Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 260
Filter
1.
Biochemistry ; 63(7): 893-905, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38467020

ABSTRACT

Shiga toxin 2a (Stx2a) is the virulence factor of Escherichia coli (STEC), which is associated with hemolytic uremic syndrome, the leading cause of pediatric kidney failure. The A1 subunit of Stx2a (Stx2A1) binds to the conserved C-terminal domain (CTD) of the ribosomal P-stalk proteins to remove an adenine from the sarcin-ricin loop (SRL) in the 28S rRNA, inhibiting protein synthesis. There are no antidotes against Stx2a or any other ribosome-inactivating protein (RIP). The structural and functional details of the binding of Stx2A1 to the P-stalk CTD are not known. Here, we carry out a deletion analysis of the conserved P-stalk CTD and show that the last eight amino acids (P8) of the P-stalk proteins are the minimal sequence required for optimal affinity and maximal inhibitory activity against Stx2A1. We determined the first X-ray crystal structure of Stx2A1 alone and in complex with P8 and identified the exact binding site. The C-terminal aspartic acid of the P-stalk CTD serves as an anchor, forming key contacts with the conserved arginine residues at the P-stalk binding pocket of Stx2A1. Although the ricin A subunit (RTA) binds to the P-stalk CTD, the last aspartic acid is more critical for the interaction with Stx2A1, indicating that RIPs differ in their requirements for the P-stalk. These results demonstrate that the catalytic activity of Stx2A1 is inhibited by blocking its interactions with the P-stalk, providing evidence that P-stalk binding is an essential first step in the recruitment of Stx2A1 to the SRL for depurination.


Subject(s)
Ricin , Shiga Toxin 2 , Humans , Child , Shiga Toxin 2/analysis , Shiga Toxin 2/metabolism , Ribosomes/metabolism , Ricin/chemistry , Ricin/genetics , Ricin/metabolism , Aspartic Acid , Binding Sites , Peptides/metabolism , Escherichia coli/metabolism
2.
ACS Appl Bio Mater ; 6(12): 5798-5808, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-37988327

ABSTRACT

Shiga toxin (Stx) is associated with foodborne infections of some Shigella spp. and Shiga toxin-producing Escherichia coli (STEC), leading to life-threatening hemolytic uremic syndrome (HUS). Target-specific therapeutics against HUS are currently unavailable in clinical practice. Herein, we reported the construction and in vitro characterization of Gb3-coated bovine milk exosomes (Gb3-mExo) as a multivalent Shiga toxin neutralizer, utilizing the natural advantages of milk exosomes (mExo) in drug delivery and multivalent interactions between Stx and its receptor Gb3. Gb3-mExo constructs were achieved by conjugating mExo with the Gb3 derivatives containing stearic acid-derived lipid tail, which was prepared through an efficient chemoenzymatic approach. The constructs were able to potently neutralize the binding of the B subunit of Stx2 (Stx2B) to receptor Gb3 immobilized on the plate or expressed on model cells. General safety of the constructs was evidenced by the cytotoxicity analysis and hemolysis assay. In addition to the excellent stability under conventional storage and handling conditions, the construct can also retain most of its neutralization potency under gastrointestinal pH extremes, showing the potential for oral administration. Considering the natural availability and excellent biocompatibility of mExo, Gb3-mExo conjugates should prove to be a practical prophylactic and therapeutic for the Shiga toxin-related infections.


Subject(s)
Exosomes , Shiga-Toxigenic Escherichia coli , Animals , Shiga Toxin , Shiga Toxin 2/metabolism , Exosomes/metabolism , Milk/metabolism , Shiga-Toxigenic Escherichia coli/metabolism
3.
Gut Microbes ; 15(1): 2221778, 2023.
Article in English | MEDLINE | ID: mdl-37332116

ABSTRACT

The pathogenicity of Escherichia coli (E. coli) O157:H7 is predominantly associated with Shiga toxin 2 (Stx2) that poses a huge threat to human and animal intestinal health. Production of Stx2 requires expression of stx2 gene, which is located in the genome of lambdoid Stx2 prophage. Growing evidence has implicated that many commonly consumed foods participate in the regulation of prophage induction. In this study, we aimed to explore whether specific dietary functional sugars could inhibit Stx2 prophage induction in E. coli O157:H7, thereby preventing Stx2 production and promoting intestinal health. We demonstrated that Stx2 prophage induction in E. coli O157:H7 was strongly inhibited by L-arabinose both in vitro and in a mouse model. Mechanistically, L-arabinose at doses of 9, 12, or 15 mM diminished RecA protein levels, a master mediator of the SOS response, contributing to reduced Stx2-converting phage induction. L-Arabinose inhibited quorum sensing and oxidative stress response, which are known as positive regulators of the SOS response and subsequent Stx2 phage production. Furthermore, L-arabinose impaired E. coli O157:H7 arginine transport and metabolism that were involved in producing Stx2 phage. Collectively, our results suggest that L-arabinose may be exploited as a novel Stx2 prophage induction inhibitor against E. coli O157:H7 infection.


