Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 113.316
Filter
1.
Nat Commun ; 15(1): 4687, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824166

ABSTRACT

Ligand-induced activation of G protein-coupled receptors (GPCRs) can initiate signaling through multiple distinct pathways with differing biological and physiological outcomes. There is intense interest in understanding how variation in GPCR ligand structure can be used to promote pathway selective signaling ("biased agonism") with the goal of promoting desirable responses and avoiding deleterious side effects. Here we present an approach in which a conventional peptide ligand for the type 1 parathyroid hormone receptor (PTHR1) is converted from an agonist which induces signaling through all relevant pathways to a compound that is highly selective for a single pathway. This is achieved not through variation in the core structure of the agonist, but rather by linking it to a nanobody tethering agent that binds with high affinity to a separate site on the receptor not involved in signal transduction. The resulting conjugate represents the most biased agonist of PTHR1 reported to date. This approach holds promise for facile generation of pathway selective ligands for other GPCRs.


Subject(s)
Receptor, Parathyroid Hormone, Type 1 , Receptors, G-Protein-Coupled , Signal Transduction , Single-Domain Antibodies , Ligands , Humans , Receptor, Parathyroid Hormone, Type 1/metabolism , Receptor, Parathyroid Hormone, Type 1/agonists , Single-Domain Antibodies/metabolism , Single-Domain Antibodies/pharmacology , HEK293 Cells , Signal Transduction/drug effects , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/metabolism , Protein Binding , Animals , Peptides/chemistry , Peptides/pharmacology , Peptides/metabolism
2.
J Neuroinflammation ; 21(1): 143, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822367

ABSTRACT

The dysregulation of pro- and anti-inflammatory processes in the brain has been linked to the pathogenesis of major depressive disorder (MDD), although the precise mechanisms remain unclear. In this study, we discovered that microglial conditional knockout of Pdcd4 conferred protection against LPS-induced hyperactivation of microglia and depressive-like behavior in mice. Mechanically, microglial Pdcd4 plays a role in promoting neuroinflammatory responses triggered by LPS by inhibiting Daxx-mediated PPARγ nucleus translocation, leading to the suppression of anti-inflammatory cytokine IL-10 expression. Finally, the antidepressant effect of microglial Pdcd4 knockout under LPS-challenged conditions was abolished by intracerebroventricular injection of the IL-10 neutralizing antibody IL-10Rα. Our study elucidates the distinct involvement of microglial Pdcd4 in neuroinflammation, suggesting its potential as a therapeutic target for neuroinflammation-related depression.


Subject(s)
Co-Repressor Proteins , Interleukin-10 , Mice, Knockout , Microglia , Neuroinflammatory Diseases , PPAR gamma , Signal Transduction , Animals , Mice , Microglia/metabolism , Microglia/drug effects , PPAR gamma/metabolism , PPAR gamma/genetics , Signal Transduction/physiology , Signal Transduction/drug effects , Neuroinflammatory Diseases/metabolism , Interleukin-10/metabolism , Interleukin-10/deficiency , Interleukin-10/genetics , Co-Repressor Proteins/genetics , Co-Repressor Proteins/metabolism , Depression/metabolism , Depression/etiology , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/deficiency , Mice, Inbred C57BL , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Male , Adaptor Proteins, Signal Transducing/deficiency , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Lipopolysaccharides/toxicity
3.
Pak J Pharm Sci ; 37(2(Special)): 463-473, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38822551

ABSTRACT

Solanum lyratum Thunb., a traditional Chinese herbal medicine, has a promising background. However, the anti-inflammatory effects of its component steroid alkaloid have not been explored. In this study, animal and cell experiments were performed to investigate the anti-inflammatory effects and mechanism of action of Solanum lyratum Thunb steroid alkaloid (SLTSA), in order to provide evidence for its potential utilization. SLTSA effectively inhibited ear swelling and acute abdominal inflammation of mice. We observed concentration-dependent inhibition of pro-inflammatory cytokines by SLTSA, as confirmed by the ELISA and RT-qPCR results. Flow cytometry, immunofluorescence and RT-qPCR analyses revealed that SLTSA suppressed TLR4 expression. Western blot results indicated that SLTSA inhibited the activation of the TLR4/MyD88/NF-κB signaling pathway. Our study demonstrated that SLTSA possesses anti-inflammatory properties.


Subject(s)
Alkaloids , Anti-Inflammatory Agents , Signal Transduction , Solanum , Animals , Solanum/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/isolation & purification , Mice , Alkaloids/pharmacology , Alkaloids/isolation & purification , Signal Transduction/drug effects , NF-kappa B/metabolism , Toll-Like Receptor 4/metabolism , Cytokines/metabolism , RAW 264.7 Cells , Myeloid Differentiation Factor 88/metabolism , Male
4.
Mol Biol Rep ; 51(1): 703, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822881

