Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45.401
Filter
1.
Iran J Allergy Asthma Immunol ; 23(2): 182-196, 2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38822513

ABSTRACT

Multiple sclerosis (MS) is an autoimmune neurodegenerative disease and has adverse implications. The exact mechanism of its pathogenesis is not fully understood and remains to be elucidated. In the current study we aimed to identify key genes that can serve as potential biomarkers and therapeutic targets for MS and shed light on pathogenesis mechanisms involved in MS. We analyzed a gene expression dataset (GES21942) and found 266 differentially expressed genes (DEGs) including 183 upregulated and 83 downregulated genes in MS patients compared to controls. Then we conducted pathway enrichment on DEGs and selected the top enriched pathway i.e., B cell receptor signaling pathway, and 5 genes of this pathway (CR2, BLK, BLNK, RASGRP3, and KRAS) for further investigation in our clinical samples. We recruited 50 MS patients and 50 controls and assessed the expression of selected genes in the circulation of patients versus controls. Expression of CR2, BLK, BLNK, and RASGRP3 were significantly higher in MS cases compared with controls. There was no significant difference in expression of KRAS between patients and controls. All of the selected genes with differential expression had noticeable diagnostic power and CR2 was the most robust gene in differentiating MS cases from controls. Additionally, a combination of genes resulted in enhanced diagnostic power. Collectively our results suggest that the B cell receptor signaling pathway and the selected genes from this pathway may be implicated in the pathogenesis of MS and each of these genes can be considered as potential diagnostic biomarkers and therapeutic targets.


Subject(s)
Multiple Sclerosis , Receptors, Antigen, B-Cell , Signal Transduction , Humans , Signal Transduction/genetics , Multiple Sclerosis/genetics , Multiple Sclerosis/blood , Female , Male , Adult , Receptors, Antigen, B-Cell/genetics , Gene Expression Profiling , Case-Control Studies , Biomarkers , Middle Aged , Gene Expression Regulation
2.
Plant Cell Rep ; 43(6): 158, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822833

ABSTRACT

KEY MESSAGE: Transgenic plants stably overexpressing ScOPR1 gene enhanced disease resistance by increasing the accumulation of JA, SA, and GST, as well as up-regulating the expression of genes related to signaling pathways. 12-Oxo-phytodienoate reductase (OPR) is an oxidoreductase that depends on flavin mononucleotide (FMN) and catalyzes the conversion of 12-oxophytodienoate (12-OPDA) into jasmonic acid (JA). It plays a key role in plant growth and development, and resistance to adverse stresses. In our previous study, we have obtained an OPR gene (ScOPR1, GenBank Accession Number: MG755745) from sugarcane. This gene showed positive responses to methyl jasmonate (MeJA), salicylic acid (SA), abscisic acid (ABA), and Sporisorium scitamineum, suggesting its potential for pathogen resistance. Here, in our study, we observed that Nicotiana benthamiana leaves transiently overexpressing ScOPR1 exhibited weaker disease symptoms, darker 3,3-diaminobenzidine (DAB) staining, higher accumulation of reactive oxygen species (ROS), and higher expression of hypersensitive response (HR) and SA pathway-related genes after inoculation with Ralstonia solanacearum and Fusarium solanacearum var. coeruleum. Furthermore, the transgenic N. benthamiana plants stably overexpressing the ScOPR1 gene showed enhanced resistance to pathogen infection by increasing the accumulation of JA, SA, and glutathione S-transferase (GST), as well as up-regulating genes related to HR, JA, SA, and ROS signaling pathways. Transcriptome analysis revealed that the specific differentially expressed genes (DEGs) in ScOPR1-OE were significantly enriched in hormone transduction signaling and plant-pathogen interaction pathways. Finally, a functional mechanism model of the ScOPR1 gene in response to pathogen infection was depicted. This study provides insights into the molecular mechanism of ScOPR1 and presents compelling evidence supporting its positive involvement in enhancing plant disease resistance.


Subject(s)
Cyclopentanes , Disease Resistance , Gene Expression Regulation, Plant , Oxylipins , Plant Diseases , Plant Growth Regulators , Plant Proteins , Plants, Genetically Modified , Saccharum , Salicylic Acid , Signal Transduction , Disease Resistance/genetics , Plant Diseases/microbiology , Plant Diseases/genetics , Saccharum/genetics , Saccharum/microbiology , Signal Transduction/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Growth Regulators/metabolism , Oxylipins/metabolism , Salicylic Acid/metabolism , Cyclopentanes/metabolism , Nicotiana/genetics , Nicotiana/microbiology , Reactive Oxygen Species/metabolism , Acetates/pharmacology , Plant Leaves/genetics , Plant Leaves/microbiology , Abscisic Acid/metabolism , Ralstonia solanacearum/physiology , Ralstonia solanacearum/pathogenicity
3.
Mol Biol Rep ; 51(1): 703, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822881

