Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.060
Filter
1.
Clin Oral Investig ; 28(6): 305, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722356

ABSTRACT

OBJECTIVE: To evaluate the ability of the water glass treatment to penetrate zirconia and improve the bond strength of resin cement. MATERIAL AND METHODS: Water glass was applied to zirconia specimens, which were then sintered. The specimens were divided into water-glass-treated and untreated zirconia (control) groups. The surface properties of the water-glass-treated specimens were evaluated using surface roughness and electron probe micro-analyser (EPMA) analysis. A resin cement was used to evaluate the tensile bond strength, with2 and without a silane-containing primer. After 24 h in water storage at 37 °C and thermal cycling, the bond strengths were statistically evaluated with t-test, and the fracture surfaces were observed using SEM. RESULTS: The water glass treatment slightly increased the surface roughness of the zirconia specimens, and the EPMA analysis detected the water glass penetration to be 50 µm below the zirconia surface. The application of primer improved the tensile bond strength in all groups. After 24 h, the water-glass-treated zirconia exhibited a tensile strength of 24.8 ± 5.5 MPa, which was significantly higher than that of the control zirconia (17.6 ± 3.5 MPa) (p < 0.05). After thermal cycling, the water-glass-treated zirconia showed significantly higher tensile strength than the control zirconia. The fracture surface morphology was mainly an adhesive pattern, whereas resin cement residue was occasionally detected on the water-glass-treated zirconia surfaces. CONCLUSION: The water glass treatment resulted in the formation of a stable silica phase on the zirconia surface. This process enabled silane coupling to the zirconia and improved the adhesion of the resin cement.


Subject(s)
Dental Bonding , Glass , Materials Testing , Resin Cements , Silanes , Surface Properties , Tensile Strength , Water , Zirconium , Zirconium/chemistry , Resin Cements/chemistry , Silanes/chemistry , Water/chemistry , Dental Bonding/methods , Glass/chemistry , Microscopy, Electron, Scanning , Dental Stress Analysis
2.
Sensors (Basel) ; 24(10)2024 May 14.
Article in English | MEDLINE | ID: mdl-38793970

ABSTRACT

Liquid biopsy is expected to become widespread in the coming years thanks to point of care devices, which can include label-free biosensors. The surface functionalization of biosensors is a crucial aspect that influences their overall performance, resulting in the accurate, sensitive, and specific detection of target molecules. Here, the surface of a microring resonator (MRR)-based biosensor was functionalized for the detection of protein biomarkers. Among the several existing functionalization methods, a strategy based on aptamers and mercaptosilanes was selected as the most highly performing approach. All steps of the functionalization protocol were carefully characterized and optimized to obtain a suitable protocol to be transferred to the final biosensor. The functionalization protocol comprised a preliminary plasma treatment aimed at cleaning and activating the surface for the subsequent silanization step. Different plasma treatments as well as different silanes were tested in order to covalently bind aptamers specific to different biomarker targets, i.e., C-reactive protein, SARS-CoV-2 spike protein, and thrombin. Argon plasma and 1% v/v mercaptosilane were found as the most suitable for obtaining a homogeneous layer apt to aptamer conjugation. The aptamer concentration and time for immobilization were optimized, resulting in 1 µM and 3 h, respectively. A final passivation step based on mercaptohexanol was also implemented. The functionalization protocol was then evaluated for the detection of thrombin with a photonic biosensor based on microring resonators. The preliminary results identified the successful recognition of the correct target as well as some limitations of the developed protocol in real measurement conditions.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Silanes , Thrombin , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , Aptamers, Nucleotide/chemistry , Silanes/chemistry , Humans , Thrombin/analysis , C-Reactive Protein/analysis , Spike Glycoprotein, Coronavirus/chemistry , SARS-CoV-2/isolation & purification , Biomarkers/analysis , Surface Properties , COVID-19/diagnosis , COVID-19/virology
3.
Int J Biol Macromol ; 269(Pt 2): 132266, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38777689