Subject(s)
Bacteriophages , Escherichia coli O157 , Gastrointestinal Microbiome , Humans , Animals , Mice , Shiga Toxin 2/genetics , Shiga Toxin 2/metabolism , Bacteriophages/genetics , Escherichia coli O157/genetics , Arabinose/metabolism
4.
Int J Mol Sci ; 24(9)2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37175714

ABSTRACT

Oedema disease (OD) in piglets is one of the most important pathologies, as it causes significant losses due to the high mortality because of the Shiga toxin family, which produces Escherichia coli (STEC) strains. The main toxin responsible for the characteristic pathologies in pigs is Shiga toxin 2 subtype e (Stx2e). Moreover, there is growing evidence that Stx's family of toxins also targets immune cells. Therefore, this study evaluated the effect of different concentrations of Stx2e on porcine immune cells. Porcine peripheral blood mononuclear cells were pre-incubated with Stx2e, at three different concentrations (final concentrations of 10, 500, and 5000 CD50/mL) and with a negative control group. Cells were then stimulated with polyclonal mitogens: concanavalin A, phytohemagglutinin, pokeweed mitogen, or lipopolysaccharides. Cell proliferation was assessed by BrdU (or EdU) incorporation into newly created DNA. The activation of the lymphocyte subsets was assessed by the detection of CD25, using flow cytometry. The toxin significantly decreased mitogen-driven proliferation activity, and the effect was partially dose-dependent, with a significant impact on both T and B populations. The percentage of CD25+ cells was slightly lower in the presence of Stx2e in all the defined T cell subpopulations (CD4+, CD8+, and γδTCR+)-in a dose-dependent manner. B cells seemed to be the most affected populations. The negative effects of different concentrations of Stx2e on the immune cells in this study may explain the negative impact of the subclinical course of OD.


Subject(s)
Escherichia coli Infections , Shiga Toxin , Swine , Animals , Shiga Toxin/metabolism , Leukocytes, Mononuclear , Escherichia coli/metabolism , Shiga Toxin 2/genetics , Shiga Toxin 2/metabolism , Lymphocyte Subsets
5.
J Biol Chem ; 299(1): 102795, 2023 01.
Article in English | MEDLINE | ID: mdl-36528064

ABSTRACT

Shiga toxin 2a (Stx2a) is the virulence factor of enterohemorrhagic Escherichia coli. The catalytic A1 subunit of Stx2a (Stx2A1) interacts with the ribosomal P-stalk for loading onto the ribosome and depurination of the sarcin-ricin loop, which halts protein synthesis. Because of the intrinsic flexibility of the P-stalk, a structure of the Stx2a-P-stalk complex is currently unknown. We demonstrated that the native P-stalk pentamer binds to Stx2a with nanomolar affinity, and we employed cryo-EM to determine a structure of the 72 kDa Stx2a complexed with the P-stalk. The structure identifies Stx2A1 residues involved in binding and reveals that Stx2a is anchored to the P-stalk via only the last six amino acids from the C-terminal domain of a single P-protein. For the first time, the cryo-EM structure shows the loop connecting Stx2A1 and Stx2A2, which is critical for activation of the toxin. Our principal component analysis of the cryo-EM data reveals the intrinsic dynamics of the Stx2a-P-stalk interaction, including conformational changes in the P-stalk binding site occurring upon complex formation. Our computational analysis unveils the propensity for structural rearrangements within the C-terminal domain, with its C-terminal six amino acids transitioning from a random coil to an α-helix upon binding to Stx2a. In conclusion, our cryo-EM structure sheds new light into the dynamics of the Stx2a-P-stalk interaction and indicates that the binding interface between Stx2a and the P-stalk is the potential target for drug discovery.


