Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90.394
Filter
1.
Biol Res ; 57(1): 37, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824571

ABSTRACT

It is widely acknowledged that aging, mitochondrial dysfunction, and cellular phenotypic abnormalities are intricately associated with the degeneration of bone and cartilage. Consequently, gaining a comprehensive understanding of the regulatory patterns governing mitochondrial function and its underlying mechanisms holds promise for mitigating the progression of osteoarthritis, intervertebral disc degeneration, and osteoporosis. Mitochondrial hormesis, referred to as mitohormesis, represents a cellular adaptive stress response mechanism wherein mitochondria restore homeostasis and augment resistance capabilities against stimuli by generating reactive oxygen species (ROS), orchestrating unfolded protein reactions (UPRmt), inducing mitochondrial-derived peptides (MDP), instigating mitochondrial dynamic changes, and activating mitophagy, all prompted by low doses of stressors. The varying nature, intensity, and duration of stimulus sources elicit divergent degrees of mitochondrial stress responses, subsequently activating one or more signaling pathways to initiate mitohormesis. This review focuses specifically on the effector molecules and regulatory networks associated with mitohormesis, while also scrutinizing extant mechanisms of mitochondrial dysfunction contributing to bone and cartilage degeneration through oxidative stress damage. Additionally, it underscores the potential of mechanical stimulation, intermittent dietary restrictions, hypoxic preconditioning, and low-dose toxic compounds to trigger mitohormesis, thereby alleviating bone and cartilage degeneration.


Subject(s)
Hormesis , Mitochondria , Oxidative Stress , Humans , Hormesis/physiology , Mitochondria/physiology , Oxidative Stress/physiology , Reactive Oxygen Species/metabolism , Animals , Osteoarthritis/therapy , Osteoarthritis/physiopathology , Signal Transduction/physiology
2.
Respir Res ; 25(1): 230, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824593

ABSTRACT

BACKGROUND: Airway epithelium is an important component of airway structure and the initiator of airway remodeling in asthma. The changes of extracellular matrix (ECM), such as collagen deposition and structural disturbance, are typical pathological features of airway remodeling. Thus, identifying key mediators that derived from airway epithelium and capable of modulating ECM may provide valuable insights for targeted therapy of asthma. METHODS: The datasets from Gene Expression Omnibus database were analyzed to screen differentially expressed genes in airway epithelium of asthma. We collected bronchoscopic biopsies and serum samples from asthmatic and healthy subjects to assess lysyl oxidase like 2 (LOXL2) expression. RNA sequencing and various experiments were performed to determine the influences of LOXL2 knockdown in ovalbumin (OVA)-induced mouse models. The roles and mechanisms of LOXL2 in bronchial epithelial cells were explored using LOXL2 small interfering RNA, overexpression plasmid and AKT inhibitor. RESULTS: Both bioinformatics analysis and further experiments revealed that LOXL2 is highly expressed in airway epithelium of asthmatics. In vivo, LOXL2 knockdown significantly inhibited OVA-induced ECM deposition and epithelial-mesenchymal transition (EMT) in mice. In vitro, the transfection experiments on 16HBE cells demonstrated that LOXL2 overexpression increases the expression of N-cadherin and fibronectin and reduces the expression of E-cadherin. Conversely, after silencing LOXL2, the expression of E-cadherin is up-regulated. In addition, the remodeling and EMT process that induced by transforming growth factor-ß1 could be enhanced and weakened after LOXL2 overexpression and silencing in 16HBE cells. Combining the RNA sequencing of mouse lung tissues and experiments in vitro, LOXL2 was involved in the regulation of AKT signaling pathway. Moreover, the treatment with AKT inhibitor in vitro partially alleviated the consequences associated with LOXL2 overexpression. CONCLUSIONS: Taken together, the results demonstrated that epithelial LOXL2 plays a role in asthmatic airway remodeling partly via the AKT signaling pathway and highlighted the potential of LOXL2 as a therapeutic target for airway remodeling in asthma.


Subject(s)
Airway Remodeling , Amino Acid Oxidoreductases , Asthma , Ovalbumin , Proto-Oncogene Proteins c-akt , Signal Transduction , Animals , Amino Acid Oxidoreductases/metabolism , Amino Acid Oxidoreductases/genetics , Amino Acid Oxidoreductases/biosynthesis , Ovalbumin/toxicity , Airway Remodeling/physiology , Proto-Oncogene Proteins c-akt/metabolism , Mice , Humans , Asthma/pathology , Asthma/metabolism , Asthma/enzymology , Asthma/genetics , Signal Transduction/physiology , Female , Mice, Inbred BALB C , Male , Epithelial-Mesenchymal Transition/physiology
3.
J Orthop Surg Res ; 19(1): 330, 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38825686

