and physiological basis of metabolic in sheep.


Subject(s)
Animal Feed , Animals , Animal Feed/analysis , Animal Husbandry/methods , Eating/physiology , Sheep/physiology , Sheep/growth & development , Sheep, Domestic/physiology , Sheep, Domestic/growth & development , Animal Nutritional Physiological Phenomena , Greenhouse Gases/analysis
7.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-38656435

ABSTRACT

This study evaluated if vasoactive intestinal polypeptide (VIP) influences growth performance, nutrient digestibility, nitrogen balance, and digestive enzyme activity. Sixteen wether lambs (69.6 ±â€…1.9 kg) were housed in individual pens, adapted to a corn grain-based diet, and randomly assigned to 2 treatment groups. Lambs were injected intraperitoneally every other day for 28 d with saline (0.9% NaCl) containing no VIP (n = 8; control) or containing VIP (n = 8; 1.3 nmol/kg body weight [BW]). All lambs were transferred to individual metabolic crates for the final 7 d of the experiment to measure nitrogen balance and nutrient digestibility. At the end of the treatment period, lambs were slaughtered, and pancreatic tissue, small intestinal tissue, and rumen fluid were collected for protein, digestive enzymes, ruminal pH, and volatile fatty acid (VFA) analyses. Lambs treated with VIP had greater final BW, average daily gain, and gain:feed (P = 0.01, 0.05, 0.03, respectively). No differences between treatment groups were observed (P ≥ 0.25) for nutrient intake, digestibility, nitrogen retention, ruminal pH, and VFA concentrations. Moreover, VIP treatment did not influence (P ≥ 0.19) plasma glucose, urea N, and insulin concentrations. Treatment with VIP increased (P = 0.03) relative cecum weight (g/kg BW) and decreased (P = 0.05) relative brain weight. Pancreatic and intestinal digestive enzyme activities, except for duodenal maltase (P = 0.02), were not influenced (P ≥ 0.09) by VIP treatment. These data suggest that the administration of VIP may have potential to improve average daily gain and gain:feed in lambs fed grain-based diets.


This research explored the influence of vasoactive intestinal polypeptide (VIP), an anti-inflammatory mediator, in lambs fed a high-concentrate finishing diet on growth performance, nutrient digestibility, nitrogen balance, and digestive enzyme activity. Wether lambs were fed a whole corn grain-based diet containing no added forage and randomly assigned to either the VIP or control group. Lambs received intraperitoneal saline injections with or without VIP every second day over a 28-d treatment period. Average daily gain and gain:feed ratio was positively influenced by VIP. However, treatment did not affect dry matter intake, nitrogen balance, nutrient digestibility, and digestive enzyme activity. These data indicate exogenous VIP treatment may influence growth in lambs fed a high-concentrate diet.


Subject(s)
Animal Feed , Animal Nutritional Physiological Phenomena , Diet , Digestion , Nitrogen , Vasoactive Intestinal Peptide , Animals , Animal Feed/analysis , Diet/veterinary , Digestion/drug effects , Nitrogen/metabolism , Nutrients/metabolism , Random Allocation , Rumen , Sheep/growth & development , Sheep/physiology , Vasoactive Intestinal Peptide/metabolism
8.
J Therm Biol ; 121: 103832, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38537345

ABSTRACT

This study aims to explore the effects of climate on the performance and offspring development of aged Merino sheep relocated from an arid, cold environment with harsh grazing conditions to a dry, temperate-cold valley with irrigated pasture production. We utilized time series data from merino sheep in a dry temperate-cold climate in southern Argentina to characterize their growth curves, assess the impact of climate on performance, and compare offspring growth with maternal growth. Our approach involved developing a dynamic model, a non-autonomous differential equation growth curve based on the widely used Brody model. The model considered variables such as local temperature, age, sex, origin, and pregnancy status to determine the optimal combination of parameters for sheep growth in our dataset. The results have shown that moving the old sheep from the steppe to the valley resulted in an increase of an average of 1 kg in weight, but their offspring had an asymptotic weight of 65 kg, 17 kg more than their mothers. The optimum temperature for the growth rate was 15.7+/-0.56 C and 8.7+/-6.3C for the asymptotic weight.