ABSTRACT

BACKGROUND: Non-small cell lung cancer (NSCLC) is the leading cause of cancer morbidity and mortality worldwide, and new diagnostic markers are urgently needed. We aimed to investigate the mechanism by which hsa_circ_0096157 regulates autophagy and cisplatin (DDP) resistance in NSCLC. METHODS: A549 cells were treated with DDP (0 µg/mL or 3 µg/mL). Then, the autophagy activator rapamycin (200 nm) was applied to the A549/DDP cells. Moreover, hsa_circ_0096157 and Nrf2 were knocked down, and Nrf2 was overexpressed in A549/DDP cells. The expression of Hsa_circ_0096157, the Nrf2/ARE pathway-related factors Nrf2, HO-1, and NQO1, and the autophagy-related factors LC3, Beclin-1, and p62 was evaluated by qRT‒PCR or western blotting. Autophagosomes were detected through TEM. An MTS assay was utilized to measure cell proliferation. The associated miRNA levels were also tested by qRT‒PCR. RESULTS: DDP (3 µg/mL) promoted hsa_circ_0096157, LC3 II/I, and Beclin-1 expression and decreased p62 expression. Knocking down hsa_circ_0096157 resulted in the downregulation of LC3 II/I and Beclin-1 expression, upregulation of p62 expression, and decreased proliferation. Rapamycin reversed the effect of interfering with hsa_circ_0096157. Keap1 expression was lower, and Nrf2, HO-1, and NQO1 expression was greater in the A549/DDP group than in the A549 group. HO-1 expression was repressed after Nrf2 interference. In addition, activation of the Nrf2/ARE pathway promoted autophagy in A549/DDP cells. Moreover, hsa_circ_0096157 activated the Nrf2/ARE pathway. The silencing of hsa_circ_0096157 reduced Nrf2 expression by releasing miR-142-5p or miR-548n. Finally, we found that hsa_circ_0096157 promoted A549/DDP cell autophagy by activating the Nrf2/ARE pathway. CONCLUSION: Knockdown of hsa_circ_0096157 inhibits autophagy and DDP resistance in NSCLC cells by downregulating the Nrf2/ARE signaling pathway.


Subject(s)
Autophagy , Carcinoma, Non-Small-Cell Lung , Cisplatin , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic , Lung Neoplasms , NF-E2-Related Factor 2 , Signal Transduction , Humans , Cisplatin/pharmacology , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Autophagy/drug effects , Autophagy/genetics , Signal Transduction/drug effects , Signal Transduction/genetics , Lung Neoplasms/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , A549 Cells , Gene Expression Regulation, Neoplastic/drug effects , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cell Line, Tumor , Antioxidant Response Elements/genetics , Antineoplastic Agents/pharmacology , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism
5.
Mol Biol Rep ; 51(1): 702, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822942

ABSTRACT

BACKGROUND: The development of cost-effective, simple, environment-friendly biographene is an area of interest. To accomplish environmentally safe, benign culturing that has advantages over other methods to reduce the graphene oxide (GO), extracellular metabolites from actinobacteria associated with mushrooms were used for the first time. METHODS: Bactericidal effect of GO against methicillin-resistant Staphylococcus aureus, antioxidant activity, and hydroxyapatite-like bone layer formation, gene expression analysis and appropriate biodegradation of the microbe-mediated synthesis of graphene was studied. RESULTS: Isolated extracellular contents Streptomyces achromogenes sub sp rubradiris reduced nano-GO to graphene (rGO), which was further examined by spectrometry and suggested an efficient conversion and significant reduction in the intensity of all oxygen-containing moieties and shifted crystalline peaks. Electron microscopic results also suggested the reduction of GO layer. In addition, absence of significant toxicity in MG-63 cell line, intentional free radical scavenging prowess, liver and kidney histopathology, and Wistar rat bone regeneration through modulation of OPG/RANKL/RUNX2/ALP pathways show the feasibility of the prepared nano GO. CONCLUSIONS: The study demonstrates the successful synthesis of biographene from actinobacterial extracellular metabolites, its potential biomedical applications, and its promising role in addressing health and environmental concerns.


Subject(s)
Bone Regeneration , Graphite , Osteoprotegerin , RANK Ligand , Rats, Wistar , Graphite/pharmacology , Animals , Bone Regeneration/drug effects , Rats , RANK Ligand/metabolism , Osteoprotegerin/metabolism , Humans , Biocompatible Materials/pharmacology , Core Binding Factor Alpha 1 Subunit/metabolism , Core Binding Factor Alpha 1 Subunit/genetics , Actinobacteria/metabolism , Anti-Bacterial Agents/pharmacology , Antioxidants/metabolism , Antioxidants/pharmacology , Signal Transduction/drug effects
6.
FASEB J ; 38(11): e23681, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38814725

ABSTRACT

Ischemia-reperfusion (IR) injury is primarily characterized by the restoration of blood flow perfusion and oxygen supply to ischemic tissue and organs, but it paradoxically leads to tissue injury aggravation. IR injury is a challenging pathophysiological process that is difficult to avoid clinically and frequently occurs during organ transplantation, surgery, shock resuscitation, and other processes. The major causes of IR injury include increased levels of free radicals, calcium overload, oxidative stress, and excessive inflammatory response. Ghrelin is a newly discovered brain-intestinal peptide with anti-inflammatory and antiapoptotic effects that improve blood supply. The role and mechanism of ghrelin in intestinal ischemia-reperfusion (IIR) injury remain unclear. We hypothesized that ghrelin could attenuate IIR-induced oxidative stress and apoptosis. To investigate this, we established IIR by using a non-invasive arterial clip to clamp the root of the superior mesenteric artery (SMA) in mice. Ghrelin was injected intraperitoneally at a dose of 50 µg/kg 20 min before IIR surgery, and [D-Lys3]-GHRP-6 was injected intraperitoneally at a dose of 12 nmol/kg 20 min before ghrelin injection. We mimicked the IIR process with hypoxia-reoxygenation (HR) in Caco-2 cells, which are similar to intestinal epithelial cells in structure and biochemistry. Our results showed that ghrelin inhibited IIR/HR-induced oxidative stress and apoptosis by activating GHSR-1α. Moreover, it was found that ghrelin activated the GHSR-1α/Sirt1/FOXO1 signaling pathway. We further inhibited Sirt1 and found that Sirt1 was critical for ghrelin-mediated mitigation of IIR/HR injury. Overall, our data suggest that pretreatment with ghrelin reduces oxidative stress and apoptosis to attenuate IIR/HR injury by binding with GHSR-1α to further activate Sirt1.