ABSTRACT

Bacterial cellulose (BC) represents a promising biomaterial, due to its unique and versatile properties. We report, herein, on purposely-designed structural modifications of BC that enhance its application as a wound dressing material. Chemical modification of the functional groups of BC was performed initially to introduce a hydrophobic/oleophilic character to its surface. Specifically, silanization was carried out in an aqueous medium using methyltrimethoxisilane (MTMS) as the silanizing agent, and aerogels were subsequently prepared by freeze-drying. The BC-MTMS aerogel obtained displayed a highly porous (99 %) and lightweight structure with an oil absorption capacity of up to 52 times its dry weight. The XRD pattern indicated that the characteristic crystallographic planes of the native BC were maintained after the silanization process. Thermal analysis showed that the thermal stability of the BC-MTMS aerogel increased, as compared to the pure BC aerogel (pBC). Moreover, the BC-MTMS aerogel was not cytotoxic to fibroblasts and keratinocytes. In the second step of the study, the incorporation of natural oils into the aerogel's matrix was found to endow antimicrobial and/or healing properties to BC-MTMS. Bourbon geranium (Pelargonium X ssp.) essential oil (GEO) was the only oil that exhibited antimicrobial activity against the tested microorganisms, whereas buriti (Mauritia flexuosa) vegetable oil (BVO) was non-cytotoxic to the cells. This study demonstrates that the characteristics of the BC structure can be modified, while preserving its intrinsic features, offering new possibilities for the development of BC-derived materials for specific applications in the biomedical field.


Subject(s)
Cellulose , Oils, Volatile , Plant Oils , Cellulose/chemistry , Cellulose/pharmacology , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Plant Oils/chemistry , Plant Oils/pharmacology , Gels/chemistry , Wound Healing/drug effects , Fabaceae/chemistry , Humans , Fibroblasts/drug effects , Pelargonium/chemistry , Silanes/chemistry
4.
Int J Biol Macromol ; 269(Pt 1): 131824, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697411

ABSTRACT

Maintaining wound moisture and monitoring of infection are crucial aspects of chronic wound treatment. The development of a pH-sensitive functional hydrogel dressing is an effective approach to monitor, protect, and facilitate wound healing. In this study, beet red pigment extract (BRPE) served as a native and efficient pH indicator by being grafted into silane-modified bacterial nanocellulose (BNC) to prepare a pH-sensitive wound hydrogel dressing (S-g-BNC/BRPE). FTIR confirmed the successful grafting of BRPE into the BNC matrix. The S-g-BNC/BRPE showed superior mechanical properties (0.25 MPa), swelling rate (1251 % on average), and hydrophilic properties (contact angle 21.83°). The composite exhibited a notable color change as the pH changed between 4.0 and 9.0. It appeared purple-red when the pH ranged from 4.0 to 6.0, and appeared light pink at pH 7.0 and 7.4, and appeared ginger-yellow at pH 8.0 and 9.0. Subsequently, the antioxidant activity and cytotoxicity of the composite was evaluated, its DPPH·, ABTS+, ·OH scavenging rates were 32.33 %, 19.31 %, and 30.06 %, respectively, and the cytotoxicity test clearly demonstrated the safety of the dressing. The antioxidant hydrogel dressing, fabricated with a cost-effective and easy method, not only showed excellent biocompatibility and dressing performance but could also indicated the wound state based on pH changes.


Subject(s)
Antioxidants , Bandages , Beta vulgaris , Cellulose , Hydrogels , Wound Healing , Cellulose/chemistry , Cellulose/pharmacology , Hydrogen-Ion Concentration , Antioxidants/pharmacology , Antioxidants/chemistry , Beta vulgaris/chemistry , Wound Healing/drug effects , Hydrogels/chemistry , Hydrogels/pharmacology , Humans , Plant Extracts/chemistry , Plant Extracts/pharmacology , Silanes/chemistry , Pigments, Biological/chemistry , Pigments, Biological/pharmacology
5.
Int J Biol Macromol ; 269(Pt 1): 132021, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697441

ABSTRACT

Challenges in enzyme and product recovery are currently intriguing in modern biotechnology. Coping enzyme stability, shelf life and efficiency, nanomaterials-based immobilization were epitomized of industrial practice. Herein, a α-amylase from Geobacillus thermoleovorans was purified and bound effectively on to a modified 3-Aminopropyltriethoxysilane (APTES)-Fe3O4 nanoparticle. It was revealed that the carrier-bound enzyme catalysis (pH 8 and 60 °C) was significant in contrast to the free enzyme (pH 7.5 and 55 °C). Furthermore, Zn2+ and Cu2+ were shown to cause inhibitory effects in both enzyme states. Unlike chloroform, toluene, benzene, and butanol, minimal effects were observed with ethanol, acetone, and hexane. The bound enzyme retained 27.4 % of its initial activity after being stored for 36 days. In addition, the reusability of the bound enzyme showed a gradual decline in activity after the first cycle; however, after 13 cycles, its residual activity at 53 % was observed. These data proved significant enough to use this enzyme for industrial starch and analogous substrate bio-processing.