ABSTRACT

BACKGROUND: Non-small cell lung cancer (NSCLC) is the leading cause of cancer morbidity and mortality worldwide, and new diagnostic markers are urgently needed. We aimed to investigate the mechanism by which hsa_circ_0096157 regulates autophagy and cisplatin (DDP) resistance in NSCLC. METHODS: A549 cells were treated with DDP (0 µg/mL or 3 µg/mL). Then, the autophagy activator rapamycin (200 nm) was applied to the A549/DDP cells. Moreover, hsa_circ_0096157 and Nrf2 were knocked down, and Nrf2 was overexpressed in A549/DDP cells. The expression of Hsa_circ_0096157, the Nrf2/ARE pathway-related factors Nrf2, HO-1, and NQO1, and the autophagy-related factors LC3, Beclin-1, and p62 was evaluated by qRT‒PCR or western blotting. Autophagosomes were detected through TEM. An MTS assay was utilized to measure cell proliferation. The associated miRNA levels were also tested by qRT‒PCR. RESULTS: DDP (3 µg/mL) promoted hsa_circ_0096157, LC3 II/I, and Beclin-1 expression and decreased p62 expression. Knocking down hsa_circ_0096157 resulted in the downregulation of LC3 II/I and Beclin-1 expression, upregulation of p62 expression, and decreased proliferation. Rapamycin reversed the effect of interfering with hsa_circ_0096157. Keap1 expression was lower, and Nrf2, HO-1, and NQO1 expression was greater in the A549/DDP group than in the A549 group. HO-1 expression was repressed after Nrf2 interference. In addition, activation of the Nrf2/ARE pathway promoted autophagy in A549/DDP cells. Moreover, hsa_circ_0096157 activated the Nrf2/ARE pathway. The silencing of hsa_circ_0096157 reduced Nrf2 expression by releasing miR-142-5p or miR-548n. Finally, we found that hsa_circ_0096157 promoted A549/DDP cell autophagy by activating the Nrf2/ARE pathway. CONCLUSION: Knockdown of hsa_circ_0096157 inhibits autophagy and DDP resistance in NSCLC cells by downregulating the Nrf2/ARE signaling pathway.


Subject(s)
Autophagy , Carcinoma, Non-Small-Cell Lung , Cisplatin , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic , Lung Neoplasms , NF-E2-Related Factor 2 , Signal Transduction , Humans , Cisplatin/pharmacology , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Autophagy/drug effects , Autophagy/genetics , Signal Transduction/drug effects , Signal Transduction/genetics , Lung Neoplasms/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , A549 Cells , Gene Expression Regulation, Neoplastic/drug effects , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cell Line, Tumor , Antioxidant Response Elements/genetics , Antineoplastic Agents/pharmacology , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism
4.
Mol Biol Rep ; 51(1): 720, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824268

ABSTRACT

BACKGROUND: Tumor-associated macrophages (TAM) exert a significant influence on the progression and heterogeneity of various subtypes of breast cancer (BRCA). However, the roles of heterogeneous TAM within BRCA subtypes remain unclear. Therefore, this study sought to elucidate the role of TAM across the following three BRCA subtypes: triple-negative breast cancer, luminal, and HER2. MATERIALS AND METHODS: This investigation aimed to delineate the variations in marker genes, drug sensitivity, and cellular communication among TAM across the three BRCA subtypes. We identified specific ligand-receptor (L-R) pairs and downstream mechanisms regulated by VEGFA-VEGFR1, SPP1-CD44, and SPP1-ITGB1 L-R pairs. Experimental verification of these pairs was conducted by co-culturing macrophages with three subtypes of BRCA cells. RESULTS: Our findings reveal the heterogeneity of macrophages within the three BRCA subtypes, evidenced by variations in marker gene expression, composition, and functional characteristics. Notably, heterogeneous TAM were found to promote invasive migration and epithelial-mesenchymal transition (EMT) in MDA-MB-231, MCF-7, and SKBR3 cells, activating NF-κB pathway via P38 MAPK, TGF-ß1, and AKT, respectively, through distinct VEGFA-VEGFR1, SPP1-CD44, and SPP1-ITGB1 L-R pairs. Inhibition of these specific L-R pairs effectively reversed EMT, migration, and invasion of each cancer cells. Furthermore, we observed a correlation between ligand gene expression and TAM sensitivity to anticancer drugs, suggesting a potential strategy for optimizing personalized treatment guidance. CONCLUSION: Our study highlights the capacity of heterogeneous TAM to modulate biological functions via distinct pathways mediated by specific L-R pairs within diverse BRCA subtypes. This study might provide insights into precision immunotherapy of different subtypes of BRCA.


Subject(s)
Breast Neoplasms , Epithelial-Mesenchymal Transition , Tumor-Associated Macrophages , Humans , Female , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/immunology , Epithelial-Mesenchymal Transition/genetics , Cell Line, Tumor , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Single-Cell Analysis/methods , MCF-7 Cells , Cell Movement/genetics , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Sequence Analysis, RNA/methods , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , Signal Transduction/genetics , Tumor Microenvironment/genetics
5.
J Toxicol Sci ; 49(6): 281-288, 2024.
Article in English | MEDLINE | ID: mdl-38825487

ABSTRACT

Nitric oxide (NO) plays a physiological role in signal transduction and excess or chronic NO has toxic effects as an inflammatory mediator. NO reversibly forms protein S-nitrosylation and exerts toxicological functions related to disease progression. DNA methyltransferases, epigenome-related enzymes, are inhibited in enzymatic activity by S-nitrosylation. Therefore, excess or chronic NO exposure may cause disease by altering gene expression. However, the effects of chronic NO exposure on transcriptome are poorly understood. Here, we performed transcriptome analysis of A549, AGS, HEK293T, and SW48 cells exposed to NO (100 µM) for 48 hr. We showed that the differentially expressed genes were cell-specific. Gene ontology analysis showed that the functional signature of differentially expressed genes related to cell adhesion or migration was upregulated in several cell lines. Gene set enrichment analysis indicated that NO stimulated inflammation-related gene expression in various cell lines. This finding supports previous studies showing that NO is closely involved in inflammatory diseases. Overall, this study elucidates the pathogenesis of NO-associated inflammatory diseases by focusing on changes in gene expression.