Subject(s)
Temperature , Animals , Female , Male , Sheep/growth & development , Sheep/physiology , Argentina , Pregnancy , Climate , Models, Biological , Body Weight
9.
J Anim Physiol Anim Nutr (Berl) ; 108(3): 806-815, 2024 May.
Article in English | MEDLINE | ID: mdl-38311826

ABSTRACT

This experiment aimed to evaluate the replacement of cottonseed meal (CSM) with wheat germ meal (WGM) in diets of growing lambs on feed utilization and growth performance. Twenty-eight Ossimi male lambs (38 ± 0.8 kg weight), and 180 ± 5 days were divided randomly into four experimental groups in a complete randomized design for 105 days. Cottonseed meal was replaced with WGM at 0 (WGM0 treatment), 50 (WGM50 treatment), 75 (WGM75 treatment) and 100% (WGM100 treatment). The chemical analysis of the total essential and non-essential amino acids showed an increase at the WGM diet compared to CSM. The replacement of CSM with WGM linearly and quadratically improved (p ˂ 0.05) lambs' growth performance and feed conversion. The WGM50 and WGM100 treatments lowered (p ˂ 0.05) feed intake, without affecting nutrient digestibility or diets' nutritive. Feeding WGM increased (p ˂ 0.05) total protein, albumin, and urea-N concentrations in blood of lambs. The WGM100 treatment showed the highest relative percentage of net revenue compared to the other treatments. It is concluded that the complete replacement of CSM with WGM showed positive effects on lambs' performance and economic efficiency.


Subject(s)
Animal Feed , Animal Nutritional Physiological Phenomena , Cottonseed Oil , Diet , Triticum , Animals , Animal Feed/analysis , Diet/veterinary , Male , Sheep/physiology , Sheep/growth & development , Cottonseed Oil/administration & dosage , Cottonseed Oil/chemistry , Triticum/chemistry
10.
Gene ; 897: 148072, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38081333

ABSTRACT

Feed cost accounts for a high proportion of sheep production, and improving sheep's utilization of feed will reduce production costs and improve economic benefits. The purpose of this study was to investigate the expression characteristics of PLIN1 and MOGAT1 genes and the relationship between their polymorphisms and feed efficiency traits in Hu sheep, and to find molecular Genetic marker that can be used in breeding. The expression levels of PLIN1 and MOGAT1 genes in various tissues were determined using quantitative real-time PCR (qRT-PCR). The results showed that PLIN1 and MOGAT1 genes were widely expressed in heart, liver, spleen, lungs, kidneys, rumen, duodenum, muscle, lymph, and tail fat. The PLIN1 gene had the highest expression level in in the tail fat compared to the other nine tissues. The expression levels of MOGAT1 gene in liver, tail fat, lung and heart was significantly higher than in kidney, muscle and lymph. The expression level of MOGAT1 was lowest in muscle compared to the other tissues (heart, liver, spleen, lung, rumen and tail fat). We recorded the body weight (BW80 and BW180) and feed intake (FI) information of 985 male Hu sheep at 80 and 180 days of age, and calculated the daily average feed intake (ADFI), average daily gain (ADG), and feed conversion rate (FCR) from 80 to 180 days of age. Two intronic mutations, g.18517910 A > G and g.224856118 G > C, were identified in PLIN1 and MOGAT1 genes by PCR amplification and Sanger sequencing. MassARRAY ® SNP detection technology was used to genotype the DNA of 985 Hu sheep and analyze its association with feed efficiency traits. The results showed that the SNP g.18517910 A > G was significantly associated with BW80, BW180, FI, ADFI and FCR (P < 0.05), while SNP g.2248561118 G > C was significantly associated with FCR (P < 0.05). Meanwhile, significant differences were also observed in different combinations of genotypes (P < 0.05). Therefore, these two polymorphic loci can serve as candidate molecular markers for improving feed utilization efficiency in Hu sheep.