Subject(s)
Escherichia coli O157 , Ribosomes , Shiga Toxin 2 , Amino Acids/metabolism , Cryoelectron Microscopy , Ribosomes/metabolism , Shiga Toxin 2/chemistry , Shiga Toxin 2/metabolism , Escherichia coli O157/chemistry
6.
Toxicol In Vitro ; 87: 105537, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36535555

ABSTRACT

Enterohemorrhagic or Shiga toxin-producing Escherichia coli is a food-poisoning bacterium that grows in the intestine to produce Shiga toxin (Stx). In this study, the effects of 20 polyphenols on the cytotoxicity of Stx1 and Stx2 in Vero cells were investigated. Among these, epigallocatechin gallate, butein, isorhapontigenin, hesperetin, morin, luteolin, resveratrol, and rhapontigenin showed inhibitory effects on the cytotoxicity of Stxs at 0.4 mmol/L. Furthermore, Vero cells pre-treated with these polyphenols were resistant to Stx at 0.4 mmol/L. However, luteolin showed the most potent inhibitory and cytoprotective effect against Stxs at 0.08 mmol/L or more. This inhibitory mechanism of luteolin was determined using a cell-free protein synthesis system and quantitative reverse transcription PCR assay to detect depurination of 28S rRNA in Vero cells. Luteolin did not inhibit the cell-free protein synthesis by Stxs, suggesting that the enzymatic activity of the Stx A subunit was not inhibited by luteolin. The depurination of 28S rRNA by Stxs was also investigated in Vero cells. The 28S rRNA depurination by Stxs was suppressed in Vero cells treated with Stxs which had been pretreated with luteolin. These results suggest that luteolin inhibits the incorporation of Stxs into Vero cells. This is the first report to show that luteolin inhibits the cytotoxicity of both Stx1 and Stx2 by inhibiting the incorporation of Stxs into Vero cells.


Subject(s)
Shiga Toxin 2 , Shiga Toxin , Animals , Chlorocebus aethiops , Vero Cells , Shiga Toxin/toxicity , Shiga Toxin 1/toxicity , Shiga Toxin 1/metabolism , Shiga Toxin 2/toxicity , Shiga Toxin 2/metabolism , Luteolin/pharmacology , RNA, Ribosomal, 28S
7.
Gut Microbes ; 14(1): 2122667, 2022.
Article in English | MEDLINE | ID: mdl-36138514

ABSTRACT

Shiga toxin (Stx)-producing enterohemorrhagic Escherichia coli (EHEC) cause gastrointestinal infection and, in severe cases, hemolytic uremic syndrome which may lead to death. There is, to-date, no therapy for this infection. Stx induces ATP release from host cells and ATP signaling mediates its cytotoxic effects. Apyrase cleaves and neutralizes ATP and its effect on Stx and EHEC infection was therefore investigated. Apyrase decreased bacterial RecA and dose-dependently decreased toxin release from E. coli O157:H7 in vitro, demonstrated by reduced phage DNA and protein levels. The effect was investigated in a mouse model of E. coli O157:H7 infection. BALB/c mice infected with Stx2-producing E. coli O157:H7 were treated with apyrase intraperitoneally, on days 0 and 2 post-infection, and monitored for 11 days. Apyrase-treated mice developed disease two days later than untreated mice. Untreated infected mice lost significantly more weight than those treated with apyrase. Apyrase-treated mice exhibited less colonic goblet cell depletion and apoptotic cells, as well as lower fecal ATP and Stx2, compared to untreated mice. Apyrase also decreased platelet aggregation induced by co-incubation of human platelet-rich-plasma with Stx2 and E. coli O157 lipopolysaccharide in the presence of collagen. Thus, apyrase had multiple protective effects, reducing RecA levels, stx2 and toxin release from EHEC, reducing fecal Stx2 and protecting mouse intestinal cells, as well as decreasing platelet activation, and could thereby delay the development of disease.


Subject(s)
Bacteriophages , Escherichia coli Infections , Escherichia coli O157 , Gastrointestinal Microbiome , Adenosine Triphosphate/metabolism , Animals , Apyrase/metabolism , Apyrase/pharmacology , Escherichia coli Infections/drug therapy , Escherichia coli Infections/microbiology , Escherichia coli Infections/prevention & control , Escherichia coli O157/genetics , Humans , Lipopolysaccharides/metabolism , Mice , Mice, Inbred BALB C , Shiga Toxin/metabolism , Shiga Toxin/pharmacology , Shiga Toxin 2/genetics , Shiga Toxin 2/metabolism , Shiga Toxin 2/pharmacology
8.
Front Cell Infect Microbiol ; 12: 975173, 2022.
Article in English | MEDLINE | ID: mdl-36004327