Subject(s)
Gene Expression Profiling , Nitric Oxide , Transcriptome , Humans , Nitric Oxide/metabolism , Transcriptome/drug effects , Cell Adhesion/drug effects , Cell Adhesion/genetics , HEK293 Cells , Cell Movement/drug effects , Cell Movement/genetics , Inflammation/genetics , Inflammation/chemically induced , Signal Transduction/drug effects , Signal Transduction/genetics
6.
Sci Rep ; 14(1): 12683, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831059

ABSTRACT

Ulcerative colitis (UC) is characterized by an abnormal immune response, and the pathogenesis lacks clear understanding. The cGAS-STING pathway is an innate immune signaling pathway that plays a significant role in various pathophysiological processes. However, the role of the cGAS-STING pathway in UC remains largely unclear. In this study, we obtained transcriptome sequencing data from multiple publicly available databases. cGAS-STING related genes were obtained through literature search, and differentially expressed genes (DEGs) were analyzed using R package limma. Hub genes were identified through protein-protein interaction (PPI) network analysis and module construction. The ConsensuClusterPlus package was utilized to identify molecular subtypes based on hub genes. The therapeutic response, immune microenvironment, and biological pathways of subtypes were further investigated. A total of 18 DEGs were found in UC patients. We further identified IFI16, MB21D1 (CGAS), TMEM173 (STING) and TBK1 as the hub genes. These genes are highly expressed in UC. IFI16 exhibited the highest diagnostic value and predictive value for response to anti-TNF therapy. The expression level of IFI16 was higher in non-responders to anti-TNF therapy. Furthermore, a cluster analysis based on genes related to the cGAS-STING pathway revealed that patients with higher gene expression exhibited elevated immune burden and inflammation levels. This study is a pioneering analysis of cGAS-STING pathway-related genes in UC. These findings provide new insights for the diagnosis of UC and the prediction of therapeutic response.


Subject(s)
Colitis, Ulcerative , Membrane Proteins , Nucleotidyltransferases , Signal Transduction , Humans , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Colitis, Ulcerative/genetics , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/immunology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Signal Transduction/genetics , Protein Interaction Maps/genetics , Gene Expression Profiling , Transcriptome
7.
PeerJ ; 12: e17486, 2024.
Article in English | MEDLINE | ID: mdl-38832038

ABSTRACT

Abdominal subcutaneous fat deposition (ASFD) is not only related to meat quality in the pig industry but also to human health in medicine. It is of great value to elucidate the potential molecular mechanisms of ASFD. The present study aims to identify obese-specific biomarkers and key pathways correlated with ASFD in pigs. The ASF-related mRNA expression dataset GSE136754 was retrieved from the Gene Expression Omnibus (GEO) database and systematically analyzed using a comprehensive bioinformatics method. A total of 565 differentially expressed genes (DEGs) were identified between three obese and three lean pigs, and these DEGs were mainly involved in the p53 signaling pathway, MAPK signaling pathway and fatty acid metabolism. A protein-protein interaction (PPI) network, consisting of 540 nodes and 1,065 edges, was constructed, and the top ten genes with the highest degree scores-ABL1, HDAC1, CDC42, HDAC2, MRPS5, MRPS10, MDM2, JUP, RPL7L1 and UQCRFS1-were identified as hub genes in the whole PPI network. Especially HDAC1, MDM2, MRPS10 and RPL7L1 were identified as potential robust obese-specific biomarkers due to their significant differences in single gene expression levels and high ROC area; this was further verified by quantitative real-time PCR (qRT-PCR) on abdominal subcutaneous fat samples from obese-type (Saba) and lean-type (Large White) pigs. Additionally, a mRNA-miRNA-lncRNA ceRNA network consisting of four potential biomarkers, 15 miRNAs and 51 lncRNAs was established, and two targeted lncRNAs with more connections, XIST and NEAT1, were identified as potentially important regulatory factors. The findings of this study may provide novel insights into the molecular mechanism involved in ASFD.