Subject(s)
Animal Feed , Eating , Polymorphism, Single Nucleotide , Sheep , Animals , Male , Body Weight/genetics , Genetic Markers , Genotype , Phenotype , Sheep/genetics , Sheep/growth & development
11.
Anim Biotechnol ; 34(4): 1232-1238, 2023 Nov.
Article in English | MEDLINE | ID: mdl-34918617

ABSTRACT

Class IV sirtuin (SIRT6 and SIRT7) played essential roles in biometabolism processes via deacetylating specific transcription factors. The present study was conducted to search for mutations in SIRT6/7 and determine their associations with growth traits in black Tibetan sheep. Via DNA sequencing methods, three single-nucleotide polymorphisms (SNPs) were identified in 427 ewes, including a mutation (g.3724C > T) in the intron 1 of SIRT6 and two mutations (g.3668G > T and g.4223C > G) in SIRT7 intron 6 and 8, respectively. Based on the χ2 test, both g.3724C > T and g.4223C > G loci fitted with Hardy-Weinberg equilibrium (p > 0.05). Compared with animals with genotype TT, the CC genotype at g.3724C > T locus (SIRT6) exhibited the highest mean for body weight (p < 0.05) and heart girth (p < 0.05). At g.3668G > T locus (SIRT7), individuals carrying the GG genotype tended to have heavier body weight than those of TT genotype (p < 0.05). With the exception of body weight, body measurement traits not affected by combinative genotype (p > 0.05). Our results could be used as genetic markers for marker-assisted selection and maybe guide sheep breeding in economic traits.


Subject(s)
Sheep , Sirtuins , Animals , Female , Body Weight/genetics , Genotype , Phenotype , Polymorphism, Single Nucleotide , Sheep/genetics , Sheep/growth & development , Sirtuins/genetics , Tibet
12.
Anim Biotechnol ; 33(1): 167-173, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34543162

ABSTRACT

GH and DGAT1 are candidate genes associated with growth traits in sheep breeds. This study aims to determine the association between growth traits and GH and DGAT1 gene polymorphism using three statistical methods in Awassi sheep. The polymorphism was detected by the PCR-RFLP method. Three genotypes (AA, AB and BB) were observed for GH gene locus with allele and genotype frequency 0.70(A) and 0.30(B); 0.60(AA), 0.20(AB) and 0.20(BB). Three genotypes (CC, CT and TT) were found for DGAT1 gene locus with allele and genotype frequency 0.58(C) and 0.42(T); 0.47(CC), 0.23(CT) and 0.30(TT). The genes were in agreement with Hardy-Weinberg equilibrium (p > 0.05). CHAID, CRT and GLM were used to identify the association between growth traits and gene polymorphism. The results showed an association between GH locus and body weight and tail length. Also, found an association between DGAT1 locus and tail length. The three methods showed similar results in determining the association between genes and growth traits. Thus, the CHAID and CRT methods can evaluate the association between genes and growth traits.


Subject(s)
Diacylglycerol O-Acyltransferase/genetics , Growth Hormone/genetics , Polymorphism, Genetic , Sheep , Alleles , Animals , Decision Trees , Genotype , Phenotype , Sheep/genetics , Sheep/growth & development
13.
J Sci Food Agric ; 102(3): 1281-1291, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34363700

ABSTRACT

BACKGROUND: Apart from being an oil crop, forage rape (Brassica napus) can be used to feed ruminants. The objective of this study was to investigate the effects of pelleted total mixed ration (TMR) diets with various levels of forage rape on growth performance, carcass traits, meat quality, meat nutritional value and rumen microbiota of Hu lambs, which was important for the efficient utilization of forage rape and alleviating the shortage of high-quality forage in China. RESULTS: Lambs fed on diets with 200-400 g kg-1 forage rape had greater average daily gain (ADG) and lower feed conversion ratio (FCR) than those fed on diets with 0-100 g kg-1 of forage rape (P < 0.05). As dietary forage rape levels increased, the content of intramuscular α-linolenic acid and a variety of amino acids in the muscle increased linearly (P < 0.05). No difference was found in carcass traits or meat quality among the dietary treatments (P > 0.05). However, the inclusion of forage rape increased the relative abundance of cellulolytic bacteria and short-chain fatty acid producers, including Succiniclasticum, Fibrobacter and members of the Lachnospiraceae. Besides, Succiniclasticum was found to be positively correlated with the final body weight of lambs. CONCLUSION: TMR diets that included 200-400 g kg-1 forage rape could improve the growth performance of lambs, and elevated the content of intramuscular α-linolenic acid and a variety of amino acids in the muscle, accompanied by increased abundance of cellulolytic bacteria in the rumen.