Subject(s)
Enzyme Stability , Enzymes, Immobilized , Propylamines , alpha-Amylases , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , alpha-Amylases/chemistry , alpha-Amylases/metabolism , Propylamines/chemistry , Silanes/chemistry , Geobacillus/enzymology , Temperature , Hydrogen-Ion Concentration , Biocatalysis , Catalysis , Magnetite Nanoparticles/chemistry , Starch/chemistry
6.
Int J Biol Macromol ; 268(Pt 2): 131790, 2024 May.
Article in English | MEDLINE | ID: mdl-38677693

ABSTRACT

The demand for paper-based packaging materials as an alternative to incumbent disposable petroleum-derived polymers for food packaging applications is ever-growing. However, typical paper-based formats are not suitable for use in unconventional applications due to inherent limitations (e.g., excessive hydrophilicity, lack antimicrobial ability), and accordingly, enabling new capabilities is necessity. Herein, a simple and environmentally friendly strategy was proposed to introduce antimicrobial and hydrophobic functions to cellulose paper through successive chemical grafting of 3-aminopropyltriethoxysilane (APS) and cinnamaldehyde (CA). The results revealed that cellulose paper not only showed long-term antibacterial effect on different bacteria, but also inhibited a wide range of fungi. Encouragingly, the modified paper, which is fluorine-free, displays a high contact angle of 119.7°. Thus, even in the wet state, the modified paper can still maintain good mechanical strength. Meanwhile, the multifunctional composite papers have excellent biocompatibility and biodegradability. Compared with ordinary cellulose paper, multifunctional composite paper can effectively prolong the shelf life of strawberries. Therefore, the multifunctional composite paper represents good application potential as a fruit packaging material.


Subject(s)
Acrolein , Cellulose , Food Packaging , Fragaria , Hydrophobic and Hydrophilic Interactions , Paper , Cellulose/chemistry , Cellulose/analogs & derivatives , Acrolein/analogs & derivatives , Acrolein/chemistry , Acrolein/pharmacology , Fragaria/microbiology , Food Packaging/methods , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Silanes/chemistry , Food Preservation/methods , Propylamines/chemistry , Microbial Sensitivity Tests
7.
Biomolecules ; 14(4)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38672508

ABSTRACT

Reported herein is the development of assays for the spectrophotometric quantification of biocatalytic silicon-oxygen bond hydrolysis. Central to these assays are a series of chromogenic substrates that release highly absorbing phenoxy anions upon cleavage of the sessile bond. These substrates were tested with silicatein, an enzyme from a marine sponge that is known to catalyse the hydrolysis and condensation of silyl ethers. It was found that, of the substrates tested, tert-butyldimethyl(2-methyl-4-nitrophenoxy)silane provided the best assay performance, as evidenced by the highest ratio of enzyme catalysed reaction rate compared with the background (uncatalysed) reaction. These substrates were also found to be suitable for detailed enzyme kinetics measurements, as demonstrated by their use to determine the Michaelis-Menten kinetic parameters for silicatein.


Subject(s)
Biocatalysis , Ethers , Silanes , Spectrophotometry , Hydrolysis , Spectrophotometry/methods , Silanes/chemistry , Kinetics , Ethers/chemistry , Ethers/metabolism , Animals , Cathepsins/metabolism , Cathepsins/chemistry
8.
Int J Biol Macromol ; 267(Pt 2): 131486, 2024 May.
Article in English | MEDLINE | ID: mdl-38604420