Subject(s)
Biomarkers , Computational Biology , Obesity , Subcutaneous Fat, Abdominal , Animals , Obesity/genetics , Obesity/metabolism , Computational Biology/methods , Swine , Biomarkers/metabolism , Subcutaneous Fat, Abdominal/metabolism , Protein Interaction Maps , Gene Expression Profiling , Signal Transduction/genetics , Gene Regulatory Networks
8.
Mol Biol Rep ; 51(1): 605, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38700570

ABSTRACT

BACKGROUND: Cultivation of Crocus sativus (saffron) faces challenges due to inconsistent flowering patterns and variations in yield. Flowering takes place in a graded way with smaller corms unable to produce flowers. Enhancing the productivity requires a comprehensive understanding of the underlying genetic mechanisms that govern this size-based flowering initiation and commitment. Therefore, samples enriched with non-flowering and flowering apical buds from small (< 6 g) and large (> 14 g) corms were sequenced. METHODS AND RESULTS: Apical bud enriched samples from small and large corms were collected immediately after dormancy break in July. RNA sequencing was performed using Illumina Novaseq 6000 to access the gene expression profiles associated with size dependent flowering. De novo transcriptome assembly and analysis using flowering committed buds from large corms at post-dormancy and their comparison with vegetative shoot primordia from small corms pointed out the major role of starch and sucrose metabolism, Auxin and ABA hormonal regulation. Many genes with known dual responses in flowering development and circadian rhythm like Flowering locus T and Cryptochrome 1 along with a transcript showing homology with small auxin upregulated RNA (SAUR) exhibited induced expression in flowering buds. Thorough prediction of Crocus sativus non-coding RNA repertoire has been carried out for the first time. Enolase was found to be acting as a major hub with protein-protein interaction analysis using Arabidopsis counterparts. CONCLUSION: Transcripts belong to key pathways including phenylpropanoid biosynthesis, hormone signaling and carbon metabolism were found significantly modulated. KEGG assessment and protein-protein interaction analysis confirm the expression data. Findings unravel the genetic determinants driving the size dependent flowering in Crocus sativus.


Subject(s)
Crocus , Flowers , Gene Expression Profiling , Gene Expression Regulation, Plant , Indoleacetic Acids , Meristem , Signal Transduction , Flowers/genetics , Flowers/growth & development , Flowers/metabolism , Crocus/genetics , Crocus/growth & development , Crocus/metabolism , Gene Expression Regulation, Plant/genetics , Indoleacetic Acids/metabolism , Gene Expression Profiling/methods , Meristem/genetics , Meristem/growth & development , Meristem/metabolism , Signal Transduction/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Transcriptome/genetics , Sugars/metabolism , Plant Growth Regulators/metabolism
9.
Pathol Res Pract ; 257: 155316, 2024 May.
Article in English | MEDLINE | ID: mdl-38692125

ABSTRACT

Non-small cell lung cancer (NSCLC), accounting for more than 80% of all cases, is the predominant form of lung cancer and the leading cause of cancer-related deaths worldwide. Significant progress has been made in diagnostic techniques, surgical interventions, chemotherapy protocols, and targeted therapies at the molecular level, leading to enhanced treatment outcomes in patients with NSCLC. Extensive evidence supports the use of circular RNAs (circRNAs), a specific category of naturally occurring non-coding small RNAs (ncRNAs), for the diagnosis, monitoring of treatment efficacy, and assessment of survival in NSCLC. CircRNAs have been identified to play significant roles in various aspects of cancer formation, either as tumor suppressors or tumor promoters, contributing to cancer development through several signaling pathways, including the phosphoinositide 3-kinases (PI3Ks) pathway. This pathway is well-established because of its regulatory role in essential cellular processes. CircRNAs regulate the PI3K/AKT pathway by targeting diverse cellular elements. This review aims to provide insight into the involvement of several circRNAs linked to the PI3K/AKT pathway in NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Phosphatidylinositol 3-Kinases , RNA, Circular , Signal Transduction , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , RNA, Circular/genetics , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Signal Transduction/genetics , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Gene Expression Regulation, Neoplastic
10.
Plant Signal Behav ; 19(1): 2347783, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38699898

ABSTRACT

As sessile organisms, plants have evolved complex signaling mechanisms to sense stress and acclimate. This includes the use of reactive oxygen species (ROS) generated during dysfunctional photosynthesis to initiate signaling. One such ROS, singlet oxygen (1O2), can trigger retrograde signaling, chloroplast degradation, and programmed cell death. However, the signaling mechanisms are largely unknown. Several proteins (e.g. PUB4, OXI1, EX1) are proposed to play signaling roles across three Arabidopsis thaliana mutants that conditionally accumulate chloroplast 1O2 (fluorescent in blue light (flu), chlorina 1 (ch1), and plastid ferrochelatase 2 (fc2)). We previously demonstrated that these mutants reveal at least two chloroplast 1O2 signaling pathways (represented by flu and fc2/ch1). Here, we test if the 1O2-accumulating lesion mimic mutant, accelerated cell death 2 (acd2), also utilizes these pathways. The pub4-6 allele delayed lesion formation in acd2 and restored photosynthetic efficiency and biomass. Conversely, an oxi1 mutation had no measurable effect on these phenotypes. acd2 mutants were not sensitive to excess light (EL) stress, yet pub4-6 and oxi1 both conferred EL tolerance within the acd2 background, suggesting that EL-induced 1O2 signaling pathways are independent from spontaneous lesion formation. Thus, 1O2 signaling in acd2 may represent a third (partially overlapping) pathway to control cellular degradation.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Chloroplasts , Mutation , Signal Transduction , Singlet Oxygen , Arabidopsis/genetics , Arabidopsis/metabolism , Singlet Oxygen/metabolism , Chloroplasts/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Signal Transduction/genetics , Mutation/genetics , Photosynthesis/genetics
11.
Mol Biol Rep ; 51(1): 615, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38704760