Subject(s)
Apoptosis , Forkhead Box Protein O1 , Ghrelin , Mice, Inbred C57BL , Oxidative Stress , Receptors, Ghrelin , Reperfusion Injury , Sirtuin 1 , Ghrelin/pharmacology , Ghrelin/metabolism , Reperfusion Injury/metabolism , Reperfusion Injury/drug therapy , Sirtuin 1/metabolism , Animals , Mice , Receptors, Ghrelin/metabolism , Humans , Male , Forkhead Box Protein O1/metabolism , Apoptosis/drug effects , Oxidative Stress/drug effects , Signal Transduction/drug effects , Intestines/drug effects , Caco-2 Cells
7.
Med Sci Monit ; 30: e945269, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38808453

ABSTRACT

The Editors of Medical Science Monitor wish to inform you that the above manuscript has been retracted from publication due to concerns with the credibility and originality of the study, the manuscript content, and the Figure images. Reference: Haijin Huang, Cuicui Hu, Lin Xu, Xiaoping Zhu, Lili Zhao, Jia Min. The Effects of Hesperidin on Neuronal Apoptosis and Cognitive Impairment in the Sevoflurane Anesthetized Rat are Mediated Through the PI3/Akt/PTEN and Nuclear Factor-kappaB (NF-kappaB) Signaling Pathways. Med Sci Monit, 2020; 26: e920522. DOI: 10.12659/MSM.920522.


Subject(s)
Apoptosis , Cognitive Dysfunction , Hesperidin , NF-kappa B , Neurons , PTEN Phosphohydrolase , Proto-Oncogene Proteins c-akt , Rats, Sprague-Dawley , Sevoflurane , Signal Transduction , Animals , Sevoflurane/pharmacology , Apoptosis/drug effects , NF-kappa B/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , PTEN Phosphohydrolase/metabolism , Neurons/drug effects , Neurons/metabolism , Cognitive Dysfunction/metabolism , Rats , Hesperidin/pharmacology , Male , Phosphatidylinositol 3-Kinases/metabolism
8.
J Ethnopharmacol ; 331: 118290, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38703872

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: HuoXueTongFu Formula (HXTF) is a traditional Chinese herbal formula that has been used as a supplement and alternative therapy for intraperitoneal adhesion (IA). However, its specific mechanism of action has not been fully understood. AIM OF THE STUDY: In surgery, IA presents an inevitable challenge, significantly impacting patients' physical and mental well-being and increasing the financial burden. Our previous research has confirmed the preventive effects of HXTF on IA formation. However, the precise mechanism of its action still needs to be understood. METHODS: In this study, the IA model was successfully established by using the Ischemic buttons and treated with HXTF for one week with or without Mer Tyrosine Kinase (MerTK) inhibitor. We evaluated the pharmacodynamic effect of HXTF on IA mice. The MerTK/phosphoinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway-associated proteins were detected by Western blotting. Neutrophil extracellular traps (NETs) were detected by immunofluorescence. Macrophage phenotype was assessed by immunohistochemistry and flow cytometry. Inflammatory cytokines were detected by Real Time Quantitative PCR and Western blotting. RESULTS: HXTF reduced inflammatory response and alleviated IA. HXTF significantly enhanced MerTK expression, increased the number of M2c macrophages, and decreased the formation of NETs. In addition, the MerTK/PI3K/AKT pathway was significantly activated by HXTF. However, after using MerTK inhibitors, the role of HXTF in inducing M2c macrophage through activation of the PI3K/AKT pathway was suppressed and there was no inhibitory effect on NETs formation and inflammatory responses, resulting in diminished inhibition of adhesion. CONCLUSION: HXTF may improve IA by activating the MerTK/PI3K/AKT pathway to induce M2c polarization, which removes excess NETs and attenuates the inflammatory response.


Subject(s)
Drugs, Chinese Herbal , Macrophages , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , c-Mer Tyrosine Kinase , Animals , Proto-Oncogene Proteins c-akt/metabolism , Drugs, Chinese Herbal/pharmacology , Mice , c-Mer Tyrosine Kinase/metabolism , Signal Transduction/drug effects , Male , Macrophages/drug effects , Macrophages/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Tissue Adhesions/prevention & control , Tissue Adhesions/metabolism , Extracellular Traps/drug effects , Extracellular Traps/metabolism , Disease Models, Animal
9.
J Ethnopharmacol ; 331: 118273, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38703874

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Uncaria rhynchophylla (Miq.) Miq.ex Havil. was a classical medicinal plant exhibiting the properties of extinguishing wind, arresting convulsions, clearing heat and pacifying the liver. Clinically, it could be utilized for the treatment of central nervous system-related diseases, such as Alzheimer's disease. U. rhynchophylla (UR) and its major ingredient alkaloid compounds (URA) have been proved to exert significant neuroprotective effects. However, the potential mechanism aren't fully understood. AIM OF THE STUDY: This study systematically examined the therapeutic effects of URA on AD pathology in APP-PS1 mice, and revealed the potential mechanism of action. MATERIALS AND METHODS: The cognitive ability was evaluated by morris water maze test in APP-PS1 mice. The H&E staining was used to observe the tissue pathological changes. The ELISA kits were used to detect the level of inflammatory factors. The flow cytometry was used to analyze the percentage of CD4+ effector T cells (Teffs) in spleen. The immunofluorescent staining was performed to count the Teffs and microglia in brain. The protein expression was analyzed by western blot. In vitro, the lymphocyte proliferation induced by ConA was performed by CCK-8 kits. The IFN-γ, IL-17, and TNF-α production were detected by ELISA kits. The effects of URA on glycolysis and the involvement of PI3K/Akt/mTOR signaling pathway was analyzed by Lactic Acid assay kit and western blot in ConA-induced naive T cell. RESULTS: URA treatment improved AD pathology effectively as demonstrated by enhanced cognitive ability, decreased Aß deposit and Tau phosphorylation, as well as reduced neuron apoptosis. Also, the neuroinflammation was significantly alleviated as evidenced by decreased IFN-γ, IL-17 and increased IL-10, TGF-ß. Notably, URA treatment down-regulated the percentage of Teffs (Th1 and Th17) in spleen, and reduced the infiltration of Teffs and microglia in brain. Meanwhile, the Treg cell was up-regulated both in spleen and brain. In vitro, URA was capable of attenuating the spleen lymphocyte proliferation and release of inflammatory factors provoked by ConA. Interestingly, glycolysis was inhibited by URA treatment as evidenced by the decrease in Lactic Acid production and expression of HK2 and GLUT1 via regulating PI3K/Akt/mTOR signaling pathway in ConA-induced naive T cell. CONCLUSION: This study proved that URA could improve AD pathology which was possibly attributable to the restraints of CD4+ T cell mediated neuroinflammation via inhibiting glycolysis.