ABSTRACT

The molecular brush structures have been developed on cotton textiles for long-term and efficient broad-spectrum antimicrobial performances through the cooperation of alkyl-chain and quaternary ammonium sites. Results show that efficient antibacterial performances can be achieved by the regulation of the alkyl chain length and quaternary ammonium sites. The antibacterial efficiency of the optimized molecular brush structure of [3-(N,N-Dimethylamino)propyl]trimethoxysilane with cetyl modification on cotton textiles (CT-DM-16) can reach more than 99 % against both E. coli and S. aureus. Alkyl-chain grafting displayed significantly improvement in the antibacterial activity against S. aureus with (N,N-Diethyl-3-aminopropyl)trimethoxysilane modification on cotton textiles (CT-DE) based materials. The positive N sites and alkyl chains played important roles in the antibacterial process. Proteomic analysis reveals that the contributions of cytoskeleton and membrane-enclosed lumen in differentially expressed proteins have been increased for the S. aureus antibacterial process, confirming the promoted puncture capacity with alkyl-chain grafting. Theoretical calculations indicate that the positive charge of N sites can be enhanced through alkyl-chain grafting, and the possible distortion of the brush structure in application can further increase the positive charge of N sites. Uncovering the regulation mechanism is considered to be important guidance to develop novel and practical antibacterial materials.


Subject(s)
Anti-Bacterial Agents , Cotton Fiber , Escherichia coli , Staphylococcus aureus , Textiles , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Staphylococcus aureus/drug effects , Escherichia coli/drug effects , Microbial Sensitivity Tests , Quaternary Ammonium Compounds/chemistry , Quaternary Ammonium Compounds/pharmacology , Silanes/chemistry
9.
Chemosphere ; 358: 142164, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38685326

ABSTRACT

As the adverse effects of using plastics and perfluorinated alkyl substances become more apparent, there is a growing need for sustainable hydrophobic products. Cellulose and its derivatives are the most abundant and widely used polymers, and cellulose-based products have great potential in industries where plastics and other hydrophobic polymers are used, such as stain-resistant fabrics, food packaging, and oil-water separation applications. In this study, we extracted cellulose from water hyacinth (WH) biomass, known for its negative environmental impact, and converted it into hydrophobic cellulose. This addresses the issue of managing WH waste and creating an environmentally friendly hydrophobic material. Initially, aldehyde groups were introduced through oxidation with periodate, followed by direct octadecyl amine (ODA) grafting onto dialdehyde cellulose (DAC) via a Schiff base condensation. The resulting ODA modified cellulose (ODA-C) was dispersed in ethanol and used to coat various materials, including cotton fabric, cellulose filter paper, and packaging paper. The modified materials showed excellent hydrophobicity as measured by their water contact angles (WCAs), and the application of the coating was demonstrated for oil-water separation, stain-resistant hydrophobic fabric, and paper-based packaging materials. FTIR, XRD, and WCA analysis confirmed the successful modification of cellulose. A high separation efficiency of 99% was achieved for diesel/water separation using modified filter paper (MoFP), under gravity. On application of the coating, cotton fabric became hydrophobic and resisted staining from dye, and paper-based packaging materials became more robust by becoming water-resistant. Overall, the facile synthesis, low cost, high efficiency, and use of environmentally friendly sustainable materials make this a promising strategy for hydrophobically modifying surfaces for a wide range of applications while reducing the menace of water hyacinth.


Subject(s)
Biomass , Cellulose , Hydrophobic and Hydrophilic Interactions , Silanes , Cellulose/chemistry , Cellulose/analogs & derivatives , Silanes/chemistry , Eichhornia/chemistry , Water/chemistry , Fluorine/chemistry , Oils/chemistry
10.
Oper Dent ; 49(3): 325-335, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38632867