ABSTRACT

The human colonic mucus is mainly composed of mucins, which are highly glycosylated proteins. The normal commensal colonic microbiota has mucolytic activity and is capable of releasing the monosaccharides contained in mucins, which can then be used as carbon sources by pathogens such as Enterohemorrhagic Escherichia coli (EHEC). EHEC can regulate the expression of some of its virulence factors through environmental sensing of mucus-derived sugars, but its implications regarding its main virulence factor, Shiga toxin type 2 (Stx2), among others, remain unknown. In the present work, we have studied the effects of five of the most abundant mucolytic activity-derived sugars, Fucose (L-Fucose), Galactose (D-Galactose), N-Gal (N-acetyl-galactosamine), NANA (N-Acetyl-Neuraminic Acid) and NAG (N-Acetyl-D-Glucosamine) on EHEC growth, adhesion to epithelial colonic cells (HCT-8), and Stx2 production and translocation across a polarized HCT-8 monolayer. We found that bacterial growth was maximum when using NAG and NANA compared to Galactose, Fucose or N-Gal, and that EHEC adhesion was inhibited regardless of the metabolite used. On the other hand, Stx2 production was enhanced when using NAG and inhibited with the rest of the metabolites, whilst Stx2 translocation was only enhanced when using NANA, and this increase occurred only through the transcellular route. Overall, this study provides insights on the influence of the commensal microbiota on the pathogenicity of E. coli O157:H7, helping to identify favorable intestinal environments for the development of severe disease.


Subject(s)
Enterohemorrhagic Escherichia coli , Escherichia coli Infections , Escherichia coli O157 , Escherichia coli Proteins , Mucus , Enterohemorrhagic Escherichia coli/metabolism , Escherichia coli Infections/microbiology , Escherichia coli O157/metabolism , Escherichia coli Proteins/metabolism , Expectorants/metabolism , Fucose/metabolism , Galactose , Gastrointestinal Microbiome , Humans , Intestines/metabolism , Intestines/microbiology , Mucins/metabolism , Mucus/immunology , Mucus/metabolism , Shiga Toxin 2/metabolism , Virulence , Virulence Factors/metabolism
9.
Sci Rep ; 12(1): 11443, 2022 07 06.
Article in English | MEDLINE | ID: mdl-35794188

ABSTRACT

Shiga toxin (Stx), a major virulence factor of enterohemorrhagic Escherichia coli (EHEC), can cause fatal systemic complications. Recently, we identified a potent inhibitory peptide that binds to the catalytic A-subunit of Stx. Here, using biochemical structural analysis and X-ray crystallography, we determined a minimal essential peptide motif that occupies the catalytic cavity and is required for binding to the A-subunit of Stx2a, a highly virulent Stx subtype. Molecular dynamics simulations also identified the same motif and allowed determination of a unique pharmacophore for A-subunit binding. Notably, a series of synthetic peptides containing the motif efficiently inhibit Stx2a. In addition, pharmacophore screening and subsequent docking simulations ultimately identified nine Stx2a-interacting molecules out of a chemical compound database consisting of over 7,400,000 molecules. Critically, one of these molecules markedly inhibits Stx2a both in vitro and in vivo, clearly demonstrating the significance of the pharmacophore for identifying therapeutic agents against EHEC infection.


Subject(s)
Enterohemorrhagic Escherichia coli , Escherichia coli Infections , Escherichia coli Infections/drug therapy , Humans , Peptides/pharmacology , Receptors, Drug , Shiga Toxin , Shiga Toxin 2/metabolism
10.
Physiol Genomics ; 54(5): 153-165, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35384732

ABSTRACT

Shiga toxin 2 (Stx2) and lipopolysaccharide (LPS) contribute to the development of hemolytic uremic syndrome (HUS). Mouse models of HUS induced by LPS/Stx2 have been used for elucidating HUS pathophysiology and for therapeutic development. However, the underlying molecular mechanisms and detailed injury sites in this model remain unknown. We analyzed mouse kidneys after LPS/Stx2 administration using microarrays. Decreased urinary osmolality and urinary potassium were observed after LPS/Stx2 administration, suggestive of distal nephron disorders. A total of 1,212 and 1,016 differentially expressed genes were identified in microarrays at 6 h and 72 h after LPS/Stx2 administration, respectively, compared with those in controls. Ingenuity pathway analysis revealed activation of TNFR1/2, iNOS, and IL-6 signaling at both time points, and inhibition of pathways associated with lipid metabolism at 72 h only. The strongly downregulated genes in the 72-h group were expressed in the distal nephrons. In particular, genes associated with distal convoluted tubule (DCT) 2/connecting tubule (CNT) and principal cells of the cortical collecting duct (CCD) were downregulated to a greater extent than those associated with DCT1 and intercalated cells. Stx receptor globotriaosylceramide 3 (Gb3) revealed no colocalization with DCT1-specific PVALB and intercalated cell-specific SLC26A4 but did present colocalization with SLC12A3 (present in both DCT1 and DCT2), and AQP2 in principal cells. Gb3 localization tended to coincide with the segment in which the downregulated genes were present. Thus, the LPS/Stx2-induced kidney injury model represents damage to DCT2/CNT and principal cells in the CCD, based on molecular, biological, and physiological findings.


