Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Publication year range
1.
BMC Nephrol ; 22(1): 278, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34376184

ABSTRACT

BACKGROUND: The recent COVID-19 pandemic has raised concerns about patient diagnosis and follow-up of chronically ill patients. Patients suffering from chronic illnesses, concomitantly infected by SARS-CoV-2, globally tend to have a worse prognosis and poor outcomes. Renal tropism and acute kidney injury following SARS-CoV-2 infection has recently been described in the literature, with elevated mortality rates. Furthermore, patients with pre-existing chronic kidney disease, infected by SARS-CoV-2, should be monitored carefully. Here, we report the case of a 69-year-old patient with splenic marginal zone lymphoma, suffering from longstanding chronic kidney disease following SARS-CoV-2 infection. CASE PRESENTATION: A 69-year-old male patient previously diagnosed with pulmonary embolism and splenic marginal zone lymphoma (Splenomegaly, Matutes 2/5, CD5 negative and CD23 positive), was admitted to the hospital with shortness of breath, fever and asthenia. A nasopharyngeal swab test was performed in addition to a CT-scan, which confirmed SARS-CoV-2 infection. Blood creatinine increased following SARS-CoV-2 infection at 130 µmol/l, with usual values at 95 µmol/l. The patient was discharged at home with rest and symptomatic medical treatment (paracetamol and hydration), then readmitted to the hospital in August 2020. A kidney biopsy was therefore conducted as blood creatinine levels were abnormally elevated. Immunodetection performed in a renal biopsy specimen confirmed co-localization of SARS-CoV2 nucleocapsid and protease 3C proteins with ACE2, Lewis x and sialyl-Lewis x antigens in proximal convoluted tubules and podocytes. Co-localization of structural and non-structural viral proteins clearly demonstrated viral replication in proximal convoluted tubules in this chronically ill patient. Additionally, we observed the co-localization of sialyl-Lewis x and ACE2 receptors in the same proximal convoluted tubules. Reverse Transcriptase-Polymerase Chain Reaction test performed on the kidney biopsy was negative, with very low Ct levels (above 40). The patient was finally readmitted to the haematology department for initiation of chemotherapy, including CHOP protocol and Rituximab. CONCLUSIONS: Our case emphasizes on the importance of monitoring kidney function in immunosuppressed patients and patients suffering from cancer following SARS-CoV-2 infection, through histological screening. Further studies will be required to decipher the mechanisms underlying chronic kidney disease and the putative role of sialyl-Lewis x and HBGA during SARS-CoV-2 infection.


Subject(s)
COVID-19/complications , Kidney Tubules/virology , Renal Insufficiency, Chronic/virology , SARS-CoV-2/physiology , Virus Replication , Aged , Angiotensin-Converting Enzyme 2/analysis , Biopsy , COVID-19/blood , COVID-19/diagnosis , Coronavirus Nucleocapsid Proteins/analysis , Creatinine/blood , Humans , Kidney/chemistry , Kidney/pathology , Kidney/virology , Kidney Tubules/chemistry , Kidney Tubules/pathology , Lewis X Antigen/analysis , Lymphoma, B-Cell, Marginal Zone/complications , Male , Renal Insufficiency, Chronic/pathology , Sialyl Lewis X Antigen/analysis , Splenic Neoplasms/complications
2.
J Biol Chem ; 295(36): 12648-12660, 2020 09 04.
Article in English | MEDLINE | ID: mdl-32665399

ABSTRACT

Protein glycosylation is essential to trafficking and immune functions of human neutrophils. During granulopoiesis in the bone marrow, distinct neutrophil granules are successively formed. Distinct receptors and effector proteins, many of which are glycosylated, are targeted to each type of granule according to their time of expression, a process called "targeting by timing." Therefore, these granules are time capsules reflecting different times of maturation that can be used to understand the glycosylation process during granulopoiesis. Herein, neutrophil subcellular granules were fractionated by Percoll density gradient centrifugation, and N- and O-glycans present in each compartment were analyzed by LC-MS. We found abundant paucimannosidic N-glycans and lack of O-glycans in the early-formed azurophil granules, whereas the later-formed specific and gelatinase granules and secretory vesicles contained complex N- and O-glycans with remarkably elongated N-acetyllactosamine repeats with Lewis epitopes. Immunoblotting and histochemical analysis confirmed the expression of Lewis X and sialyl-Lewis X in the intracellular granules and on the cell surface, respectively. Many glycans identified are unique to neutrophils, and their complexity increased progressively from azurophil granules to specific granules and then to gelatinase granules, suggesting temporal changes in the glycosylation machinery indicative of "glycosylation by timing" during granulopoiesis. In summary, this comprehensive neutrophil granule glycome map, the first of its kind, highlights novel granule-specific glycosylation features and is a crucial first step toward a better understanding of the mechanisms regulating protein glycosylation during neutrophil granulopoiesis and a more detailed understanding of neutrophil biology and function.


Subject(s)
Cytoplasmic Granules/metabolism , Lewis X Antigen/metabolism , Neutrophils/metabolism , Polysaccharides/metabolism , Sialyl Lewis X Antigen/metabolism , Glycosylation , Humans , Lewis X Antigen/analysis , Polysaccharides/analysis , Sialyl Lewis X Antigen/analysis
3.
J Chin Med Assoc ; 83(4): 337-344, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31904658

ABSTRACT

Sialylation (the covalent addition of sialic acid to the terminal end of glycoproteins or glycans), tightly regulated cell- and microenvironment-specific process and orchestrated by sialyltransferases and sialidases (neuraminidases) family, is one of the posttranslational modifications, which plays an important biological role in the maintenance of normal physiology and involves many pathological dysfunctions. Glycans have roles in all the cancer hallmarks, referring to capabilities acquired during all steps of cancer development to initiate malignant transformation (a driver of a malignant genotype), enable cancer cells to survive, proliferate, and metastasize (a consequence of a malignant phenotype), which includes sustaining proliferative signaling, evading growth suppressor, resisting cell apoptosis, enabling replicative immortality, inducing angiogenesis, reprogramming of energy metabolism, evading tumor destruction, accumulating inflammatory microenvironment, and activating invasion and accelerating metastases. Regarding the important role of altered sialylation of cancers, further knowledge about the initiation and the consequences of altered sialylation pattern in tumor cells is needed, because all may offer a better chance for developing novel therapeutic strategy. In this review, we would like to update alteration of sialylation in ovarian cancers.


Subject(s)
Ovarian Neoplasms/metabolism , Sialic Acids/metabolism , Biomarkers, Tumor , Blood Proteins/metabolism , Female , Humans , Neuraminidase/physiology , Sialyl Lewis X Antigen/analysis , Sialyltransferases/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...