ABSTRACT

A complex sequence of occurrences, including host genetic vulnerability, Helicobacter pylori infection, and other environmental variables, culminate in gastric cancer (GC). The development of several genetic and epigenetic changes in oncogenes and tumor suppressor genes causes dysregulation of several signaling pathways, which upsets the cell cycle and the equilibrium between cell division and apoptosis, leading to GC. Developments in computational biology and RNA-seq technology enable quick detection and characterization of long non-coding RNAs (lncRNAs). Recent studies have shown that long non-coding RNAs (lncRNAs) have multiple roles in the development of gastric cancer. These lncRNAs interact with molecules of protein, RNA, DNA, and/or combinations. This review article explores several gastric cancer-associated lncRNAs, such as ADAMTS9-AS2, UCA1, XBP-1, and LINC00152. These various lncRNAs could change GC cell apoptosis, migration, and invasion features in the tumor microenvironment. This review provides an overview of the most recent research on lncRNAs and GC cell apoptosis, migration, invasion, and drug resistance, focusing on studies conducted in cancer cells and healthy cells during differentiation.


Subject(s)
Apoptosis , Gene Expression Regulation, Neoplastic , MicroRNAs , RNA, Long Noncoding , Stomach Neoplasms , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Humans , RNA, Long Noncoding/genetics , MicroRNAs/genetics , Apoptosis/genetics , Tumor Microenvironment/genetics , Cell Movement/genetics , Signal Transduction/genetics , Drug Resistance, Neoplasm/genetics
12.
BMC Med Genomics ; 17(1): 121, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702698

ABSTRACT

BACKGROUND: Kidney renal papillary cell carcinoma (KIRP) is the second most prevalent malignant cancer originating from the renal epithelium. Nowadays, cancer stem cells and stemness-related genes (SRGs) are revealed to play important roles in the carcinogenesis and metastasis of various tumors. Consequently, we aim to investigate the underlying mechanisms of SRGs in KIRP. METHODS: RNA-seq profiles of 141 KIRP samples were downloaded from the TCGA database, based on which we calculated the mRNA expression-based stemness index (mRNAsi). Next, we selected the differentially expressed genes (DEGs) between low- and high-mRNAsi groups. Then, we utilized weighted gene correlation network analysis (WGCNA) and univariate Cox analysis to identify prognostic SRGs. Afterwards, SRGs were included in the multivariate Cox regression analysis to establish a prognostic model. In addition, a regulatory network was constructed by Pearson correlation analysis, incorporating key genes, upstream transcription factors (TFs), and downstream signaling pathways. Finally, we used Connectivity map analysis to identify the potential inhibitors. RESULTS: In total, 1124 genes were characterized as DEGs between low- and high-RNAsi groups. Based on six prognostic SRGs (CCKBR, GPR50, GDNF, SPOCK3, KC877982.1, and MYO15A), a prediction model was established with an area under curve of 0.861. Furthermore, among the TFs, genes, and signaling pathways that had significant correlations, the CBX2-ASPH-Notch signaling pathway was the most significantly correlated. Finally, resveratrol might be a potential inhibitor for KIRP. CONCLUSIONS: We suggested that CBX2 could regulate ASPH through activation of the Notch signaling pathway, which might be correlated with the carcinogenesis, development, and unfavorable prognosis of KIRP.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Neoplastic Stem Cells , Humans , Prognosis , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Male , Biomarkers, Tumor/genetics , Female , Gene Expression Profiling , Middle Aged , Signal Transduction/genetics
13.
Life Sci Alliance ; 7(8)2024 Aug.
Article in English | MEDLINE | ID: mdl-38755006

ABSTRACT

Diabetes complications such as nephropathy, retinopathy, or cardiovascular disease arise from vascular dysfunction. In this context, it has been observed that past hyperglycemic events can induce long-lasting alterations, a phenomenon termed "metabolic memory." In this study, we evaluated the genome-wide gene expression and chromatin accessibility alterations caused by transient high-glucose exposure in human endothelial cells (ECs) in vitro. We found that cells exposed to high glucose exhibited substantial gene expression changes in pathways known to be impaired in diabetes, many of which persist after glucose normalization. Chromatin accessibility analysis also revealed that transient hyperglycemia induces persistent alterations, mainly in non-promoter regions identified as enhancers with neighboring genes showing lasting alterations. Notably, activation of the NRF2 pathway through NRF2 overexpression or supplementation with the plant-derived compound sulforaphane, effectively reverses the glucose-induced transcriptional and chromatin accessibility memories in ECs. These findings underscore the enduring impact of transient hyperglycemia on ECs' transcriptomic and chromatin accessibility profiles, emphasizing the potential utility of pharmacological NRF2 pathway activation in mitigating and reversing the high-glucose-induced transcriptional and epigenetic alterations.