Subject(s)
Hemolytic-Uremic Syndrome , Shiga Toxin 2 , Animals , Aquaporin 2/metabolism , Hemolytic-Uremic Syndrome/chemically induced , Hemolytic-Uremic Syndrome/genetics , Lipopolysaccharides/pharmacology , Male , Mice , Shiga Toxin/metabolism , Shiga Toxin 2/genetics , Shiga Toxin 2/metabolism , Solute Carrier Family 12, Member 3/metabolism , Transcriptome/genetics
11.
Front Cell Infect Microbiol ; 12: 825856, 2022.
Article in English | MEDLINE | ID: mdl-35223548

ABSTRACT

Shiga toxins (Stx) are AB5-type toxins, composed of five B subunits which bind to Gb3 host cell receptors and an active A subunit, whose action on the ribosome leads to protein synthesis suppression. The two Stx types (Stx1 and Stx2) and their subtypes can be produced by Shiga toxin-producing Escherichia coli strains and some Shigella spp. These bacteria colonize the colon and induce diarrhea that may progress to hemorrhagic colitis and in the most severe cases, to hemolytic uremic syndrome, which could lead to death. Since the use of antibiotics in these infections is a topic of great controversy, the treatment remains supportive and there are no specific therapies to ameliorate the course. Therefore, there is an open window for Stx neutralization employing antibodies, which are versatile molecules. Indeed, polyclonal, monoclonal, and recombinant antibodies have been raised and tested in vitro and in vivo assays, showing differences in their neutralizing ability against deleterious effects of Stx. These molecules are in different phases of development for which we decide to present herein an updated report of these antibody molecules, their source, advantages, and disadvantages of the promising ones, as well as the challenges faced until reaching their applicability.


Subject(s)
Escherichia coli Infections , Hemolytic-Uremic Syndrome , Shiga-Toxigenic Escherichia coli , Escherichia coli Infections/drug therapy , Humans , Immunologic Factors/metabolism , Shiga Toxin/metabolism , Shiga Toxin 2/metabolism , Shiga Toxins
12.
Pediatr Res ; 91(5): 1121-1129, 2022 04.
Article in English | MEDLINE | ID: mdl-34155339

ABSTRACT

BACKGROUND: Shiga toxin-producing Escherichia coli is responsible for post-diarrheal (D+) hemolytic uremic syndrome (HUS), which is a cause of acute renal failure in children. The glycolipid globotriaosylceramide (Gb3) is the main receptor for Shiga toxin (Stx) in kidney target cells. Eliglustat (EG) is a specific and potent inhibitor of glucosylceramide synthase, first step of glycosphingolipid biosynthesis, actually used for the treatment of Gaucher's disease. The aim of the present work was to evaluate the efficiency of EG in preventing the damage caused by Stx2 in human renal epithelial cells. METHODS: Human renal tubular epithelial cell (HRTEC) primary cultures were pre-treated with different dilutions of EG followed by co-incubation with EG and Stx2 at different times, and cell viability, proliferation, apoptosis, tubulogenesis, and Gb3 expression were assessed. RESULTS: In HRTEC, pre-treatments with 50 nmol/L EG for 24 h, or 500 nmol/L EG for 6 h, reduced Gb3 expression and totally prevented the effects of Stx2 on cell viability, proliferation, and apoptosis. EG treatment also allowed the development of tubulogenesis in 3D-HRTEC exposed to Stx2. CONCLUSIONS: EG could be a potential therapeutic drug for the prevention of acute kidney injury caused by Stx2. IMPACT: For the first time, we have demonstrated that Eliglustat prevents Shiga toxin 2 cytotoxic effects on human renal epithelia, by reducing the expression of the toxin receptor globotriaosylceramide. The present work also shows that Eliglustat prevents Shiga toxin 2 effects on tubulogenesis of renal epithelial cells. Eliglustat, actually used for the treatment of patients with Gaucher's disease, could be a therapeutic strategy to prevent the renal damage caused by Shiga toxin.