Subject(s)
Alkaloids , Alzheimer Disease , CD4-Positive T-Lymphocytes , Glycolysis , Neuroinflammatory Diseases , Uncaria , Animals , Uncaria/chemistry , Glycolysis/drug effects , Mice , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , CD4-Positive T-Lymphocytes/drug effects , Alkaloids/pharmacology , Male , Neuroinflammatory Diseases/drug therapy , Mice, Transgenic , Disease Models, Animal , Mice, Inbred C57BL , Neuroprotective Agents/pharmacology , Signal Transduction/drug effects
10.
Mol Nutr Food Res ; 68(10): e2300871, 2024 May.
Article in English | MEDLINE | ID: mdl-38704749

ABSTRACT

SCOPE: Prenatal nutrition imbalance correlates with developmental origin of cardiovascular diseases; however whether maternal high-sucrose diet (HS) during pregnancy causes vascular damage in renal interlobar arteries (RIA) from offspring still keeps unclear. METHODS AND RESULTS: Pregnant rats are fed with normal drinking water or 20% high-sucrose solution during the whole gestational period. Swollen mitochondria and distributed myofilaments are observed in vascular smooth muscle cells of RIA exposed to prenatal HS. Maternal HS increases phenylephrine (PE)-induced vasoconstriction in the RIA from adult offspring. NG-Nitro-l-arginine (L-Name) causes obvious vascular tension in response to PE in offspring from control group, not in HS. RNA-Seq of RIA is performed to reveal that the gene retinoid X receptor g (RXRg) is significantly decreased in the HS group, which could affect vascular function via interacting with PPARγ pathway. By preincubation of RIA with apocynin (NADPH inhibitor) or capivasertib (Akt inhibitor), the results indicate that ROS and Akt are the vital important factors to affect the vascular function of RIA exposure to prenatal HS. CONCLUSION: Maternal HS during the pregnancy increases PE-mediated vasoconstriction of RIA from adult offspring, which is mainly related to the enhanced Akt and ROS regulated by the weakened PPARγ-RXRg.


Subject(s)
PPAR gamma , Prenatal Exposure Delayed Effects , Proto-Oncogene Proteins c-akt , Rats, Sprague-Dawley , Reactive Oxygen Species , Signal Transduction , Vasoconstriction , Animals , Pregnancy , Female , PPAR gamma/metabolism , PPAR gamma/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Vasoconstriction/drug effects , Dietary Sucrose/adverse effects , Rats , Renal Artery/drug effects , Male , Phenylephrine/pharmacology , Maternal Nutritional Physiological Phenomena
11.
Reprod Toxicol ; 1232024 Jan.
Article in English | MEDLINE | ID: mdl-38706688

ABSTRACT

Exposure to gestational diabetes mellitus (GDM) during pregnancy has significant consequences for the unborn baby and newborn infant. However, whether and how GDM exposure induces the development of neonatal brain hypoxia/ischemia-sensitive phenotype and the underlying molecular mechanisms remain unclear. In this study, we used a late GDM rat model induced by administration of streptozotocin (STZ) on gestational day 12 and investigated its effects of GDM on neonatal brain development. The pregnant rats exhibited increased blood glucose levels in a dose-dependent manner after STZ administration. STZ-induced maternal hyperglycemia led to reduced blood glucose levels in neonatal offspring, resulting in growth restriction and an increased brain to body weight ratio. Importantly, GDM exposure increased susceptibility to hypoxia/ischemia (HI)-induced brain infarct sizes compared to the controls in both male and female neonatal offspring. Further molecular analysis revealed alterations in the PTEN/AKT/mTOR/autophagy signaling pathway in neonatal male offspring brains, along with increased ROS production and autophagy-related proteins (Atg5 and LC3-II). Treatment with the PTEN inhibitor bisperoxovanadate (BPV) eliminated the differences in HI-induced brain infarct sizes between the GDM-exposed and the control groups. These findings provide novel evidence of the development of a brain hypoxia/ischemia-sensitive phenotype in response to GDM exposure and highlight the role of the PTEN/AKT/mTOR/autophagy signaling pathway in this process.