Subject(s)
Epigenesis, Genetic , Glucose , NF-E2-Related Factor 2 , Signal Transduction , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Humans , Glucose/metabolism , Epigenesis, Genetic/drug effects , Signal Transduction/drug effects , Signal Transduction/genetics , Hyperglycemia/metabolism , Hyperglycemia/genetics , Chromatin/metabolism , Chromatin/genetics , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Transcription, Genetic/drug effects , Gene Expression Regulation/drug effects , Isothiocyanates/pharmacology , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Sulfoxides/pharmacology
14.
NPJ Syst Biol Appl ; 10(1): 51, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750040

ABSTRACT

In vertical inhibition treatment strategies, multiple components of an intracellular pathway are simultaneously inhibited. Vertical inhibition of the BRAFV600E-MEK-ERK signalling pathway is a standard of care for treating BRAFV600E-mutated melanoma where two targeted cancer drugs, a BRAFV600E-inhibitor, and a MEK inhibitor, are administered in combination. Targeted therapies have been linked to early onsets of drug resistance, and thus treatment strategies of higher complexities and lower doses have been proposed as alternatives to current clinical strategies. However, finding optimal complex, low-dose treatment strategies is a challenge, as it is possible to design more treatment strategies than are feasibly testable in experimental settings. To quantitatively address this challenge, we develop a mathematical model of BRAFV600E-MEK-ERK signalling dynamics in response to combinations of the BRAFV600E-inhibitor dabrafenib (DBF), the MEK inhibitor trametinib (TMT), and the ERK-inhibitor SCH772984 (SCH). From a model of the BRAFV600E-MEK-ERK pathway, and a set of molecular-level drug-protein interactions, we extract a system of chemical reactions that is parameterised by in vitro data and converted to a system of ordinary differential equations (ODEs) using the law of mass action. The ODEs are solved numerically to produce simulations of how pathway-component concentrations change over time in response to different treatment strategies, i.e., inhibitor combinations and doses. The model can thus be used to limit the search space for effective treatment strategies that target the BRAFV600E-MEK-ERK pathway and warrant further experimental investigation. The results demonstrate that DBF and DBF-TMT-SCH therapies show marked sensitivity to BRAFV600E concentrations in silico, whilst TMT and SCH monotherapies do not.


Subject(s)
Imidazoles , MAP Kinase Signaling System , Melanoma , Protein Kinase Inhibitors , Proto-Oncogene Proteins B-raf , Pyridones , Pyrimidinones , Proto-Oncogene Proteins B-raf/genetics , Humans , Pyridones/pharmacology , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/genetics , Melanoma/drug therapy , Melanoma/genetics , Imidazoles/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyrimidinones/pharmacology , Oximes/pharmacology , Computer Simulation , Models, Biological , Signal Transduction/drug effects , Signal Transduction/genetics , Mutation , Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics
15.
Cell Commun Signal ; 22(1): 272, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750472

ABSTRACT

BACKGROUND: In the tumor immune microenvironment (TIME), triggering receptor expressed on myeloid cells 2 (trem2) is widely considered to be a crucial molecule on tumor-associated macrophages(TAMs). Multiple studies have shown that trem2 may function as an immune checkpoint in various malignant tumors, mediating tumor immune evasion. However, its specific molecular mechanisms, especially in glioma, remain elusive. METHODS: Lentivirus was transfected to establish cells with stable knockdown of trem2. A Transwell system was used for segregated coculture of glioma cells and microglia. Western blotting, quantitative real-time polymerase chain reaction (qRT‒PCR), and immunofluorescence (IF) were used to measure the expression levels of target proteins. The proliferation, invasion, and migration of cells were detected by colony formation, cell counting kit-8 (CCK8), 5-ethynyl-2'-deoxyuridine (EdU) and transwell assays. The cell cycle, apoptosis rate and reactive oxygen species (ROS) level of cells were assessed using flow cytometry assays. The comet assay and tube formation assay were used to detect DNA damage in glioma cells and angiogenesis activity, respectively. Gl261 cell lines and C57BL/6 mice were used to construct the glioma orthotopic transplantation tumor model. RESULTS: Trem2 was highly overexpressed in glioma TAMs. Knocking down trem2 in microglia suppressed the growth and angiogenesis activity of glioma cells in vivo and in vitro. Mechanistically, knockdown of trem2 in microglia promoted proinflammatory microglia and inhibited anti-inflammatory microglia by activating jak2/stat1 and inhibiting the NF-κB p50 signaling pathway. The proinflammatory microglia produced high concentrations of nitric oxide (NO) and high levels of the proinflammatory cytokines TNF-α, IL-6, and IL-1ß, and caused further DNA damage and promoted the apoptosis rate of tumor cells. CONCLUSIONS: Our findings revealed that trem2 in microglia plays a significant role in the TIME of gliomas. Knockdown of trem2 in microglia might help to improve the efficiency of inhibiting glioma growth and delaying tumor progression and provide new ideas for further treatment of glioma.