Subject(s)
Animal Feed/analysis , Brassica napus/metabolism , Gastrointestinal Microbiome , Meat/analysis , Rumen/microbiology , Sheep/growth & development , Sheep/metabolism , Animals , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Diet/veterinary , Digestion , Rumen/metabolism , Sheep/microbiology
14.
Gene ; 807: 145949, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-34481004

ABSTRACT

Growth traits is a critical economic trait for animal husbandry. In this study, the SNPs of CTNNA3 and CAP2 genes were investigated to check whether they are associated with growth traits (body weight, body height, body length and chest circumference) in Hu sheep. The result of the association analysis indicated that the mutation in CTNNA3 (g.2018018 A > G) were associated significantly with body weight, body height, body length and chest circumference (P < 0.05), the mutation in CAP2 (g.8588 T > C) were associated significantly with body height at 140, 160, 180 days (P < 0.05), AA and CC of CTNNA3 and CAP2 were the dominant genotypes associated with growth traits in Hu sheep. Moreover, combined effect analyses indicated that the growth traits with combined genotypes AACTNNA3-CCCAP2 and AACTNNA3-CTCAP2 were higher than those with genotype GGCTNNA3-CTCAP2. RT-qPCR indicated that CTNNA3 expression levels were significantly higher in liver and lung than in other nine tissues (P < 0.05), CAP2 expression levels were significantly higher in bone, heart, liver, lung and duodenum than in other six tissues (P < 0.05). In conclusion, CTNNA3 and CAP2 polymorphisms could be used as genetic markers for improving growth traits in Hu sheep husbandry.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Body Weight/genetics , Sheep/growth & development , Animals , China , Genetic Markers/genetics , Genotype , Haplotypes/genetics , Humans , Linkage Disequilibrium , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Phenotype , Polymorphism, Single Nucleotide/genetics , Sheep/genetics , alpha Catenin/genetics , alpha Catenin/metabolism
15.
Genes (Basel) ; 12(12)2021 11 29.
Article in English | MEDLINE | ID: mdl-34946875

ABSTRACT

Hair follicle development and wool shedding in sheep are poorly understood. This study investigated the population structures and genetic differences between sheep with different wool types to identify candidate genes related to these traits. We used Illumina ovine SNP 50K chip genotyping data of 795 sheep populations comprising 27 breeds with two wool types, measuring the population differentiation index (Fst), nucleotide diversity (θπ ratio), and extended haplotype homozygosity among populations (XP-EHH) to detect the selective signatures of hair sheep and fine-wool sheep. The top 5% of the Fst and θπ ratio values, and values of XP-EHH < -2 were considered strongly selected SNP sites. Annotation showed that the PRX, SOX18, TGM3, and TCF3 genes related to hair follicle development and wool shedding were strongly selected. Our results indicated that these methods identified important genes related to hair follicle formation, epidermal differentiation, and hair follicle stem cell development, and provide a meaningful reference for further study on the molecular mechanisms of economically important traits in sheep.