ABSTRACT

OBJECTIVE: The present study aimed to investigate the underlying mechanism of mechanical stimulation in regulating osteogenic differentiation. MATERIALS AND METHODS: Osteoblasts were exposed to compressive force (0-4 g/cm2) for 1-3 days or CGRP for 1 or 3 days. Expression of receptor activity modifying protein 1 (RAMP1), the transcription factor RUNX2, osteocalcin, p38 and p-p38 were analyzed by western blotting. Calcium mineralization was analyzed by alizarin red straining. RESULTS: Using compressive force treatments, low magnitudes (1 and 2 g/cm2) of compressive force for 24 h promoted osteoblast differentiation and mineral deposition whereas higher magnitudes (3 and 4 g/cm2) did not produce osteogenic effect. Through western blot assay, we observed that the receptor activity-modifying protein 1 (RAMP1) expression was upregulated, and p38 mitogen-activated protein kinase (MAPK) was phosphorylated during low magnitudes compressive force-promoted osteoblast differentiation. Further investigation of a calcitonin gene-related peptide (CGRP) peptide incubation, a ligand for RAMP1, showed that CGRP at concentration of 25 and 50 ng/ml could increase expression levels of RUNX2 and osteocalcin, and percentage of mineralization, suggesting its osteogenic potential. In addition, with the same conditions, CGRP also significantly upregulated RAMP1 and phosphorylated p38 expression levels. Also, the combination of compressive forces (1 and 2 g/cm2) with 50 ng/ml CGRP trended to increase RAMP1 expression, p38 activity, and osteogenic marker RUNX2 levels, as well as percentage of mineralization compared to compressive force alone. This suggest that RAMP1 possibly acts as an upstream regulator of p38 signaling during osteogenic differentiation. CONCLUSION: These findings suggest that CGRP-RAMP1/p38MAPK signaling implicates in osteoblast differentiation in response to optimal magnitude of compressive force. This study helps to define the underlying mechanism of compressive stimulation and may also enhance the application of compressive stimulation or CGRP peptide as an alternative approach for accelerating tooth movement in orthodontic treatment.


Subject(s)
Cell Differentiation , Osteoblasts , Osteogenesis , Receptor Activity-Modifying Protein 1 , p38 Mitogen-Activated Protein Kinases , Osteoblasts/physiology , Osteoblasts/metabolism , Osteoblasts/cytology , Cell Differentiation/physiology , Receptor Activity-Modifying Protein 1/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Osteogenesis/physiology , Calcitonin Gene-Related Peptide/metabolism , MAP Kinase Signaling System/physiology , Stress, Mechanical , Animals , Cells, Cultured , Core Binding Factor Alpha 1 Subunit/metabolism , Signal Transduction/physiology , Osteocalcin/metabolism
4.
NPJ Syst Biol Appl ; 10(1): 65, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834572

ABSTRACT

Understanding the dynamics of intracellular signaling pathways, such as ERK1/2 (ERK) and Akt1/2 (Akt), in the context of cell fate decisions is important for advancing our knowledge of cellular processes and diseases, particularly cancer. While previous studies have established associations between ERK and Akt activities and proliferative cell fate, the heterogeneity of single-cell responses adds complexity to this understanding. This study employed a data-driven approach to address this challenge, developing machine learning models trained on a dataset of growth factor-induced ERK and Akt activity time courses in single cells, to predict cell division events. The most predictive models were developed by applying discrete wavelet transforms (DWTs) to extract low-frequency features from the time courses, followed by using Ensemble Integration, a data integration and predictive modeling framework. The results demonstrated that these models effectively predicted cell division events in MCF10A cells (F-measure=0.524, AUC=0.726). ERK dynamics were found to be more predictive than Akt, but the combination of both measurements further enhanced predictive performance. The ERK model`s performance also generalized to predicting division events in RPE cells, indicating the potential applicability of these models and our data-driven methodology for predicting cell division across different biological contexts. Interpretation of these models suggested that ERK dynamics throughout the cell cycle, rather than immediately after growth factor stimulation, were associated with the likelihood of cell division. Overall, this work contributes insights into the predictive power of intra-cellular signaling dynamics for cell fate decisions, and highlights the potential of machine learning approaches in unraveling complex cellular behaviors.


Subject(s)
Cell Division , Proto-Oncogene Proteins c-akt , Proto-Oncogene Proteins c-akt/metabolism , Humans , Cell Division/physiology , Machine Learning , Signal Transduction/physiology , Models, Biological , Stochastic Processes , Extracellular Signal-Regulated MAP Kinases/metabolism , MAP Kinase Signaling System/physiology , Cell Proliferation/physiology
5.
J Neuroinflammation ; 21(1): 143, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822367

ABSTRACT

The dysregulation of pro- and anti-inflammatory processes in the brain has been linked to the pathogenesis of major depressive disorder (MDD), although the precise mechanisms remain unclear. In this study, we discovered that microglial conditional knockout of Pdcd4 conferred protection against LPS-induced hyperactivation of microglia and depressive-like behavior in mice. Mechanically, microglial Pdcd4 plays a role in promoting neuroinflammatory responses triggered by LPS by inhibiting Daxx-mediated PPARγ nucleus translocation, leading to the suppression of anti-inflammatory cytokine IL-10 expression. Finally, the antidepressant effect of microglial Pdcd4 knockout under LPS-challenged conditions was abolished by intracerebroventricular injection of the IL-10 neutralizing antibody IL-10Rα. Our study elucidates the distinct involvement of microglial Pdcd4 in neuroinflammation, suggesting its potential as a therapeutic target for neuroinflammation-related depression.


Subject(s)
Co-Repressor Proteins , Interleukin-10 , Mice, Knockout , Microglia , Neuroinflammatory Diseases , PPAR gamma , Signal Transduction , Animals , Male , Mice , Adaptor Proteins, Signal Transducing/deficiency , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/deficiency , Co-Repressor Proteins/genetics , Co-Repressor Proteins/metabolism , Depression/metabolism , Depression/etiology , Interleukin-10/metabolism , Interleukin-10/deficiency , Interleukin-10/genetics , Lipopolysaccharides/toxicity , Mice, Inbred C57BL , Microglia/metabolism , Microglia/drug effects , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Neuroinflammatory Diseases/metabolism , PPAR gamma/metabolism , PPAR gamma/genetics , Signal Transduction/physiology , Signal Transduction/drug effects
6.
Article in English | MEDLINE | ID: mdl-38847145