Subject(s)
Gaucher Disease , Shiga Toxin 2 , Cells, Cultured , Child , Epithelial Cells/metabolism , Gaucher Disease/metabolism , Humans , Pyrrolidines , Shiga Toxin/metabolism , Shiga Toxin 2/metabolism , Shiga Toxin 2/toxicity
13.
EMBO Mol Med ; 14(1): e15389, 2022 01 11.
Article in English | MEDLINE | ID: mdl-34935281

ABSTRACT

Shiga toxin (Stx)-producing Escherichia coli (STEC) causes bloody diarrhea, which may progress to the potentially fatal hemolytic uremic syndrome (HUS). Development of HUS after STEC infection is dependent on Stx, and is particularly linked to Stx type 2a, Stx2a (Melton-Celsa, 2014; Scheutz, 2014). In this issue of EMBO Molecular Medicine, Lee et al report that O-linked N-acetyl glucosamine protein modification (O-GlcNAcylation) is increased in host cells after Stx exposure and the subsequent endoplasmic reticulum (ER) stress response. The elevated O-GlcNAcylation resulted in elevated inflammatory and apoptotic processes. Inhibition of O-GlcNAcylation with OSMI-1 protected cells from the Stx2a-induced damage. In mice intoxicated with Stx2a, OSMI-1 treatment reduced kidney damage and increased mouse survival.


Subject(s)
Escherichia coli Infections , Shiga-Toxigenic Escherichia coli , Animals , Glucosamine/metabolism , Mice , Shiga Toxin/metabolism , Shiga Toxin 2/metabolism , Shiga-Toxigenic Escherichia coli/metabolism
14.
Microbiology (Reading) ; 167(12)2021 12.
Article in English | MEDLINE | ID: mdl-34951398

ABSTRACT

Enterohaemorrhagic Escherichia coli (EHEC) produces Shiga toxin 1 (Stx1) and Shiga toxin 2 (Stx2). Although stx1 and stx2 were found within the late operons of the Stx-encoding phages (Stx-phages), stx1 could mainly be transcribed from the stx1 promoter (PStx1), which represents the functional operator-binding site (Fur box) for the transcriptional regulator Fur (ferric uptake regulator), upstream of stx1. In this study, we found that the production of Stx1 by EHEC was affected by oxygen concentration. Increased Stx1 production in the presence of oxygen is dependent on Fur, which is an Fe2+-responsive transcription factor. The intracellular Fe2+ pool was lower under microaerobic conditions than under anaerobic conditions, suggesting that lower Fe2+ availability drove the formation of less Fe2+-Fur, less DNA binding to the PStx1 region, and an increase in Stx1 production.


Subject(s)
Bacteriophages , Enterohemorrhagic Escherichia coli , Enterohemorrhagic Escherichia coli/genetics , Enterohemorrhagic Escherichia coli/metabolism , Oxygen/metabolism , Shiga Toxin 1/genetics , Shiga Toxin 1/metabolism , Shiga Toxin 2/genetics , Shiga Toxin 2/metabolism
15.
Toxins (Basel) ; 13(7)2021 06 23.
Article in English | MEDLINE | ID: mdl-34201801

ABSTRACT

Several classes of non-antibiotic drugs, including psychoactive drugs, proton-pump inhibitors (PPIs), non-steroidal anti-inflammatory drugs (NSAIDs), and others, appear to have strong antimicrobial properties. We considered whether psychoactive drugs induce the SOS response in E. coli bacteria and, consequently, induce Shiga toxins in Shiga-toxigenic E. coli (STEC). We measured the induction of an SOS response using a recA-lacZ E. coli reporter strain, as RecA is an early, reliable, and quantifiable marker for activation of the SOS stress response pathway. We also measured the production and release of Shiga toxin 2 (Stx2) from a classic E. coli O157:H7 strain, derived from a food-borne outbreak due to spinach. Some, but not all, serotonin selective reuptake inhibitors (SSRIs) and antipsychotic drugs induced an SOS response. The use of SSRIs is widespread and increasing; thus, the use of these antidepressants could account for some cases of hemolytic-uremic syndrome due to STEC and is not attributable to antibiotic administration. SSRIs could have detrimental effects on the normal intestinal microbiome in humans. In addition, as SSRIs are resistant to environmental breakdown, they could have effects on microbial communities, including aquatic ecosystems, long after they have left the human body.


Subject(s)
Antipsychotic Agents/pharmacology , SOS Response, Genetics/drug effects , Selective Serotonin Reuptake Inhibitors/pharmacology , Shiga Toxin 2/metabolism , Shiga-Toxigenic Escherichia coli/drug effects , Shiga-Toxigenic Escherichia coli/genetics , Shiga-Toxigenic Escherichia coli/metabolism , beta-Galactosidase/genetics
16.
Toxins (Basel) ; 13(6)2021 06 15.
Article in English | MEDLINE | ID: mdl-34203879