Subject(s)
Autophagy , Brain , Diabetes, Gestational , Hypoxia-Ischemia, Brain , Signal Transduction , Streptozocin , Animals , Female , Male , Pregnancy , Rats , Animals, Newborn , Autophagy/drug effects , Blood Glucose , Brain/metabolism , Brain/drug effects , Brain/pathology , Diabetes, Gestational/chemically induced , Diabetes, Gestational/metabolism , Hypoxia-Ischemia, Brain/metabolism , Prenatal Exposure Delayed Effects , Proto-Oncogene Proteins c-akt/metabolism , PTEN Phosphohydrolase/metabolism , Rats, Sprague-Dawley , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism
12.
Drug Des Devel Ther ; 18: 1415-1438, 2024.
Article in English | MEDLINE | ID: mdl-38707614

ABSTRACT

Objective: This study aims to explore the mechanism of action of Yixintai in treating chronic ischemic heart failure by combining bioinformatics and experimental validation. Materials and Methods: Five potential drugs for treating heart failure were obtained from Yixintai (YXT) through early mass spectrometry detection. The targets of YXT for treating heart failure were obtained by a search of online databases. Gene ontology (GO) functional enrichment analysis and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analyses were conducted on the common targets using the DAVID database. A rat heart failure model was established by ligating the anterior descending branch of the left coronary artery. A small animal color Doppler ultrasound imaging system detected cardiac function indicators. Hematoxylin-eosin (HE), Masson's, and electron microscopy were used to observe the pathological morphology of the myocardium in rats with heart failure. The network pharmacology analysis results were validated by ELISA, qPCR, and Western blotting. Results: A total of 107 effective targets were obtained by combining compound targets and eliminating duplicate values. PPI analysis showed that inflammation-related proteins (TNF and IL1B) were key targets for treating heart failure, and KEGG enrichment suggested that NF-κB signaling pathway was a key pathway for YXT treatment of heart failure. Animal model validation results indicated the following: YXT can significantly reduce the content of intestinal microbiota metabolites such as trimethylamine oxide (TMAO) and improve heart failure by improving the EF and FS values of heart ultrasound in rats and reducing the levels of serum NT-proBNP, ANP, and BNP to improve heart failure. Together, YXT can inhibit cardiac muscle hypertrophy and fibrosis in rats and improve myocardial ultrastructure and serum IL-1ß, IL-6, and TNF-α levels. These effects are achieved by inhibiting the expressions of NF-κB and PKC. Conclusion: YXT regulates the TMAO/PKC/NF-κB signaling pathway in heart failure.


Subject(s)
Drugs, Chinese Herbal , Heart Failure , Network Pharmacology , Signal Transduction , Animals , Male , Rats , Disease Models, Animal , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Heart Failure/drug therapy , Heart Failure/metabolism , Methylamines/pharmacology , NF-kappa B/metabolism , Protein Kinase C/metabolism , Protein Kinase C/antagonists & inhibitors , Rats, Sprague-Dawley , Signal Transduction/drug effects
13.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(4): 636-643, 2024 Apr 20.
Article in Chinese | MEDLINE | ID: mdl-38708495

ABSTRACT

OBJECTIVE: To investigate the effect of Jisuikang formula-medicated serum for promoting spinal cord injury (SCI) repair in rats and explore the possible mechanism. METHODS: Thirty adult SD rats were randomized into sham-operated group, SCI (induced using a modified Allen method) model group, and Jisuikang formula-medicated serum treatment group. After the operations, the rats were treated with normal saline or Jisuikang by gavage on a daily basis for 14 days, and the changes in hindlimb motor function of the rats was assessed with Basso-Beattie-Bresnahan (BBB) scores and inclined-plate test. The injured spinal cord tissues were sampled from the SCI rat models for single-cell RNA sequencing, and bioinformatics analysis was performed to identify the target genes of Jisuikang, spinal cord injury and glycolysis. In the cell experiment, cultured astrocytes from neonatal SD rat cortex were treated with SOX2 alone or in combination with Jisuikang-medicated serum for 21 days, and the protein expressions of PKM2, p-PKM2 and YAP and colocalization of PKM2 and YAP in the cells were analyzed with Western blotting and immunofluorescence staining, respectively. RESULTS: The SCI rats with Jisuikang treatment showed significantly improved BBB scores and performance in inclined-plate test. At the injury site, high PKM2 expression was detected in various cell types. Bioinformatic analysis identified the HIPPO-YAP signaling pathway as the target pathway of Jisuikang. In cultured astrocytes, SOX2 combined with the mediated serum, as compared with SOX2 alone, significantly increased PKM2, p-PKM2 and YAP expressions and entry of phosphorylated PKM2 into the nucleus, and promoted PKM2 and YAP co-localization in the cells. CONCLUSION: Jisuikang formula accelerates SCI repair in rats possibly by promoting aerobic glycolysis of the astrocytes via activating the PKM2/YAP axis to induce reprogramming of the astrocytes into neurons.


Subject(s)
Astrocytes , Pyruvate Kinase , Signal Transduction , Spinal Cord Injuries , YAP-Signaling Proteins , Animals , Rats , Astrocytes/metabolism , Astrocytes/drug effects , Carrier Proteins/metabolism , Disease Models, Animal , Drugs, Chinese Herbal/pharmacology , Membrane Proteins/metabolism , Rats, Sprague-Dawley , Signal Transduction/drug effects , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/drug therapy , Thyroid Hormone-Binding Proteins , Thyroid Hormones/metabolism
14.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(4): 652-659, 2024 Apr 20.
Article in Chinese | MEDLINE | ID: mdl-38708497