Subject(s)
Hair Follicle/growth & development , Sheep/genetics , Wool , Animals , DNA Mutational Analysis/veterinary , Genome-Wide Association Study/veterinary , Genotyping Techniques/veterinary , Molecular Sequence Annotation , Polymorphism, Single Nucleotide , Principal Component Analysis , Sheep/growth & development , Sheep, Domestic , Species Specificity , Wool/growth & development
16.
Genes (Basel) ; 12(10)2021 09 24.
Article in English | MEDLINE | ID: mdl-34680885

ABSTRACT

Hu sheep (Ovis aries) is a rare white sheep breed, with four different types of lambskin patterns that have different values. However, the genetic mechanisms underlying different types of pattern formation remains unclear. This research aimed to characterize the molecular mechanism of differentially expressed gene PAPPA2 affecting the pattern type of Hu sheep's lambskin at the cellular level. Thus, RT-qPCR, EdU and Cell Cycle detection were used to explore the effect of PAPPA2 and IGFBP5 (a protein that can be hydrolyzed by PAPPA2) on the proliferation of dermal papilla cells (DPCs) after overexpression or interference with PAPPA2 and IGFBP5. The expression level of PAPPA2 in straight DPCs was 4.79 ± 1.84 times higher than curved. Overexpression of PAPPA2 promoted the proliferation of DPCs and also increased the expression of IGFBP5. Conversely, overexpression of IGFBP5 reduced the proliferation of DPCs. However, the proliferation of DPCs was restored by co-overexpression of PAPPA2 and IGFBP5 compared with overexpression of IGFBP5 alone. Thus, PAPPA2 can affect the proliferation of DPCs through regulating IGFBP5 and then participate in lambskin pattern determination. Overall, we preliminarily clarified the critical role played by PAPPA2 during the formation of different pattern in Hu sheep lambskin.


Subject(s)
Hair Follicle/growth & development , Insulin-Like Growth Factor Binding Protein 5/genetics , Pregnancy-Associated Plasma Protein-A/genetics , Sheep/genetics , Animals , Cell Proliferation/genetics , Gene Expression Profiling , Hair Follicle/metabolism , Sheep/growth & development , Sheep, Domestic/genetics
17.
PLoS One ; 16(10): e0257669, 2021.
Article in English | MEDLINE | ID: mdl-34710103

ABSTRACT

In recent years, Xinjiang mutton production has experienced a growth trend; however, it cannot meet the new consumer demand. Based on Michael Porter's "diamond model," this study presents a case study on the Xinjiang mutton industry in China and establishes an index system for the competitiveness of the industry. The competitiveness of the mutton industry is analyzed quantitatively via correlation analysis and principal component analysis by investigating the relevant data of 10 Chinese provinces topping in mutton production. On account of the related elements of the diamond model, a qualitative analysis is also performed. The quantitative analysis shows that among the 10 provinces (regions) topping in mutton production in China, Inner Mongolia wins in competitiveness, followed by Xinjiang, and Henan ranks at the bottom. The qualitative analysis shows that the Xinjiang mutton industry is inferior in three main factors compared to its competitors, and these are the production factors related to and supporting the industries and the enterprise strategies. Xinjiang performs moderately in terms of the auxiliary government factors. However, Xinjiang is in an advantageous position with respect to the main factors of demand conditions and auxiliary elements of opportunities. Given the existing problems, this study discusses the main reasons for the lack of competitiveness of the Xinjiang mutton industry. It also puts forward some strategic suggestions to enhance the competitiveness of the Xinjiang mutton industry based on the six elements of diamond model.


Subject(s)
Agriculture/economics , Animal Husbandry/economics , Industry/economics , Meat/economics , Animals , China , Grassland , Humans , Principal Component Analysis , Sheep/growth & development
18.
Electron. j. biotechnol ; 53: 23-32, Sep.2021. tab, fig
Article in English | LILACS | ID: biblio-1444743

ABSTRACT

BACKGROUND A previous genome-wide association study (GWAS) identified the kinesin family member 16B (KIF16B) as a candidate gene related to sheep wool production. In this work, DNA pool sequencing and SNPscanTM high-throughput genotyping methods were used to detect single-nucleotide polymor phisms (SNPs) in the sheep KIF16B gene. The correlations between the SNPs and wool length and greasy wool yield were systematically assessed. RESULTS Forty-five SNPs were identified and 37 of them were genotyped, including 10 exon mutations, 26 intron mutations, and 1 promoter region mutation. Most of the SNPs were of medium genetic diversity and at Hardy-Weinberg equilibrium (HWE). Among them, 10 SNPs were associated with greasy wool yield and 28 SNPs impact the wool length. Five specific SNPs were found to exert significant effects on the wool length in all body parts analyzed in this study. Furthermore, linkage disequilibrium (LD) analysis was conducted among SNP loci and they were found to be significantly associated with economically important traits. Two strongly linked SNP blocks were identified within these SNPs and they might exert significant impacts on the greasy wool yield and wool length. CONCLUSIONS The identified SNPs exert significant effects on wool production and could be considered as potential DNA markers for selecting the individuals with superior phenotypes