ABSTRACT

Shiga toxin 1 and 2 (STx1 and STx2) undergo retrograde trafficking to reach the cytosol of cells where they target ribosomes. As retrograde trafficking is essential for disease, inhibiting STx1/STx2 trafficking is therapeutically promising. Recently, we discovered that the chemotherapeutic drug tamoxifen potently inhibits the trafficking of STx1/STx2 at the critical early endosome-to-Golgi step. We further reported that the activity of tamoxifen against STx1/STx2 is independent of its selective estrogen receptor modulator (SERM) property and instead depends on its weakly basic chemical nature, which allows tamoxifen to increase endolysosomal pH and alter the recruitment of retromer to endosomes. The goal of the current work was to obtain a better understanding of the mechanism of action of tamoxifen against the more disease-relevant toxin STx2, and to differentiate between the roles of changes in endolysosomal pH and retromer function. Structure activity relationship (SAR) analyses revealed that a weakly basic amine group was essential for anti-STx2 activity. However, ability to deacidify endolysosomes was not obligatorily necessary because a tamoxifen derivative that did not increase endolysosomal pH exerted reduced, but measurable, activity. Additional assays demonstrated that protective derivatives inhibited the formation of retromer-dependent, Golgi-directed, endosomal tubules, which mediate endosome-to-Golgi transport, and the sorting of STx2 into these tubules. These results identify retromer-mediated endosomal tubulation and sorting to be fundamental processes impacted by tamoxifen; provide an explanation for the inhibitory effect of tamoxifen on STx2; and have important implications for the therapeutic use of tamoxifen, including its development for treating Shiga toxicosis.


Subject(s)
Antineoplastic Agents, Hormonal/pharmacology , Shiga Toxin 1/metabolism , Shiga Toxin 2/metabolism , Tamoxifen/pharmacology , Endosomes/drug effects , HeLa Cells , Humans , Protein Transport/drug effects
17.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Article in English | MEDLINE | ID: mdl-33986113

ABSTRACT

Instead of conventional serotyping and virulence gene combination methods, methods have been developed to evaluate the pathogenic potential of newly emerging pathogens. Among them, the machine learning (ML)-based method using whole-genome sequencing (WGS) data are getting attention because of the recent advances in ML algorithms and sequencing technologies. Here, we developed various ML models to predict the pathogenicity of Shiga toxin-producing Escherichia coli (STEC) isolates using their WGS data. The input dataset for the ML models was generated using distinct gene repertoires from positive (pathogenic) and negative (nonpathogenic) control groups in which each STEC isolate was designated based on the source attribution, the relative risk potential of the isolation sources. Among the various ML models examined, a model using the support vector machine (SVM) algorithm, the SVM model, discriminated between the two control groups most accurately. The SVM model successfully predicted the pathogenicity of the isolates from the major sources of STEC outbreaks, the isolates with the history of outbreaks, and the isolates that cannot be assessed by conventional methods. Furthermore, the SVM model effectively differentiated the pathogenic potentials of the isolates at a finer resolution. Permutation importance analyses of the input dataset further revealed the genes important for the estimation, proposing the genes potentially essential for the pathogenicity of STEC. Altogether, these results suggest that the SVM model is a more reliable and broadly applicable method to evaluate the pathogenic potential of STEC isolates compared with conventional methods.


Subject(s)
Escherichia coli Proteins/genetics , Machine Learning , Shiga Toxin 2/genetics , Shiga-Toxigenic Escherichia coli/genetics , Support Vector Machine , Escherichia coli Infections/diagnosis , Escherichia coli Infections/microbiology , Escherichia coli Proteins/metabolism , Humans , ROC Curve , Reproducibility of Results , Shiga Toxin 2/metabolism , Shiga-Toxigenic Escherichia coli/classification , Shiga-Toxigenic Escherichia coli/pathogenicity , Virulence/genetics , Whole Genome Sequencing/methods
18.
Toxins (Basel) ; 13(2)2021 02 12.
Article in English | MEDLINE | ID: mdl-33673393

ABSTRACT

Human kidney epithelial cells are supposed to be directly involved in the pathogenesis of the hemolytic-uremic syndrome (HUS) caused by Shiga toxin (Stx)-producing enterohemorrhagic Escherichia coli (EHEC). The characterization of the major and minor Stx-binding glycosphingolipids (GSLs) globotriaosylceramide (Gb3Cer) and globotetraosylceramide (Gb4Cer), respectively, of primary human renal cortical epithelial cells (pHRCEpiCs) revealed GSLs with Cer (d18:1, C16:0), Cer (d18:1, C22:0), and Cer (d18:1, C24:1/C24:0) as the dominant lipoforms. Using detergent-resistant membranes (DRMs) and non-DRMs, Gb3Cer and Gb4Cer prevailed in the DRM fractions, suggesting their association with microdomains in the liquid-ordered membrane phase. A preference of Gb3Cer and Gb4Cer endowed with C24:0 fatty acid accompanied by minor monounsaturated C24:1-harboring counterparts was observed in DRMs, whereas the C24:1 fatty acid increased in relation to the saturated equivalents in non-DRMs. A shift of the dominant phospholipid phosphatidylcholine with saturated fatty acids in the DRM to unsaturated species in the non-DRM fractions correlated with the GSL distribution. Cytotoxicity assays gave a moderate susceptibility of pHRCEpiCs to the Stx1a and Stx2a subtypes when compared to highly sensitive Vero-B4 cells. The results indicate that presence of Stx-binding GSLs per se and preferred occurrence in microdomains do not necessarily lead to a high cellular susceptibility towards Stx.