ABSTRACT

OBJECTIVE: To investigate the protective effect of arbutin against CCl4-induced hepatic fibrosis in mice and explore the underlying mechanisms. METHODS: Twenty-four C57BL/6 mice were randomly divided into control group, model group, and low- and high-dose arbutin treatment (25 and 50 mg/kg, respectively) groups. Mouse models of liver fibrosis were established by intraperitoneal injection of CCl4, and arbutin was administered daily via gavage for 6 weeks. After the treatments, serum biochemical parameters of the mice were tested, and liver tissues were taken for HE staining, Sirius Red staining and immunohistochemical staining. RT-qPCR was used to detect the mRNA levels of α-SMA, Pdgfb, Col1α1, Timp-1, Ccl2 and Tnf-a, and Western blotting was performed to detect α-SMA protein expression in the liver tissues. In the cell experiment, the effect of arbutin treatment for 24 h on THP-1 and RAW264.7 cell migration and recruitment was examined using Transwell migration assay and DAPI staining; The changes in protein levels of Akt, p65, Smad3, p-Akt, p-p65, p-Smad3 and α-SMA in arbutintreated LX-2 cells were detected with Western blotting. RESULTS: Arbutin treatment significantly lowered serum alanine aminotransferase and aspartate aminotransferase levels, alleviated liver tissue damage and collagen deposition, and reduced macrophage infiltration and α-SMA protein expression in the liver of the mouse models (P < 0.05 or 0.001). Arbutin treatment also significantly reduced CCl4-induced elevation of a-SMA, Pdgfb, Col1α1, Timp-1, Ccl2 and Tnf-a mRNA levels in mice (P < 0.05). In the cell experiment, arbutin treatment obviously inhibited migration and recruitment of THP-1 and RAW264.7 cells and lowered the phosphorylation levels of Akt, p65 and Smad3 and the protein expression level of α-SMA in LX-2 cells. CONCLUSION: Arbutin ameliorates liver inflammation and fibrosis in mice by inhibiting hepatic stellate cell activation via reducing macrophage recruitment and infiltration and suppressing activation of the Akt/NF-κB and Smad signaling pathways.


Subject(s)
Arbutin , Liver Cirrhosis , Macrophages , Proto-Oncogene Proteins c-akt , Signal Transduction , Animals , Male , Mice , Arbutin/pharmacology , Arbutin/therapeutic use , Carbon Tetrachloride , Cell Movement/drug effects , Disease Models, Animal , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/drug effects , Liver/metabolism , Liver/pathology , Liver/drug effects , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Macrophages/metabolism , Macrophages/drug effects , Mice, Inbred C57BL , NF-kappa B/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RAW 264.7 Cells , Signal Transduction/drug effects , Smad Proteins/metabolism
15.
Nat Commun ; 15(1): 4485, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802355

ABSTRACT

Although Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) have been approved in multiple diseases, including BRCA1/2 mutant breast cancer, responses are usually transient requiring the deployment of combination therapies for optimal efficacy. Here we thus explore mechanisms underlying sensitivity and resistance to PARPi using two intrinsically PARPi sensitive (T22) and resistant (T127) syngeneic murine breast cancer models in female mice. We demonstrate that tumor associated macrophages (TAM) potentially contribute to the differential sensitivity to PARPi. By single-cell RNA-sequencing, we identify a TAM_C3 cluster, expressing genes implicated in anti-inflammatory activity, that is enriched in PARPi resistant T127 tumors and markedly decreased by PARPi in T22 tumors. Rps19/C5aR1 signaling is selectively elevated in TAM_C3. C5aR1 inhibition or transferring C5aR1hi cells increases and decreases PARPi sensitivity, respectively. High C5aR1 levels in human breast cancers are associated with poor responses to immune checkpoint blockade. Thus, targeting C5aR1 may selectively deplete pro-tumoral macrophages and engender sensitivity to PARPi and potentially other therapies.


Subject(s)
Breast Neoplasms , Drug Resistance, Neoplasm , Poly(ADP-ribose) Polymerase Inhibitors , Receptor, Anaphylatoxin C5a , Tumor-Associated Macrophages , Animals , Female , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Mice , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Humans , Tumor-Associated Macrophages/drug effects , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Cell Line, Tumor , Receptor, Anaphylatoxin C5a/antagonists & inhibitors , Receptor, Anaphylatoxin C5a/metabolism , Receptor, Anaphylatoxin C5a/genetics , Gene Expression Regulation, Neoplastic/drug effects , Signal Transduction/drug effects , Macrophages/metabolism , Macrophages/drug effects
16.
Sci Rep ; 14(1): 12109, 2024 05 27.
Article in English | MEDLINE | ID: mdl-38802411

ABSTRACT

Chronic Heart Failure (CHF) is a significant global public health issue, with high mortality and morbidity rates and associated costs. Disease modules, which are collections of disease-related genes, offer an effective approach to understanding diseases from a biological network perspective. We employed the multi-Steiner tree algorithm within the NeDRex platform to extract CHF disease modules, and subsequently utilized the Trustrank algorithm to rank potential drugs for repurposing. The constructed disease module was then used to investigate the mechanism by which Panax ginseng ameliorates CHF. The active constituents of Panax ginseng were identified through a comprehensive review of the TCMSP database and relevant literature. The Swiss target prediction database was utilized to determine the action targets of these components. These targets were then cross-referenced with the CHF disease module in the STRING database to establish protein-protein interaction (PPI) relationships. Potential action pathways were uncovered through Gene Ontology (GO) and KEGG pathway enrichment analyses on the DAVID platform. Molecular docking, the determination of the interaction of biological macromolecules with their ligands, and visualization were conducted using Autodock Vina, PLIP, and PyMOL, respectively. The findings suggest that drugs such as dasatinib and mitoxantrone, which have low docking scores with key disease proteins and are reported in the literature as effective against CHF, could be promising. Key components of Panax ginseng, including ginsenoside rh4 and ginsenoside rg5, may exert their effects by targeting key proteins such as AKT1, TNF, NFKB1, among others, thereby influencing the PI3K-Akt and calcium signaling pathways. In conclusion, drugs like dasatinib and midostaurin may be suitable for CHF treatment, and Panax ginseng could potentially mitigate the progression of CHF through a multi-component-multi-target-multi-pathway approach. Disease module analysis emerges as an effective strategy for exploring drug repurposing and the mechanisms of traditional Chinese medicine in disease treatment.