ABSTRACT

OBJECTIVES: This study aimed to evaluate the impact of various commercial silane brands with varied chemical compositions with or without the application of an adhesive layer on the microshear bond strength and durability of a resin luting agent to lithium disilicate glass ceramic. METHODS AND MATERIALS: Lithium disilicate glass ceramic discs (EMX, IPS e.max Press, Ivoclar Vivadent) measuring 10 mm in diameter and 3 mm in thickness were fabricated (n=240). Surfaces were etched using 5% hydrofluoric acid and randomly assigned to 10 groups based on the commercial brand of silane used (n=24): [RP] RelyX Ceramic Primer (3M ESPE); [PS] Prosil (FGM); [SA] Silano (Angelus); [SM] Silano (Maquira); [SU] Silane (Ultradent); [GL] GLUMA Ceramic Primer (Kulzer); [CB] Ceramic Bond (VOCO); [MB] Monobond N (Ivoclar Vivadent); [CP] Clearfil Ceramic Primer (Kuraray); and [DE] 2-step silane (Dentsply Sirona). Half of the EMXs (n=12) received a thin adhesive layer (+) after the silane and prior to resin luting agent, while the other half (n=12) did not receive an adhesive layer (-). For the microshear bond strength test (µSBS), four light-cured resin luting agent cylinders (1 mm in diameter) were created on each EMX surface. Half of these specimens were tested after 24 hours, while the other half were stored in deionized water for 6 months. The µSBS test was conducted using a universal testing machine (DL 500, EMIC) at a crosshead speed of 1 mm/min until failure. The obtained data underwent statistical analysis using analysis of variance (ANOVA) and the Tukey test (α=0.05). RESULTS: There was significant influence of the silane commercial brand on bond strength. Notably, "universal primers" yielded lower bond strength results compared to "pure" silane solutions. Water storage had a detrimental effect on microshear bond strength for certain silane commercial brands. Additionally, the application of an adhesive layer negatively impacted bond strength results for all silanes. CONCLUSIONS: This study confirms the importance of both silane commercial brand and chemical composition in relation to bond strength of resin luting agents to lithium disilicate glass ceramic. Furthermore, the application of an adhesive layer may have an adverse effect on bond stability over time.


Subject(s)
Ceramics , Dental Bonding , Dental Porcelain , Dental Stress Analysis , Materials Testing , Resin Cements , Shear Strength , Silanes , Dental Porcelain/chemistry , Silanes/chemistry , Ceramics/chemistry , Dental Bonding/methods , Resin Cements/chemistry , Surface Properties , Dental Cements/chemistry , Acid Etching, Dental/methods , Humans
11.
ACS Biomater Sci Eng ; 10(5): 3057-3068, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38641433

ABSTRACT

Blood-contacting catheters play a pivotal role in contemporary medical treatments, particularly in the management of cardiovascular diseases. However, these catheters exhibit inappropriate wettability and lack antimicrobial characteristics, which often lead to catheter-related infections and thrombosis. Therefore, there is an urgent need for blood contact catheters with antimicrobial and anticoagulant properties. In this study, we employed tannic acid (TA) and 3-aminopropyltriethoxysilane (APTES) to create a stable hydrophilic coating under mild conditions. Heparin (Hep) and poly(lysine) (PL) were then modified on the TA-APTES coating surface using the layer-by-layer (LBL) technique to create a superhydrophilic TA/APTES/(LBL)4 coating on silicone rubber (SR) catheters. Leveraging the superhydrophilic nature of this coating, it can be effectively applied to blood-contacting catheters to impart antibacterial, antiprotein adsorption, and anticoagulant properties. Due to Hep's anticoagulant attributes, the activated partial thromboplastin time and thrombin time tests conducted on SR/TA-APTES/(LBL)4 catheters revealed remarkable extensions of 276 and 103%, respectively, when compared to uncoated commercial SR catheters. Furthermore, the synergistic interaction between PL and TA serves to enhance the resistance of SR/TA-APTES/(LBL)4 catheters against bacterial adherence, reducing it by up to 99.9% compared to uncoated commercial SR catheters. Remarkably, the SR/TA-APTES/(LBL)4 catheter exhibits good biocompatibility with human umbilical vein endothelial cells in culture, positioning it as a promising solution to address the current challenges associated with blood-contact catheters.


Subject(s)
Catheters , Coated Materials, Biocompatible , Heparin , Polyphenols , Tannins , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Humans , Catheters/microbiology , Polyphenols/chemistry , Polyphenols/pharmacology , Heparin/chemistry , Heparin/pharmacology , Tannins/chemistry , Tannins/pharmacology , Silanes/chemistry , Silanes/pharmacology , Anticoagulants/chemistry , Anticoagulants/pharmacology , Propylamines/chemistry , Amines/chemistry , Amines/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Polylysine/chemistry , Polylysine/pharmacology , Surface Properties , Hydrophobic and Hydrophilic Interactions , Human Umbilical Vein Endothelial Cells/drug effects , Silicone Elastomers/chemistry , Adsorption , Escherichia coli/drug effects
12.
J Med Chem ; 67(8): 6410-6424, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38592014