ABSTRACT

BACKGROUND: Macrovascular lesions are the main cause of death and disability in diabetes mellitus, and excessive accumulation of cholesterol and lipids can lead to long-term and repeated damage of vascular endothelial cells. Umbilical cord mesenchymal stem cells (UCMSCs) can attenuate vascular endothelial damage in type 1 diabetic mice, while Fufang Xueshuantong capsule (FXC) has a protective effect on endothelial function; however, whether FXC in combination with UCMSCs can improve T2DM macrovascular lesions as well as its mechanism of action are not clear. Therefore, the aim of this study was to reveal the role of FXC + UCMSCs in T2DM vasculopathy and their potential mechanism in the treatment of T2DM. METHODS: The control and T2DM groups were intragastrically administered with equal amounts of saline, the UCMSCs group was injected with UCMSCs (1×106, resuspended cells with 0.5 mL PBS) in the tail vein, the FXC group was intragastrically administered with 0.58 g/kg FXC, and the UCMSCs + FXC group was injected with UCMSCs (1×106) in the tail vein, followed by FXC (0.58 g/kg), for 8 weeks. RESULTS: We found that FXC+UCMSCs effectively reduced lipid levels (TG, TC, and LDL-C) and ameliorated aortic lesions in T2DM rats. Meanwhile, Nrf2 and HO-1 expression were upregulated. We demonstrated that inhibition of Nrf-2 expression blocked the inhibitory effect of FXC+UCMSCs-CM on apoptosis and oxidative stress injury. CONCLUSION: Our data suggest that FXC+UCMSCs may attenuate oxidative stress injury and macroangiopathy in T2DM by activating the Nrf-2/HO-1 pathway.


Subject(s)
Diabetes Mellitus, Experimental , Drugs, Chinese Herbal , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , NF-E2-Related Factor 2 , Oxidative Stress , Rats, Sprague-Dawley , Signal Transduction , Animals , Oxidative Stress/drug effects , Oxidative Stress/physiology , NF-E2-Related Factor 2/metabolism , Signal Transduction/drug effects , Signal Transduction/physiology , Rats , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Mesenchymal Stem Cell Transplantation/methods , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/drug therapy , Male , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Umbilical Cord/cytology , Diabetic Angiopathies/metabolism , Diabetic Angiopathies/prevention & control , Diabetic Angiopathies/drug therapy , Diabetic Angiopathies/pathology , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/complications , Heme Oxygenase (Decyclizing)/metabolism , Combined Modality Therapy/methods , Cells, Cultured
7.
J Neuroinflammation ; 21(1): 148, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840180

ABSTRACT

BACKGROUND: White matter injury (WMI) represents a significant etiological factor contributing to neurological impairment subsequent to Traumatic Brain Injury (TBI). CD36 receptors are recognized as pivotal participants in the pathogenesis of neurological disorders, including stroke and spinal cord injury. Furthermore, dynamic fluctuations in the phenotypic polarization of microglial cells have been intimately associated with the regenerative processes within the injured tissue following TBI. Nevertheless, there is a paucity of research addressing the impact of CD36 receptors on WMI and microglial polarization. This investigation aims to elucidate the functional role and mechanistic underpinnings of CD36 in modulating microglial polarization and WMI following TBI. METHODS: TBI models were induced in murine subjects via controlled cortical impact (CCI). The spatiotemporal patterns of CD36 expression were examined through quantitative polymerase chain reaction (qPCR), Western blot analysis, and immunofluorescence staining. The extent of white matter injury was assessed via transmission electron microscopy, Luxol Fast Blue (LFB) staining, and immunofluorescence staining. Transcriptome sequencing was employed to dissect the molecular mechanisms underlying CD36 down-regulation and its influence on white matter damage. Microglial polarization status was ascertained using qPCR, Western blot analysis, and immunofluorescence staining. In vitro, a Transwell co-culture system was employed to investigate the impact of CD36-dependent microglial polarization on oligodendrocytes subjected to oxygen-glucose deprivation (OGD). RESULTS: Western blot and qPCR analyses revealed that CD36 expression reached its zenith at 7 days post-TBI and remained sustained at this level thereafter. Immunofluorescence staining exhibited robust CD36 expression in astrocytes and microglia following TBI. Genetic deletion of CD36 ameliorated TBI-induced white matter injury, as evidenced by a reduced SMI-32/MBP ratio and G-ratio. Transcriptome sequencing unveiled differentially expressed genes enriched in processes linked to microglial activation, regulation of neuroinflammation, and the TNF signaling pathway. Additionally, bioinformatics analysis pinpointed the Traf5-p38 axis as a critical signaling pathway. In vivo and in vitro experiments indicated that inhibition of the CD36-Traf5-MAPK axis curtailed microglial polarization toward the pro-inflammatory phenotype. In a Transwell co-culture system, BV2 cells treated with LPS + IFN-γ exacerbated the damage of post-OGD oligodendrocytes, which could be rectified through CD36 knockdown in BV2 cells. CONCLUSIONS: This study illuminates that the suppression of CD36 mitigates WMI by constraining microglial polarization towards the pro-inflammatory phenotype through the down-regulation of the Traf5-MAPK signaling pathway. Our findings present a potential therapeutic strategy for averting neuroinflammatory responses and ensuing WMI damage resulting from TBI.