Subject(s)
Drug Repositioning , Heart Failure , Molecular Docking Simulation , Panax , Panax/chemistry , Panax/metabolism , Heart Failure/drug therapy , Heart Failure/metabolism , Humans , Drug Repositioning/methods , Protein Interaction Maps/drug effects , Signal Transduction/drug effects , Chronic Disease/drug therapy , Ginsenosides/pharmacology , Ginsenosides/therapeutic use , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry
17.
Nat Commun ; 15(1): 4099, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816352

ABSTRACT

Chronic inflammation is a major cause of cancer worldwide. Interleukin 33 (IL-33) is a critical initiator of cancer-prone chronic inflammation; however, its induction mechanism by environmental causes of chronic inflammation is unknown. Herein, we demonstrate that Toll-like receptor (TLR)3/4-TBK1-IRF3 pathway activation links environmental insults to IL-33 induction in the skin and pancreas inflammation. An FDA-approved drug library screen identifies pitavastatin to effectively suppress IL-33 expression by blocking TBK1 membrane recruitment/activation through the mevalonate pathway inhibition. Accordingly, pitavastatin prevents chronic pancreatitis and its cancer sequela in an IL-33-dependent manner. The IRF3-IL-33 axis is highly active in chronic pancreatitis and its associated pancreatic cancer in humans. Interestingly, pitavastatin use correlates with a significantly reduced risk of chronic pancreatitis and pancreatic cancer in patients. Our findings demonstrate that blocking the TBK1-IRF3-IL-33 signaling axis suppresses cancer-prone chronic inflammation. Statins present a safe and effective prophylactic strategy to prevent chronic inflammation and its cancer sequela.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors , Interferon Regulatory Factor-3 , Interleukin-33 , Pancreatic Neoplasms , Protein Serine-Threonine Kinases , Quinolines , Signal Transduction , Interleukin-33/metabolism , Animals , Interferon Regulatory Factor-3/metabolism , Humans , Pancreatic Neoplasms/prevention & control , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/genetics , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Mice , Protein Serine-Threonine Kinases/metabolism , Signal Transduction/drug effects , Quinolines/pharmacology , Quinolines/therapeutic use , Inflammation/prevention & control , Inflammation/metabolism , Pancreatitis, Chronic/prevention & control , Pancreatitis, Chronic/metabolism , Toll-Like Receptor 3/metabolism , Mice, Inbred C57BL , Toll-Like Receptor 4/metabolism , Mevalonic Acid/metabolism , Male , Female , Mice, Knockout
18.
Sci Rep ; 14(1): 12427, 2024 05 30.
Article in English | MEDLINE | ID: mdl-38816543

ABSTRACT

Intracerebral hemorrhage (ICH) is a common cerebral vascular disease with high incidence, disability, and mortality. Ferroptosis is a regulated type of iron-dependent, non-apoptotic programmed cell death. There is increasing evidence that ferroptosis may lead to neuronal damage mediated by hemorrhagic stroke mediated neuronal damage. Salvianolic acid A (SAA) is a natural bioactive polyphenol compound extracted from salvia miltiorrhiza, which has anti-inflammatory, antioxidant, and antifibrosis activities. SAA is reported to be an iron chelator that inhibits lipid peroxidation and provides neuroprotective effects. However, whether SAA improves neuronal ferroptosis mediated by hemorrhagic stroke remains unclear. The study aims to evaluate the therapeutic effect of SAA on Ferroptosis mediated by Intracerebral hemorrhage and explore its potential mechanisms. We constructed in vivo and in vitro models of intracerebral hemorrhage in rats. Multiple methods were used to analyze the inhibitory effect of SAA on ferroptosis in both in vivo and in vitro models of intracerebral hemorrhage in rats. Then, network pharmacology is used to identify potential targets and mechanisms for SAA treatment of ICH. The SAA target ICH network combines SAA and ICH targets with protein-protein interactions (PPIs). Find the specific mechanism of SAA acting on ferroptosis through molecular docking and functional enrichment analysis. In rats, SAA (10 mg/kg in vivo and 50 µM in vitro, p < 0.05) alleviated dyskinesia and brain injury in the ICH model by inhibiting ferroptosis (p < 0.05). The molecular docking results and functional enrichment analyses suggested that AKT (V-akt murine thymoma viral oncogene homolog) could mediate the effect of SAA. NRF2 (Nuclear factor erythroid 2-related factor 2) was a potential target of SAA. Our further experiments showed that salvianolic acid A enhanced the Akt /GSK-3ß/Nrf2 signaling pathway activation in vivo and in vitro. At the same time, SAA significantly expanded the expression of GPX4, XCT proteins, and the nuclear expression of Nrf2, while the AKT inhibitor SH-6 and the Nrf2 inhibitor ML385 could reduce them to some extent. Therefore, SAA effectively ameliorated ICH-mediated neuronal ferroptosis. Meanwhile, one of the critical mechanisms of SAA inhibiting ferroptosis was activating the Akt/GSK-3ß/Nrf2 signaling pathway.