ABSTRACT

We report two novel prodrug Pt(IV) complexes with bis-organosilane ligands in axial positions: cis-dichloro(diamine)-trans-[3-(triethoxysilyl)propylcarbamate]platinum(IV) (Pt(IV)-biSi-1) and cis-dichloro(diisopropylamine)-trans-[3-(triethoxysilyl) propyl carbamate]platinum(IV) (Pt(IV)-biSi-2). Pt(IV)-biSi-2 demonstrated enhanced in vitro cytotoxicity against colon cancer cells (HCT 116 and HT-29) compared with cisplatin and Pt(IV)-biSi-1. Notably, Pt(IV)-biSi-2 exhibited higher cytotoxicity toward cancer cells and lower toxicity on nontumorigenic intestinal cells (HIEC6). In preclinical mouse models of colorectal cancer, Pt(IV)-biSi-2 outperformed cisplatin in reducing tumor growth at lower concentrations, with reduced side effects. Mechanistically, Pt(IV)-biSi-2 induced permanent DNA damage independent of p53 levels. DNA damage such as double-strand breaks marked by histone gH2Ax was permanent after treatment with Pt(IV)-biSi-2, in contrast to cisplatin's transient effects. Pt(IV)-biSi-2's faster reduction to Pt(II) species upon exposure to biological reductants supports its superior biological response. These findings unveil a novel strategy for designing Pt(IV) anticancer prodrugs with enhanced activity and specificity, offering therapeutic opportunities beyond conventional Pt drugs.


Subject(s)
Antineoplastic Agents , Organoplatinum Compounds , Prodrugs , Prodrugs/pharmacology , Prodrugs/chemistry , Prodrugs/chemical synthesis , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Animals , Organoplatinum Compounds/pharmacology , Organoplatinum Compounds/chemistry , Organoplatinum Compounds/chemical synthesis , Ligands , Mice , Cell Line, Tumor , Silanes/chemistry , Silanes/pharmacology , Structure-Activity Relationship , Drug Screening Assays, Antitumor , HT29 Cells
13.
J Chromatogr A ; 1722: 464871, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38593520

ABSTRACT

Mixed-mode reversed-phase/anion-exchange chromatography (RP/AEX) is an effective method for the chromatographic analysis of acidic drugs because it combines reversed-phase chromatography (RP) with anion-exchange chromatography (AEX). However, the result repeatability for the RP/AEX analysis of acidic drugs is frequently compromised by the detrimental effects of residual silanol groups in an RP/AEX stationary phase on peak separation and analyte retention. In this study, an RP/weak-AEX stationary phase with amino anion-exchange groups, Sil-AA, was prepared. Subsequently, an RP/strong-AEX stationary phase, Sil-PBQA, was prepared by replacing the amino groups in Sil-AA with a benzene ring and a benzyl-containing quaternary ammonium salt. The chromatographic behaviors of Sil-PBQA and Sil-AA were compared, and the effect of residual silanol groups on the chromatographic behavior of an RP/AEX stationary phase was evaluated. Residual silanol groups not only caused additional electrostatic interactions for acidic analytes, but also competed with the analytes for the anion-exchange sites in an RP/AEX stationary phase. The effects of different salt-containing mobile-phase systems on the analyte-retention behavior of Sil-PBQA were investigated to develop a method that enhanced the repeatability of the RP/AEX acidic-analyte-analysis results obtained using Sil-PBQA and facilitated the separation of nonsteroidal anti-inflammatory drugs on Sil-PBQA. The ideas presented in this paper can improve the separation of peaks and repeatability of results in the RP/AEX analysis of acidic drugs.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal , Chromatography, Reverse-Phase , Chromatography, Reverse-Phase/methods , Chromatography, Ion Exchange/methods , Anti-Inflammatory Agents, Non-Steroidal/analysis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anions/chemistry , Anions/analysis , Reproducibility of Results , Silanes/chemistry , Hydrogen-Ion Concentration , Chromatography, High Pressure Liquid/methods
14.
J Chromatogr A ; 1722: 464889, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38598894