Subject(s)
CD36 Antigens , Mice, Inbred C57BL , Microglia , Animals , Microglia/metabolism , Microglia/pathology , Mice , CD36 Antigens/metabolism , CD36 Antigens/genetics , Mice, Knockout , White Matter/pathology , White Matter/metabolism , MAP Kinase Signaling System/physiology , Male , Cell Polarity/physiology , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/pathology , Signal Transduction/physiology
8.
BMC Urol ; 24(1): 117, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851678

ABSTRACT

BACKGROUND: This study investigated the relaxation effect of PGE2 on the ureter and its role in promoting calculi expulsion following calculi development. METHODS: By using immunofluorescence and Western blot, we were able to locate EP receptors in the ureter. In vitro experiments assessed the impact of PGE2, receptor antagonists, and agonists on ureteral relaxation rate. We constructed a model of ureteral calculi with flowable resin and collected ureteral tissue from postoperative side of the ureter after obstruction surgery. Western blot analysis was used to determine the protein expression levels of EP receptors and the PGE2 terminal synthase mPGES-1. Additionally, PGE2 was added to smooth muscle cells to observe downstream cAMP and PKA changes. RESULTS: The expression of EP2 and EP4 proteins in ureteral smooth muscle was verified by Western blot analysis. According to immunofluorescence, EP2 was primarily found on the cell membrane, while EP4 was found in the nucleus. In vitro, PGE2 induced concentration-dependent ureteral relaxation. Maximum diastolic rate was 70.94 ± 4.57% at a concentration of 30µM. EP2 antagonists hindered this effect, while EP4 antagonists did not. Obstructed ureters exhibited elevated mPGES-1 and EP2 protein expression (P < 0.01). Smooth muscle cells treated with PGE2 displayed increased cAMP and phosphorylated PKA. CONCLUSIONS: PGE2 binding to EP2 induces ureteral relaxation through the cAMP-PKA pathway. This will provide a new theoretical basis for the development of new therapeutic approaches for the use of PGE2 in the treatment of ureteral stones.


Subject(s)
Cyclic AMP-Dependent Protein Kinases , Cyclic AMP , Dinoprostone , Receptors, Prostaglandin E, EP2 Subtype , Ureter , Ureteral Calculi , Receptors, Prostaglandin E, EP2 Subtype/metabolism , Cyclic AMP/metabolism , Dinoprostone/metabolism , Dinoprostone/pharmacology , Cyclic AMP-Dependent Protein Kinases/metabolism , Animals , Ureter/metabolism , Signal Transduction/physiology , Male , Muscle Relaxation/drug effects , Muscle Relaxation/physiology
9.
J Neuroinflammation ; 21(1): 150, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840206

ABSTRACT

Microglia, the brain's resident macrophages, maintain brain homeostasis and respond to injury and infection. During aging they undergo functional changes, but the underlying mechanisms and their contributions to neuroprotection versus neurodegeneration are unclear. Previous studies suggested that microglia are sex dimorphic, so we compared microglial aging in mice of both sexes. RNA-sequencing of hippocampal microglia revealed more aging-associated changes in female microglia than male microglia, and more sex differences in old microglia than young microglia. Pathway analyses and subsequent validation assays revealed a stronger AKT-mTOR-HIF1α-driven shift to glycolysis among old female microglia and indicated that C3a production and detection was elevated in old microglia, especially in females. Recombinant C3a induced AKT-mTOR-HIF1α signaling and increased the glycolytic and phagocytic activity of young microglia. Single cell analyses attributed the aging-associated sex dimorphism to more abundant disease-associated microglia (DAM) in old female mice than old male mice, and evaluation of an Alzheimer's Disease mouse model revealed that the metabolic and complement changes are also apparent in the context of neurodegenerative disease and are strongest in the neuroprotective DAM2 subset. Collectively, our data implicate autocrine C3a-C3aR signaling in metabolic reprogramming of microglia to neuroprotective DAM during aging, especially in females, and also in Alzheimer's Disease.


Subject(s)
Aging , Microglia , Sex Characteristics , Animals , Microglia/metabolism , Female , Mice , Aging/metabolism , Aging/genetics , Male , Mice, Inbred C57BL , Mice, Transgenic , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/genetics , Signal Transduction/physiology
10.
Acta Neuropathol Commun ; 12(1): 89, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38845058

ABSTRACT

The microtubule-associated protein Tau is a key player in various neurodegenerative conditions, including Alzheimer's disease (AD) and Tauopathies, where its hyperphosphorylation disrupts neuronal microtubular lattice stability. Glaucoma, a neurodegenerative disorder affecting the retina, leads to irreversible vision loss by damaging retinal ganglion cells and the optic nerve, often associated with increased intraocular pressure. Prior studies have indicated Tau expression and phosphorylation alterations in the retina in both AD and glaucoma, yet the causative or downstream nature of Tau protein changes in these pathologies remains unclear. This study investigates the impact of Tau protein modulation on retinal neurons under normal and experimental glaucoma conditions. Employing AAV9-mediated gene therapy for Tau overexpression and knockdown, both manipulations were found to adversely affect retinal structural and functional measures as well as neuroprotective Akt/Erk survival signalling in healthy conditions. In the experimental glaucoma model, Tau overexpression intensified inner retinal degeneration, while Tau silencing provided significant protection against these degenerative changes. These findings underscore the critical role of endogenous Tau protein levels in preserving retinal integrity and emphasize the therapeutic potential of targeting Tau in glaucoma pathology.