Subject(s)
Caffeic Acids , Cerebral Hemorrhage , Ferroptosis , Lactates , Neuroprotective Agents , Animals , Ferroptosis/drug effects , Cerebral Hemorrhage/drug therapy , Cerebral Hemorrhage/metabolism , Caffeic Acids/pharmacology , Caffeic Acids/chemistry , Rats , Lactates/pharmacology , Lactates/chemistry , Lactates/therapeutic use , Male , Neuroprotective Agents/pharmacology , Rats, Sprague-Dawley , NF-E2-Related Factor 2/metabolism , Molecular Docking Simulation , Disease Models, Animal , Signal Transduction/drug effects , Proto-Oncogene Proteins c-akt/metabolism
19.
Cell Commun Signal ; 22(1): 296, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38807115

ABSTRACT

BACKGROUND: The SARS-CoV-2 virus causes severe COVID-19 in one-fifth of patients. In addition to high mortality, infection may induce respiratory failure and cardiovascular complications associated with inflammation. Acute or prolonged inflammation results in organ fibrosis, the cause of which might be endothelial disorders arising during the endothelial-mesenchymal transition (EndMT). METHODS: HUVECs and HMEC-1 cells were stimulated with SARS-CoV-2 S (Spike) and N (Nucleocapsid) proteins, and EndMT induction was evaluated by studying specific protein markers via Western blotting. Wound healing and tube formation assays were employed to assess the potential of SARS-CoV-2 to stimulate changes in cell behaviour. MRTF nuclear translocation, ROS generation, TLR4 inhibitors, TGF-ß-neutralizing antibodies, and inhibitors of the TGF-ß-dependent pathway were used to investigate the role of the TGF-ß-MRTF signalling axis in SARS-CoV-2-dependent EndMT stimulation. RESULTS: Both viral proteins stimulate myofibroblast trans-differentiation. However, the N protein is more effective at EndMT induction. The TGF-ß-MRTF pathway plays a critical role in this process. The N protein preferentially favours action through TGF-ß2, whose secretion is induced through TLR4-ROS action. TGF-ß2 stimulates MRTF-A and MRTF-B nuclear translocation and strongly regulates EndMT. In contrast, the Spike protein stimulates TGF-ß1 secretion as a result of ACE2 downregulation. TGF-ß1 induces only MRTF-B, which, in turn, weakly regulates EndMT. Furthermore, aspirin, a common nonsteroidal anti-inflammatory drug, might prevent and reverse SARS-CoV-2-dependent EndMT induction through TGF-ß-MRTF pathway deregulation. CONCLUSION: The reported study revealed that SARS-CoV-2 infection induces EndMT. Moreover, it was demonstrated for the first time at the molecular level that the intensity of the EndMT triggered by SARS-CoV-2 infection may vary and depend on the viral protein involved. The N protein acts through TLR4-ROS-TGF-ß2-MRTF-A/B, whereas the S protein acts through ACE2-TGF-ß1-MRTF-B. Furthermore, we identified aspirin as a potential anti-fibrotic drug for treating patients with SARS-CoV-2 infection.


Subject(s)
Aspirin , COVID-19 , Coronavirus Nucleocapsid Proteins , Epithelial-Mesenchymal Transition , SARS-CoV-2 , Signal Transduction , Spike Glycoprotein, Coronavirus , Transforming Growth Factor beta , Humans , Spike Glycoprotein, Coronavirus/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Transforming Growth Factor beta/metabolism , COVID-19/metabolism , COVID-19/virology , Coronavirus Nucleocapsid Proteins/metabolism , Aspirin/pharmacology , Signal Transduction/drug effects , Epithelial-Mesenchymal Transition/drug effects , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Transcription Factors/metabolism , Toll-Like Receptor 4/metabolism , Cell Line , Endothelial-Mesenchymal Transition , Phosphoproteins
20.
Anticancer Res ; 44(6): 2533-2544, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38821596

ABSTRACT

BACKGROUND/AIM: Chemotherapy is mainly used in the clinical treatment of prostate cancer. Different anticancer mechanisms can induce cell death in various cancers. Reactive oxygen species (ROS) play crucial roles in cell proliferation, differentiation, apoptosis, and signal transduction. It is widely accepted that ROS accumulation is closely related to chemical drug-induced cancer cell death. MATERIALS AND METHODS: We utilized the MTT assay to detect changes in cell proliferation. Additionally, colony formation and wound healing assay were conducted to investigate the effect of hispidin on cell colony formation and migration ability. Fluorescence microscopy was used to detect intracellular and mitochondrial ROS levels, while western blot was used for detection of cell apoptosis. RESULTS: Hispidin treatment significantly decreased viability of PC3 and DU145 cancer cells but exhibited no cytotoxicity in WPMY-1 cells. Furthermore, hispidin treatment inhibited cell migration and colony formation and triggered cellular and mitochondrial ROS accumulation, leading to mitochondrial dysfunction and mitochondrion-dependent apoptosis. Moreover, hispidin treatment induced ferroptosis in PC3 cells. Scavenging of ROS with N-acetyl cysteine significantly inhibited hispidin-induced apoptosis by altering the expression of apoptosis-related proteins, such as cleaved caspase-3, 9, Bax, and Bcl2. Furthermore, hispidin treatment dramatically up-regulated MAPK (involving p38, ERK, and JNK proteins) and NF-kB signaling pathways while down-regulating AKT phosphorylation. Hispidin treatment also inhibited ferroptosis signaling pathways (involving P53, Nrf-2, and HO-1 proteins) in PC3 cells. In addition, inhibiting these signaling pathways via treatment with specific inhibitors significantly reversed hispidin-induced apoptosis, cellular ROS levels, mitochondrial dysfunction, and ferroptosis. CONCLUSION: Hispidin may represent a potential candidate for treating prostate cancer.


Subject(s)
Apoptosis , Ferroptosis , Prostatic Neoplasms , Reactive Oxygen Species , Humans , Male , Ferroptosis/drug effects , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/drug therapy , Apoptosis/drug effects , Reactive Oxygen Species/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , MAP Kinase Signaling System/drug effects , Cell Movement/drug effects , Signal Transduction/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Pyridones/pharmacology , Phosphatidylinositol 3-Kinase/metabolism , Pyrones
SELECTION OF CITATIONS
SEARCH DETAIL
...