Subject(s)
Glioma , Janus Kinase 2 , Membrane Glycoproteins , Microglia , NF-kappa B , Receptors, Immunologic , STAT3 Transcription Factor , Signal Transduction , Glioma/genetics , Glioma/pathology , Glioma/metabolism , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Microglia/metabolism , Microglia/pathology , Animals , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , NF-kappa B/metabolism , Mice , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Signal Transduction/genetics , Cell Line, Tumor , Mice, Inbred C57BL , Gene Knockdown Techniques , Cell Proliferation/genetics , Humans , Inflammation/genetics , Inflammation/pathology , Apoptosis/genetics , Disease Progression , Cell Movement/genetics
16.
BMC Cancer ; 24(1): 624, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778317

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) has a high mortality rate, and the mechanisms underlying tumor development and progression remain unclear. However, inactivated tumor suppressor genes might play key roles. DNA methylation is a critical regulatory mechanism for inactivating tumor suppressor genes in HCC. Therefore, this study investigated methylation-related tumor suppressors in HCC to identify potential biomarkers and therapeutic targets. METHODS: We assessed genome-wide DNA methylation in HCC using whole genome bisulfite sequencing (WGBS) and RNA sequencing, respectively, and identified the differential expression of methylation-related genes, and finally screened phosphodiesterase 7B (PDE7B) for the study. The correlation between PDE7B expression and clinical features was then assessed. We then analyzed the changes of PDE7B expression in HCC cells before and after DNA methyltransferase inhibitor treatment by MassArray nucleic acid mass spectrometry. Furthermore, HCC cell lines overexpressing PDE7B were constructed to investigate its effect on HCC cell function. Finally, GO and KEGG were applied for the enrichment analysis of PDE7B-related pathways, and their effects on the expression of pathway proteins and EMT-related factors in HCC cells were preliminarily explored. RESULTS: HCC exhibited a genome-wide hypomethylation pattern. We screened 713 hypomethylated and 362 hypermethylated mCG regions in HCC and adjacent normal tissues. GO analysis showed that the main molecular functions of hypermethylation and hypomethylation were "DNA-binding transcriptional activator activity" and "structural component of ribosomes", respectively, whereas KEGG analysis showed that they were enriched in "bile secretion" and "Ras-associated protein-1 (Rap1) signaling pathway", respectively. PDE7B expression was significantly down-regulated in HCC tissues, and this low expression was negatively correlated with recurrence and prognosis of HCC. In addition, DNA methylation regulates PDE7B expression in HCC. On the contrary, overexpression of PDE7B inhibited tumor proliferation and metastasis in vitro. In addition, PDE7B-related genes were mainly enriched in the PI3K/ATK signaling pathway, and PDE7B overexpression inhibited the progression of PI3K/ATK signaling pathway-related proteins and EMT. CONCLUSION: PDE7B expression in HCC may be regulated by promoter methylation. PDE7B can regulate the EMT process in HCC cells through the PI3K/AKT pathway, which in turn affects HCC metastasis and invasion.


Subject(s)
Carcinoma, Hepatocellular , Cyclic Nucleotide Phosphodiesterases, Type 7 , DNA Methylation , Gene Expression Regulation, Neoplastic , Liver Neoplasms , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Humans , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 7/genetics , Cyclic Nucleotide Phosphodiesterases, Type 7/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Cell Line, Tumor , Neoplasm Invasiveness/genetics , Genes, Tumor Suppressor , Male , Cell Proliferation/genetics , Female , Neoplasm Metastasis , Cell Movement/genetics
17.
PeerJ ; 12: e17397, 2024.
Article in English | MEDLINE | ID: mdl-38784391

ABSTRACT

Background: Osteosarcoma is the most common primary malignant bone tumor, but its pathogenesis remains unclear. Ubiquitin-specific processing peptidase 22 (USP22) is reported to be highly expressed and associated with tumor malignancy and prognosis in cancers. However, the role and mechanism of USP22 in osteosarcoma is not fully understood. This study aims to investigate the function and potential mechanism of USP22 in osteosarcoma using bioinformatics analysis combined with experimental validation. Methods: We first integrated transcriptomic datasets and clinical information of osteosarcoma from GEO and TCGA databases to assess the expression and prognostic value of USP22 in osteosarcoma. Then, differential expression analysis and weighted gene co-expression network analysis (WGCNA) were conducted to identify USP22-related co-expressed genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed to explore the biological functions and signaling pathways of USP22 co-expressed genes. To validate the accuracy of bioinformatics analyses, we downregulated USP22 expression in osteosarcoma cell line Sao-2 using siRNA and assessed its effect on cell proliferation, migration, invasion, apoptosis, and regulation of key signaling pathways. Results: We found that USP22 was highly expressed in osteosarcoma tissues and correlated with poor prognosis in osteosarcoma patients. USP22 also showed potential as a diagnostic marker for osteosarcoma. In addition, 344 USP22-related co-expressed genes were identified, mainly involved in signaling pathways such as glycolysis, oxidative phosphorylation, spliceosome, thermogenesis, and cell cycle. The in vitro experiments confirmed the accuracy and reliability of bioinformatics analyses. We found that downregulation of USP22 could inhibit Sao-2 cell proliferation, migration, invasion, and induce apoptosis. Furthermore, downregulation of USP22 significantly reduced aerobic glycolysis levels in Sao-2 cells and inhibited the expression of key enzymes and transporters in aerobic glycolysis pathways such as HK2, PKM2, and GLUT1. Conclusions: USP22 plays a critical role in the occurrence, development, and prognosis of osteosarcoma. USP22 could influence Sao-2 cell proliferation, apoptosis, migration, and invasion by regulating the glycolysis pathway, thereby promoting osteosarcoma progression. Therefore, USP22 may be a potential therapeutic target for the treatment of osteosarcoma.