Subject(s)
Genetic Therapy , Glaucoma , tau Proteins , tau Proteins/metabolism , Animals , Glaucoma/metabolism , Glaucoma/pathology , Glaucoma/genetics , Genetic Therapy/methods , Proto-Oncogene Proteins c-akt/metabolism , Dependovirus/genetics , Disease Models, Animal , Retinal Degeneration/metabolism , Retinal Degeneration/pathology , Retinal Degeneration/genetics , Retina/metabolism , Retina/pathology , MAP Kinase Signaling System/physiology , Signal Transduction/physiology , Mice , Mice, Inbred C57BL , Retinal Ganglion Cells/metabolism , Retinal Ganglion Cells/pathology , Phenotype
11.
CNS Neurosci Ther ; 30(5): e14749, 2024 05.
Article in English | MEDLINE | ID: mdl-38739004

ABSTRACT

AIMS: A bone-invasive pituitary adenoma exhibits aggressive behavior, leading to a worse prognosis. We have found that TNF-α promotes bone invasion by facilitating the differentiation of osteoclasts, however, before bone-invasive pituitary adenoma invades bone tissue, it needs to penetrate the dura mater, and this mechanism is not yet clear. METHODS: We performed transcriptome microarrays on specimens of bone-invasive pituitary adenomas (BIPAs) and noninvasive pituitary adenomas (NIPAs) and conducted differential expressed gene analysis and enrichment analysis. We altered the expression of TNF-α through plasmids, then validated the effects of TNF-α on GH3 cells and verified the efficacy of the TNF-α inhibitor SPD304. Finally, the effects of TNF-α were validated in in vivo experiments. RESULTS: Pathway act work showed that the MAPK pathway was significantly implicated in the pathway network. The expression of TNF-α, MMP9, and p-p38 is higher in BIPAs than in NIPAs. Overexpression of TNF-α elevated the expression of MAPK pathway proteins and MMP9 in GH3 cells, as well as promoted proliferation, migration, and invasion of GH3 cells. Flow cytometry indicated that TNF-α overexpression increased the G2 phase ratio in GH3 cells and inhibited apoptosis. The expression of MMP9 was reduced after blocking the P38 MAPK pathway; overexpression of MMP9 promoted invasion of GH3 cells. In vivo experiments confirm that the TNF-α overexpression group has larger tumor volumes. SPD304 was able to suppress the effects caused by TNF-α overexpression. CONCLUSION: Bone-invasive pituitary adenoma secretes higher levels of TNF-α, which then acts on itself in an autocrine manner, activating the MAPK pathway and promoting the expression of MMP9, thereby accelerating the membrane invasion process. SPD304 significantly inhibits the effect of TNF-α and may be applied in the clinical treatment of bone-invasive pituitary adenoma.


Subject(s)
Adenoma , MAP Kinase Signaling System , Matrix Metalloproteinase 9 , Neoplasm Invasiveness , Pituitary Neoplasms , Tumor Necrosis Factor-alpha , Tumor Necrosis Factor-alpha/metabolism , Pituitary Neoplasms/metabolism , Pituitary Neoplasms/pathology , Humans , Adenoma/pathology , Adenoma/metabolism , Animals , Matrix Metalloproteinase 9/metabolism , MAP Kinase Signaling System/physiology , MAP Kinase Signaling System/drug effects , Male , Cell Line, Tumor , Female , Mice , Mice, Nude , Autocrine Communication/physiology , Autocrine Communication/drug effects , Middle Aged , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Adult , Rats , Cell Movement/drug effects , Cell Movement/physiology , Signal Transduction/physiology , Signal Transduction/drug effects
12.
Invest Ophthalmol Vis Sci ; 65(5): 8, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38700874

ABSTRACT

Purpose: In the present study, we aim to elucidate the underlying molecular mechanism of endoplasmic reticulum (ER) stress induced delayed corneal epithelial wound healing and nerve regeneration. Methods: Human limbal epithelial cells (HLECs) were treated with thapsigargin to induce excessive ER stress and then RNA sequencing was performed. Immunofluorescence, qPCR, Western blot, and ELISA were used to detect the expression changes of SLIT3 and its receptors ROBO1-4. The role of recombinant SLIT3 protein in corneal epithelial proliferation and migration were assessed by CCK8 and cell scratch assay, respectively. Thapsigargin, exogenous SLIT3 protein, SLIT3-specific siRNA, and ROBO4-specific siRNA was injected subconjunctivally to evaluate the effects of different intervention on corneal epithelial and nerve regeneration. In addition, Ki67 staining was performed to evaluate the proliferation ability of epithelial cells. Results: Thapsigargin suppressed normal corneal epithelial and nerve regeneration significantly. RNA sequencing genes related to development and regeneration revealed that thapsigargin induced ER stress significantly upregulated the expression of SLIT3 and ROBO4 in corneal epithelial cells. Exogenous SLIT3 inhibited normal corneal epithelial injury repair and nerve regeneration, and significantly suppressed the proliferation and migration ability of cultured mouse corneal epithelial cells. SLIT3 siRNA inhibited ROBO4 expression and promoted epithelial wound healing under thapsigargin treatment. ROBO4 siRNA significantly attenuated the delayed corneal epithelial injury repair and nerve regeneration induced by SLIT3 treatment or thapsigargin treatment. Conclusions: ER stress inhibits corneal epithelial injury repair and nerve regeneration may be related with the upregulation of SLIT3-ROBO4 pathway.