Subject(s)
Epithelial Cells/metabolism , Globosides/metabolism , Kidney Cortex/metabolism , Shiga Toxin 1/toxicity , Shiga Toxin 2/toxicity , Trihexosylceramides/metabolism , Animals , Cell Survival/drug effects , Chlorocebus aethiops , Epithelial Cells/pathology , Escherichia coli Infections/microbiology , Hemolytic-Uremic Syndrome/microbiology , Humans , Kidney Cortex/pathology , Membrane Microdomains/drug effects , Membrane Microdomains/metabolism , Membrane Microdomains/pathology , Primary Cell Culture , Protein Binding , Shiga Toxin 1/metabolism , Shiga Toxin 2/metabolism , Shiga-Toxigenic Escherichia coli/metabolism , Shiga-Toxigenic Escherichia coli/pathogenicity , Vero Cells
19.
Methods Mol Biol ; 2291: 177-205, 2021.
Article in English | MEDLINE | ID: mdl-33704754

ABSTRACT

Outer membrane vesicles (OMVs), nanoparticles released by Shiga toxin-producing Escherichia coli (STEC), have been identified as novel efficient virulence tools of these pathogens. STEC O157 OMVs carry a cocktail of virulence factors including Shiga toxin 2a (Stx2a), cytolethal distending toxin V (CdtV), EHEC hemolysin, flagellin, and lipopolysaccharide. OMVs are taken up by human intestinal epithelial and microvascular endothelial cells, the major targets during STEC infection, and deliver the virulence factors into host cells. There the toxins separate from OMVs and are trafficked via different pathways to their target compartments, i.e., the cytosol (Stx2a-A subunit), nucleus (CdtV-B subunit), and mitochondria (EHEC hemolysin). This leads to a toxin-specific host cell injury and ultimately apoptotic cell death. Besides their cytotoxic effects, STEC OMVs trigger an inflammatory response via their lipopolysaccharide and flagellin components. In this chapter, we describe methods for the isolation and purification of STEC OMVs, for the detection of OMV-associated virulence factors, and for the analysis of OMV interactions with host cells including OMV cellular uptake and intracellular trafficking of OMVs and OMV-delivered toxins.


Subject(s)
Bacterial Toxins/metabolism , Cell-Derived Microparticles/metabolism , Endothelial Cells/metabolism , Escherichia coli O157 , Shiga Toxin 2/metabolism , Virulence Factors/metabolism , Endothelial Cells/microbiology , Endothelial Cells/pathology , Escherichia coli O157/metabolism , Escherichia coli O157/pathogenicity , Humans
20.
Methods Mol Biol ; 2291: 19-86, 2021.
Article in English | MEDLINE | ID: mdl-33704748

ABSTRACT

Cattle and other ruminants are primary reservoirs for Shiga toxin-producing Escherichia coli (STEC) strains which have a highly variable, but unpredictable, pathogenic potential for humans. Domestic swine can carry and shed STEC, but only STEC strains producing the Shiga toxin (Stx) 2e variant and causing edema disease in piglets are considered pathogens of veterinary medical interest. In this chapter, we present general diagnostic workflows for sampling livestock animals to assess STEC prevalence, magnitude, and duration of host colonization. This is followed by detailed method protocols for STEC detection and typing at genetic and phenotypic levels to assess the relative virulence exerted by the strains.


Subject(s)
Cattle Diseases , Escherichia coli Infections , Shiga Toxin 2/metabolism , Shiga-Toxigenic Escherichia coli , Swine Diseases , Animals , Cattle , Cattle Diseases/diagnosis , Cattle Diseases/metabolism , Cattle Diseases/microbiology , Escherichia coli Infections/diagnosis , Escherichia coli Infections/metabolism , Escherichia coli Infections/microbiology , Escherichia coli Infections/veterinary , Shiga-Toxigenic Escherichia coli/classification , Shiga-Toxigenic Escherichia coli/isolation & purification , Shiga-Toxigenic Escherichia coli/metabolism , Shiga-Toxigenic Escherichia coli/pathogenicity , Swine , Swine Diseases/diagnosis , Swine Diseases/metabolism , Swine Diseases/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...