ABSTRACT

In this paper, three imidazole- and C18- bifunctional silica stationary phases (Sil-Im-C18) were prepared by adjusting introduction interval of octadecyltrichlorosilane (ODS) and 3-imidazol-1-ylpropyl(trimethoxy)silane (TMPImS), which can be used for reversed-phase liquid chromatography (RPLC) and ion exchange chromatography (IEC) with adjustable performance. The successful preparation of Sil-Im-C18 were confirmed by the characterizations of elemental analysis, infrared spectroscopy (FTIR) and contact angle (CA). Chromatographic performance of Sil-Im-C18 were evaluated by the separation of Tanaka test mixture, alkylbenzenes, linear PAHs and a set of analytes with different properties (uracil, phenol, 1,2-dinitrobenzene and naphthalene), and compared with commonly used C18 column. It was found that the chromatographic performance of Sil-Im-C18 changed significantly with the difference in bonding amount of imidazole and C18. Sil-Im-C18 demonstrated the excellent separation performance towards polycyclic aromatic hydrocarbons (PAHs), phenylesters, phenylamines, phenols and inorganic anions, and notably, nucleobases and nucleosides can be separated using pure water as mobile phases. The van Deemter plot showed that the column efficiency of Sil-Im-C18-3 was 64,933 plate·m-1 for naphthalene, indicated that Sil-Im-C18 was reasonably chromatographic columns. The RSD values of retention time were 0.22 %-0.61 % for 10 needles alkylbenzenes injected continuously at 50 °C to investigate thermal stability and repeatability, all the fluctuations of k of naphthalene were less than 2.3 % for Sil-Im-C18-1 during flushing 24 h with the mobile phase at different pH values (pH = 3 and 8), the retention time of alkylbenzenes were almost same for Sil-Im-C18-1 at different time, the RSD values of retention time of alkylbenzenes were 0.45 %-2.28 % for two batches Sil-Im-C18-1, revealing the excellent repeatability, thermal stability, durability and reproducibility of Sil-Im-C18, and implying a commercial prospect.


Subject(s)
Chromatography, Reverse-Phase , Imidazoles , Polycyclic Aromatic Hydrocarbons , Silicon Dioxide , Imidazoles/chemistry , Silicon Dioxide/chemistry , Chromatography, Reverse-Phase/methods , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/isolation & purification , Polycyclic Aromatic Hydrocarbons/chemistry , Silanes/chemistry , Chromatography, Ion Exchange/methods
15.
Sci Rep ; 14(1): 5946, 2024 03 11.
Article in English | MEDLINE | ID: mdl-38467715

ABSTRACT

The use of dendrimers as drug and nucleic acid delivery systems requires knowledge of their interactions with objects on their way to the target. In the present work, we investigated the interaction of a new class of carbosilane dendrimers functionalized with polyphenolic and caffeic acid residues with human serum albumin, which is the most abundant blood protein. The addition of dendrimers to albumin solution decreased the zeta potential of albumin/dendrimer complexes as compared to free albumin, increased density of the fibrillary form of albumin, shifted fluorescence spectrum towards longer wavelengths, induced quenching of tryptophan fluorescence, and decreased ellipticity of circular dichroism resulting from a reduction in the albumin α-helix for random coil structural form. Isothermal titration calorimetry showed that, on average, one molecule of albumin was bound by 6-10 molecules of dendrimers. The zeta size confirmed the binding of the dendrimers to albumin. The interaction of dendrimers and albumin depended on the number of caffeic acid residues and polyethylene glycol modifications in the dendrimer structure. In conclusion, carbosilane polyphenolic dendrimers interact with human albumin changing its structure and electrical properties. However, the consequences of such interaction for the efficacy and side effects of these dendrimers as drug/nucleic acid delivery system requires further research.


Subject(s)
Caffeic Acids , Dendrimers , Nucleic Acids , Humans , Serum Albumin, Human/metabolism , Dendrimers/chemistry , Silanes/chemistry
16.
Braz Dent J ; 35: e245674, 2024.
Article in English | MEDLINE | ID: mdl-38537020