Subject(s)
Cell Proliferation , Endoplasmic Reticulum Stress , Epithelium, Corneal , Nerve Regeneration , Receptors, Immunologic , Roundabout Proteins , Signal Transduction , Wound Healing , Animals , Humans , Mice , Blotting, Western , Cell Movement/physiology , Cells, Cultured , Endoplasmic Reticulum Stress/physiology , Enzyme-Linked Immunosorbent Assay , Epithelium, Corneal/metabolism , Limbus Corneae/cytology , Nerve Regeneration/physiology , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Receptors, Cell Surface/metabolism , Receptors, Cell Surface/genetics , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , Signal Transduction/physiology , Wound Healing/physiology
13.
J Neuroimmune Pharmacol ; 19(1): 19, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753217

ABSTRACT

Ischemic stroke is the leading cause of death and disability worldwide. Nevertheless, there still lacks the effective therapies for ischemic stroke. Microglia are resident macrophages of the central nervous system (CNS) and can initiate immune responses and monitor the microenvironment. Microglia are activated and polarize into proinflammatory or anti­inflammatory phenotype in response to various brain injuries, including ischemic stroke. Proinflammatory microglia could generate immunomodulatory mediators, containing cytokines and chemokines, these mediators are closely associated with secondary brain damage following ischemic stroke. On the contrary, anti-inflammatory microglia facilitate recovery following stroke. Regulating the activation and the function of microglia is crucial in exploring the novel treatments for ischemic stroke patients. Accumulating studies have revealed that RhoA/ROCK pathway and NF-κB are famous modulators in the process of microglia activation and polarization. Inhibiting these key modulators can promote the polarization of microglia to anti-inflammatory phenotype. In this review, we aimed to provide a comprehensive overview on the role of RhoA/ROCK pathway and NF-κB in the microglia activation and polarization, reveal the relationship between RhoA/ROCK pathway and NF-κB in the pathological process of ischemic stroke. In addition, we likewise discussed the drug modulators targeting microglia polarization.


Subject(s)
Ischemic Stroke , Microglia , NF-kappa B , Signal Transduction , rho-Associated Kinases , rhoA GTP-Binding Protein , Microglia/metabolism , NF-kappa B/metabolism , Humans , rho-Associated Kinases/metabolism , Animals , rhoA GTP-Binding Protein/metabolism , Ischemic Stroke/metabolism , Ischemic Stroke/immunology , Ischemic Stroke/pathology , Signal Transduction/physiology , Cell Polarity/physiology , Cell Polarity/drug effects
14.
J Neuroinflammation ; 21(1): 119, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715061

ABSTRACT

BACKGROUND: Cerebral malaria (CM) is the most lethal complication of malaria, and survivors usually endure neurological sequelae. Notably, the cytotoxic effect of infiltrating Plasmodium-activated CD8+ T cells on cerebral microvasculature endothelial cells is a prominent feature of the experimental CM (ECM) model with blood-brain barrier disruption. However, the damage effect of CD8+ T cells infiltrating the brain parenchyma on neurons remains unclear. Based on the immunosuppressive effect of the PD-1/PD-L1 pathway on T cells, our previous study demonstrated that the systemic upregulation of PD-L1 to inhibit CD8+ T cell function could effectively alleviate the symptoms of ECM mice. However, it has not been reported whether neurons can suppress the pathogenic effect of CD8+ T cells through the PD-1/PD-L1 negative immunomodulatory pathway. As the important inflammatory factor of CM, interferons can induce the expression of PD-L1 via different molecular mechanisms according to the neuro-immune microenvironment. Therefore, this study aimed to investigate the direct interaction between CD8+ T cells and neurons, as well as the mechanism of neurons to alleviate the pathogenic effect of CD8+ T cells through up-regulating PD-L1 induced by IFNs. METHODS: Using the ECM model of C57BL/6J mice infected with Plasmodium berghei ANKA (PbA), morphological observations were conducted in vivo by electron microscope and IF staining. The interaction between the ECM CD8+ T cells (immune magnetic bead sorting from spleen of ECM mice) and primary cultured cortical neurons in vitro was observed by IF staining and time-lapse photography. RNA-seq was performed to analyze the signaling pathway of PD-L1 upregulation in neurons induced by IFNß or IFNγ, and verified through q-PCR, WB, IF staining, and flow cytometry both in vitro and in vivo using IFNAR or IFNGR gene knockout mice. The protective effect of adenovirus-mediated PD-L1 IgGFc fusion protein expression was verified in ECM mice with brain stereotaxic injection in vivo and in primary cultured neurons via viral infection in vitro. RESULTS: In vivo, ECM mice showed infiltration of activated CD8+ T cells and neuronal injury in the brain parenchyma. In vitro, ECM CD8+ T cells were in direct contact with neurons and induced axonal damage, as an active behavior. The PD-L1 protein level was elevated in neurons of ECM mice and in primary cultured neurons induced by IFNß, IFNγ, or ECM CD8+ T cells in vitro. Furthermore, the IFNß or IFNγ induced neuronal expression of PD-L1 was mediated by increasing STAT1/IRF1 pathway via IFN receptors. The increase of PD-L1 expression in neurons during PbA infection was weakened after deleting the IFNAR or IFNGR. Increased PD-L1 expression by adenovirus partially protected neurons from CD8+ T cell-mediated damage both in vitro and in vivo. CONCLUSION: Our study demonstrates that both type I and type II IFNs can induce neurons to upregulate PD-L1 via the STAT1/IRF1 pathway mediated by IFN receptors to protect against activated CD8+ T cell-mediated damage, providing a targeted pathway to alleviate neuroinflammation during ECM.