Subject(s)
Animals , Wool/growth & development , Sheep/genetics , Sheep/growth & development , Genome-Wide Association Study/methods
19.
Electron. j. biotechnol ; 53: 80-86, Sep.2021. ilus, graf, tab
Article in English | LILACS | ID: biblio-1451424

ABSTRACT

BACKGROUND Weight loss and decline of milk yield in Tibetan sheep was a challenge for the dairy industry in Qinghai-Tibet Plateau, which were considered to be caused by underfeeding of the sheep during the harsh winter. The objective of this study was to assess the role of feed supplementation in the milk performance and rumen microbiome of ewes under forage-based diets. Based on parity, milking period, milk yield, and body weight, ten 1.5-yr-old ewes were allocated randomly into two groups. One group of ewes was fed no supplement Control group (CON) and the other group was fed with concentrate feed supplement (Treatment group, T). Individual milk yield was determined daily; both the milk composition and rumen bacterial characteristics were analyzed after the end of feeding trials. RESULTS Results showed that lactose in the milk of the CON group was significantly lower (P < 0.05) than that of the T group at days 30 and 60. Milk yield in the T group was greater than in the CON group at day 30 (P < 0.05). Additionally, the dominant ruminal bacteria (phyla Bacteroidetes, Firmicutes, and Verrucomicrobia) were shared by both groups through 16S rRNA gene pyrosequencing. Greater relative abundance of Bacteroidales RF16 group in family level, Victivallales in order level, Lentisphaeria in class level, and Lachnospiraceae bacterium in species level were observed in the T group than in the CON group (P < 0.05). CONCLUSIONS These results demonstrated that supplementation of concentrate in the cold season improved milk lactose yield and milk production, and the rumen microbial abundance of Tibetan sheep.


Subject(s)
Animals , Rumen/microbiology , Lactation/metabolism , Animal Feed , Sheep/growth & development , Tibet
20.
Genes (Basel) ; 12(8)2021 08 13.
Article in English | MEDLINE | ID: mdl-34440417

ABSTRACT

Sheep play a critical role in the agricultural and livestock sector in Egypt. For sheep meat production, growth traits such as birth and weaning weights are very important and determine the supply and income of local farmers. The Barki sheep originates from the northeastern coastal zone of Africa, and due to its good adaptation to the harsh environmental conditions, it contributes significantly to the meat production in these semi-arid regions. This study aimed to use a genome-wide SNP panel to identify genomic regions that are diversified between groups of individuals of Egyptian Barki sheep with high and low growth performance traits. In this context, from a phenotyped population of 140 lambs of Barki sheep, 69 lambs were considered for a genome-wide scan with the Illumina OvineSNP50 V2 BeadChip. The selected lambs were grouped into divergent subsets with significantly different performance for birth weight and weaning weight. After quality control, 63 animals and 40,383 SNPs were used for analysis. The fixation index (FST) for each SNP was calculated between the groups. The results verified genomic regions harboring some previously proposed candidate genes for traits related to body growth, i.e., EYA2, GDF2, GDF10, MEF2B, SLC16A7, TBX15, TFAP2B, and TNNC2. Moreover, novel candidate genes were proposed with known functional implications on growth processes such as CPXM2 and LRIG3. Subsequent association analysis showed significant effects of the considered SNPs on birth and weaning weights. Results highlight the genetic diversity associated with performance traits and thus the potential to improve growth traits in the Barki sheep breed.


Subject(s)
Sheep/genetics , Animals , Egypt , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Sheep/growth & development , Weaning
SELECTION OF CITATIONS
SEARCH DETAIL
...