Subject(s)
Bone Neoplasms , Cell Proliferation , Computational Biology , Glycolysis , Osteosarcoma , Ubiquitin Thiolesterase , Osteosarcoma/genetics , Osteosarcoma/metabolism , Osteosarcoma/pathology , Humans , Glycolysis/genetics , Bone Neoplasms/genetics , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Cell Line, Tumor , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism , Cell Proliferation/genetics , Prognosis , Gene Expression Regulation, Neoplastic , Apoptosis/genetics , Cell Movement/genetics , Signal Transduction/genetics
18.
Biomolecules ; 14(5)2024 May 03.
Article in English | MEDLINE | ID: mdl-38785955

ABSTRACT

Psoriasis is a lifelong, systemic, immune mediated inflammatory skin condition, affecting 1-3% of the world's population, with an impact on quality of life similar to diseases like cancer or diabetes. Genetics are the single largest risk factor in psoriasis, with Genome-Wide Association (GWAS) studies showing that many psoriasis risk genes lie along the IL-23/Th17 axis. Potential psoriasis risk genes determined through GWAS can be annotated and characterised using functional genomics, allowing the identification of novel drug targets and the repurposing of existing drugs. This review is focused on the IL-23/Th17 axis, providing an insight into key cell types, cytokines, and intracellular signaling pathways involved. This includes examination of currently available biological treatments, time to relapse post drug withdrawal, and rates of primary/secondary drug failure, showing the need for greater understanding of the underlying genetic mechanisms of psoriasis and how they can impact treatment. This could allow for patient stratification towards the treatment most likely to reduce the burden of disease for the longest period possible.


Subject(s)
Genome-Wide Association Study , Genomics , Psoriasis , Humans , Psoriasis/genetics , Psoriasis/drug therapy , Interleukin-23/genetics , Interleukin-23/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism , Signal Transduction/genetics , Genetic Predisposition to Disease
19.
Cells ; 13(10)2024 May 13.
Article in English | MEDLINE | ID: mdl-38786049

ABSTRACT

Plant structure-related agronomic traits like plant height and leaf size are critical for growth, development, and crop yield. Defining the types of genes involved in regulating plant structure size is essential for the molecular-assisted breeding of peppers. This research conducted comparative transcriptome analyses using Capsicum baccatum germplasm HNUCB0112 and HNUCB0222 and their F2 generation as materials. A total of 6574 differentially expressed genes (DEGs) were detected, which contain 379 differentially expressed transcription factors, mainly including transcription factor families such as TCP, WRKY, AUX/IAA, and MYB. Seven classes of DEGs were annotated in the plant hormone signal transduction pathway, including indole acetic acid (IAA), gibberellin (GA), cytokinin (CK), abscisic acid (ABA), jasmonic acid (JA), ethylene (ET), and salicylic acid (SA). The 26 modules were obtained by WGCNA analysis, and the MEpink module was positively correlated with plant height and leaf size, and hub genes associated with plant height and leaf size were anticipated. Differential genes were verified by qRT-PCR, which was consistent with the RNA-Seq results, demonstrating the accuracy of the sequencing results. These results enhance our understanding of the developmental regulatory networks governing pepper key traits like plant height and leaf size and offer new information for future research on the pepper plant architecture system.


Subject(s)
Capsicum , Gene Expression Regulation, Plant , Plant Growth Regulators , Plant Leaves , Signal Transduction , Transcriptome , Capsicum/genetics , Capsicum/growth & development , Capsicum/anatomy & histology , Plant Growth Regulators/metabolism , Plant Growth Regulators/genetics , Plant Leaves/genetics , Plant Leaves/anatomy & histology , Plant Leaves/growth & development , Plant Leaves/metabolism , Transcriptome/genetics , Signal Transduction/genetics , Metabolome/genetics , Gene Expression Profiling , Genes, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
20.
Sci Rep ; 14(1): 10278, 2024 05 04.
Article in English | MEDLINE | ID: mdl-38704490

ABSTRACT

Moyamoya disease (MMD) is a cerebrovascular narrowing and occlusive condition characterized by progressive stenosis of the terminal portion of the internal carotid artery and the formation of an abnormal network of dilated, fragile perforators at the base of the brain. However, the role of PANoptosis, an apoptotic mechanism associated with vascular disease, has not been elucidated in MMD. In our study, a total of 40 patients' genetic data were included, and a total of 815 MMD-related differential genes were screened, including 215 upregulated genes and 600 downregulated genes. Among them, DNAJA3, ESR1, H19, KRT18 and STK3 were five key genes. These five key genes were associated with a variety of immune cells and immune factors. Moreover, GSEA (gene set enrichment analysis) and GSVA (gene set variation analysis) showed that the different expression levels of the five key genes affected multiple signaling pathways associated with MMD. In addition, they were associated with the expression of MMD-related genes. Then, based on the five key genes, a transcription factor regulatory network was constructed. In addition, targeted therapeutic drugs against MMD-related genes were obtained by the Cmap drug prediction method: MST-312, bisacodyl, indirubin, and tropanyl-3,5-dimethylbenzoate. These results suggest that the PANoptosis-related genes may contribute to the pathogenesis of MMD through multiple mechanisms.


Subject(s)
Gene Regulatory Networks , Moyamoya Disease , Humans , Moyamoya Disease/genetics , Moyamoya Disease/immunology , Apoptosis/genetics , Gene Expression Profiling , Male , Signal Transduction/genetics , Female , Gene Expression Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...