Subject(s)
B7-H1 Antigen , CD8-Positive T-Lymphocytes , Malaria, Cerebral , Mice, Inbred C57BL , Neurons , STAT1 Transcription Factor , Up-Regulation , Animals , Mice , B7-H1 Antigen/metabolism , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology , Interferon Regulatory Factor-1/metabolism , Interferon-gamma/metabolism , Malaria, Cerebral/immunology , Malaria, Cerebral/metabolism , Malaria, Cerebral/pathology , Mice, Knockout , Neurons/metabolism , Plasmodium berghei , Signal Transduction/physiology , STAT1 Transcription Factor/metabolism , Up-Regulation/drug effects
15.
BMC Neurosci ; 25(1): 24, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741048

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is a devastating neurodegenerative disorder affecting 44 million people worldwide, leading to cognitive decline, memory loss, and significant impairment in daily functioning. The recent single-cell sequencing technology has revolutionized genetic and genomic resolution by enabling scientists to explore the diversity of gene expression patterns at the finest resolution. Most existing studies have solely focused on molecular perturbations within each cell, but cells live in microenvironments rather than in isolated entities. Here, we leveraged the large-scale and publicly available single-nucleus RNA sequencing in the human prefrontal cortex to investigate cell-to-cell communication in healthy brains and their perturbations in AD. We uniformly processed the snRNA-seq with strict QCs and labeled canonical cell types consistent with the definitions from the BRAIN Initiative Cell Census Network. From ligand and receptor gene expression, we built a high-confidence cell-to-cell communication network to investigate signaling differences between AD and healthy brains. RESULTS: Specifically, we first performed broad communication pattern analyses to highlight that biologically related cell types in normal brains rely on largely overlapping signaling networks and that the AD brain exhibits the irregular inter-mixing of cell types and signaling pathways. Secondly, we performed a more focused cell-type-centric analysis and found that excitatory neurons in AD have significantly increased their communications to inhibitory neurons, while inhibitory neurons and other non-neuronal cells globally decreased theirs to all cells. Then, we delved deeper with a signaling-centric view, showing that canonical signaling pathways CSF, TGFß, and CX3C are significantly dysregulated in their signaling to the cell type microglia/PVM and from endothelial to neuronal cells for the WNT pathway. Finally, after extracting 23 known AD risk genes, our intracellular communication analysis revealed a strong connection of extracellular ligand genes APP, APOE, and PSEN1 to intracellular AD risk genes TREM2, ABCA1, and APP in the communication from astrocytes and microglia to neurons. CONCLUSIONS: In summary, with the novel advances in single-cell sequencing technologies, we show that cellular signaling is regulated in a cell-type-specific manner and that improper regulation of extracellular signaling genes is linked to intracellular risk genes, giving the mechanistic intra- and inter-cellular picture of AD.


Subject(s)
Alzheimer Disease , Cell Communication , Single-Cell Analysis , Transcriptome , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Humans , Cell Communication/physiology , Single-Cell Analysis/methods , Brain/metabolism , Brain/pathology , Prefrontal Cortex/metabolism , Neurons/metabolism , Signal Transduction/physiology , Signal Transduction/genetics
16.
Neural Dev ; 19(1): 4, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698415

ABSTRACT

BACKGROUND: The evolution of central nervous systems (CNSs) is a fascinating and complex topic; further work is needed to understand the genetic and developmental homology between organisms with a CNS. Research into a limited number of species suggests that CNSs may be homologous across Bilateria. This hypothesis is based in part on similar functions of BMP signaling in establishing fates along the dorsal-ventral (D-V) axis, including limiting neural specification to one ectodermal region. From an evolutionary-developmental perspective, the best way to understand a system is to explore it in a wide range of organisms to create a full picture. METHODS: Here, we expand our understanding of BMP signaling in Spiralia, the third major clade of bilaterians, by examining phenotypes after expression of a dominant-negative BMP Receptor 1 and after knock-down of the putative BMP antagonist Chordin-like using CRISPR/Cas9 gene editing in the annelid Capitella teleta (Pleistoannelida). RESULTS: Ectopic expression of the dominant-negative Ct-BMPR1 did not increase CNS tissue or alter overall D-V axis formation in the trunk. Instead, we observed a unique asymmetrical phenotype: a distinct loss of left tissues, including the left eye, brain, foregut, and trunk mesoderm. Adding ectopic BMP4 early during cleavage stages reversed the dominant-negative Ct-BMPR1 phenotype, leading to a similar loss or reduction of right tissues instead. Surprisingly, a similar asymmetrical loss of left tissues was evident from CRISPR knock-down of Ct-Chordin-like but concentrated in the trunk rather than the episphere. CONCLUSIONS: Our data highlight a novel asymmetrical phenotype, giving us further insight into the complicated story of BMP's developmental role. We further solidify the hypothesis that the function of BMP signaling during the establishment of the D-V axis and CNS is fundamentally different in at least Pleistoannelida, possibly in Spiralia, and is not required for nervous system delimitation in this group.


Subject(s)
Biological Evolution , Bone Morphogenetic Protein Receptors, Type I , Animals , Bone Morphogenetic Protein Receptors, Type I/genetics , Bone Morphogenetic Protein Receptors, Type I/metabolism , Body Patterning/genetics , Body Patterning/physiology , Signal Transduction/physiology
17.
Biol Res ; 57(1): 23, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38705984

ABSTRACT

Obesity, associated with the intake of a high-fat diet (HFD), and anxiety are common among those living in modern urban societies. Recent studies suggest a role of microbiome-gut-brain axis signaling, including a role for brain serotonergic systems in the relationship between HFD and anxiety. Evidence suggests the gut microbiome and the serotonergic brain system together may play an important role in this response. Here we conducted a nine-week HFD protocol in male rats, followed by an analysis of the gut microbiome diversity and community composition, brainstem serotonergic gene expression (tph2, htr1a, and slc6a4), and anxiety-related defensive behavioral responses. We show that HFD intake decreased alpha diversity and altered the community composition of the gut microbiome in association with obesity, increased brainstem tph2, htr1a and slc6a4 mRNA expression, including in the caudal part of the dorsomedial dorsal raphe nucleus (cDRD), a subregion previously associated with stress- and anxiety-related behavioral responses, and, finally, increased anxiety-related defensive behavioral responses. The HFD increased the Firmicutes/Bacteroidetes ratio relative to control diet, as well as higher relative abundances of Blautia, and decreases in Prevotella. We found that tph2, htr1a and slc6a4 mRNA expression were increased in subregions of the dorsal raphe nucleus in the HFD, relative to control diet. Specific bacterial taxa were associated with increased serotonergic gene expression in the cDRD. Thus, we propose that HFD-induced obesity is associated with altered microbiome-gut-serotonergic brain axis signaling, leading to increased anxiety-related defensive behavioral responses in rats.


Subject(s)
Anxiety , Brain-Gut Axis , Diet, High-Fat , Gastrointestinal Microbiome , Animals , Male , Diet, High-Fat/adverse effects , Gastrointestinal Microbiome/physiology , Anxiety/microbiology , Brain-Gut Axis/physiology , Rats , Rats, Sprague-Dawley , Obesity/microbiology , Obesity/psychology , Obesity/metabolism , Signal Transduction/physiology , Behavior, Animal/physiology
18.
Respir Res ; 25(1): 198, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720340

ABSTRACT

BACKGROUND: The association between tuberculous fibrosis and lung cancer development has been reported by some epidemiological and experimental studies; however, its underlying mechanisms remain unclear, and the role of macrophage (MФ) polarization in cancer progression is unknown. The aim of the present study was to investigate the role of M2 Arg-1+ MФ in tuberculous pleurisy-assisted tumorigenicity in vitro and in vivo. METHODS: The interactions between tuberculous pleural effusion (TPE)-induced M2 Arg-1+ MФ and A549 lung cancer cells were evaluated. A murine model injected with cancer cells 2 weeks after Mycobacterium bovis bacillus Calmette-Guérin pleural infection was used to validate the involvement of tuberculous fibrosis to tumor invasion. RESULTS: Increased CXCL9 and CXCL10 levels of TPE induced M2 Arg-1+ MФ polarization of murine bone marrow-derived MФ. TPE-induced M2 Arg-1+ MФ polarization facilitated lung cancer proliferation via autophagy signaling and E-cadherin signaling in vitro. An inhibitor of arginase-1 targeting M2 Arg-1+ MФ both in vitro and in vivo significantly reduced tuberculous fibrosis-induced metastatic potential of lung cancer and decreased autophagy signaling and E-cadherin expression. CONCLUSION: Tuberculous pleural fibrosis induces M2 Arg-1+ polarization, and M2 Arg-1+ MФ contribute to lung cancer metastasis via autophagy and E-cadherin signaling. Therefore, M2 Arg-1+ tumor associated MФ may be a novel therapeutic target for tuberculous fibrosis-induced lung cancer progression.


Subject(s)
Arginase , Autophagy , Disease Progression , Lung Neoplasms , Macrophages , Signal Transduction , Animals , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/microbiology , Humans , Mice , Autophagy/physiology , Arginase/metabolism , Signal Transduction/physiology , Macrophages/metabolism , Macrophages/pathology , Tuberculosis, Pleural/pathology , Tuberculosis, Pleural/metabolism , A549 Cells , Mice, Inbred C57BL , Pleural Effusion/metabolism , Pleural Effusion/pathology , Cell Polarity/physiology
19.
J Integr Neurosci ; 23(5): 103, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38812389

ABSTRACT

Hypoxic-ischemic encephalopathy (HIE) is a prominent cause of neonatal mortality and neurodevelopmental disorders; however, effective therapeutic interventions remain limited. During neonatal hypoxic-ischemic injury events, increased reactive oxygen species (ROS) production and decreased antioxidant levels lead to the induction of oxidative stress, which plays a pivotal role in the pathological process of neonatal HIE. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a key endogenous antioxidant transcription factor that protects against oxidative stress by promoting the transcription of various antioxidant genes. It has been demonstrated that Nrf2 signaling pathway activation by different compounds may protect against neonatal HIE. This review outlines the role of oxidative stress in neonatal HIE and summarizes the impact of antioxidants on neonatal HIE via activation of the Nrf2 signaling pathway. In conclusion, Nrf2 signaling pathway potentially exerts antioxidant, anti-inflammatory, antiapoptotic and antiferroptotic effects, thereby emerging as a focal point for future neonatal HIE treatment strategies.


Subject(s)
Hypoxia-Ischemia, Brain , NF-E2-Related Factor 2 , Oxidative Stress , Hypoxia-Ischemia, Brain/metabolism , Hypoxia-Ischemia, Brain/drug therapy , Humans , NF-E2-Related Factor 2/metabolism , Infant, Newborn , Animals , Oxidative Stress/drug effects , Oxidative Stress/physiology , Antioxidants/pharmacology , Signal Transduction/drug effects , Signal Transduction/physiology
20.
J Integr Neurosci ; 23(5): 91, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38812394

ABSTRACT

Alzheimer's disease (AD), a primary cause of dementia, is rapidly emerging as one of the most financially taxing, lethal, and burdensome diseases of the 21st century. Increasing evidence suggests that microglia-mediated neuroinflammation plays a key role in both the initiation and progression of AD. Recently, emerging evidence has demonstrated mitochondrial dysfunction, particular in microglia where precedes neuroinflammation in AD. Multiple signaling pathways are implicated in this process and pharmaceutical interventions are potentially involved in AD treatment. In this review, advance over the last five years in the signaling pathways and pharmaceutical interventions are summarized and it is proposed that targeting the signaling pathways in microglia with mitochondrial dysfunction could represent a novel direction for AD treatment.


Subject(s)
Alzheimer Disease , Microglia , Mitochondria , Alzheimer Disease/metabolism , Alzheimer Disease/therapy , Alzheimer Disease/drug therapy , Humans , Microglia/metabolism , Animals , Mitochondria/metabolism , Neuroinflammatory Diseases/metabolism , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...