ABSTRACT

This study verified the effect of surface treatments of the zirconia-reinforced lithium disilicate ceramic bonded to resin cement. Ceramic blocks were divided according to treatments (n=10): FA+SRX (Fluoric acid + silane RX), FA+MDP (Fluoric acid + MDP), FA+SCF+MDP (Fluoric acid + silane CF + MDP), FA+MEP (Fluoric acid + MEP), and MEP (Self-etch primer). Resin cement cylinders were made in the ceramic blocks, photoactivated with 1,200 mW/cm² for 40s, stored in water at 37°C for 24h, and evaluated by the microshear strength test, optical failure descriptive analysis (%), surface characterization (SEM) and contact angle (Goniometer). Other samples were submitted to 10,000 thermocycles between 5°C and 55°C. Bond strength data were submitted to two-way ANOVA and Tukey's test. Contact angle to one-way ANOVA and Games-Howell's test (5%). At 24h, MEP showed higher bond strength, and FA+SRX the lower. FA+MDP and FA+SCF+MDP showed similar values and FA+MEP was intermediate. After thermocycling, FA+SCF+MDP, FA+MEP, and MEP showed higher values, and FA+SRX the lower while FA+MDP was intermediate. When the periods were compared, FA+MDP, FA+SCF+MDP, FA+MEP, and MEP showed higher values for 24h while FA+SRX was similar. SEM showed retentive surface and crystal exposure when treated with FA+SCF+MDP. The less retentive surface was obtained with MEP, and the other treatments promoted intermediate irregularities. In conclusion, surface treatment and thermocycling promoted different values of adhesive strength and contact angle in a zirconia-reinforced lithium silicate ceramic. Failures were predominantly adhesive, and the ceramic surface was characterized by different levels of roughness and selective exposure of crystals.


Subject(s)
Dental Bonding , Resin Cements , Resin Cements/chemistry , Silanes/chemistry , Surface Properties , Dental Porcelain/chemistry , Ceramics/chemistry , Zirconium/chemistry , Materials Testing
17.
Braz Dent J ; 35: e245641, 2024.
Article in English | MEDLINE | ID: mdl-38537017

ABSTRACT

This study verified the effect of the combination of preheated hydrofluoric acid/silane/electric current in the adhesion of the resin cement to ceramic. IPS E.max Press ceramic discs embedded in PVC rigid tubes were divided into four groups associating preheated hydrofluoric acid and silane applied with electrical current (n=10): Ha+S (Heated acid + silane); Ha+S+Ec (Heated acid + silane + electrical current); A+S (Acid + silane) and A+S+Ec (Acid + silano + electrical current). Resin cement/ceramic samples were stored in water at 37°C for 24h. After storage, they were submitted to the microshear test, fracture analysis, and contact angle at 24h or after thermocycling (10,000 cycles/5-55ºC). Bond strength data were evaluated by two-way ANOVA. For comparison between evaluation times (24h or thermocycling) was applied unpaired t-test. A significance post-hoc test of p=0.05 was assumed for analyses and graphs (GraphPad Prism 9.0 software). At 24h, the microshear strength showed similar values between Ha+S, Ha+S+Ec, and A+S+Ec groups, while A+S showed the lowest value with a statistical difference. After thermocycling, Ha+S and Ha+S+Ec were similar, as well as A+S and A+S+Ec. There was a significant difference in all groups comparing 24h (highest value) with after thermocycling (lowest value). Adhesive fracture was predominant in all groups and evaluation times. Ha+S and A+S groups showed higher contact angle values compared to the Ha+S+Ec and A+S+Ec with lower values. In conclusion, the association of preheated hydrofluoric acid/silane applied or not with electric current promoted different microshear strength values, fracture types, and contact angles in the resin cement/ceramic bond.


Subject(s)
Dental Bonding , Resin Cements , Resin Cements/chemistry , Silanes/chemistry , Hydrofluoric Acid/chemistry , Surface Properties , Acid Etching, Dental , Ceramics/chemistry , Dental Porcelain/chemistry , Materials Testing
18.
Dent Mater J ; 43(2): 312-319, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38432950

ABSTRACT

We examined how different methods of surface treatment and different universal adhesives with or without extra silane affected the repair bonding strength of hybrid ceramic CAD/CAM restorations. Cerasmart specimens (n=320) were subjected to thermocycling and assigned to the following surface pretreatment protocols: control, diamond bur (DB), hydrofluoric acid (HF), and tribochemical silica coating (TSC). Half the specimens received a coating of silane, followed by application of the universal adhesives Futurabond M+ (FMU), Tokuyama Universal Bond (TUB), Single Bond Universal (SBU), or Clearfil Universal Bond Quick (CUQ) (n=10). A hybrid composite resin was used to simulate repair; then the specimens underwent further thermocycling. Shear bond strength (SBS) was determined and modes of failure were examined. The TSC-CUQ silane (-) group showed the highest SBS values. The best repairs were obtained when the surface was treated with TSC, with the exception of the DB-TUB silane (-) group. TUB increased SBS more than the other adhesives. Additional silane decreased SBS in the HF-TUB and TSC-CUQ groups, while increasing it in the TSC-TUB and DB-FMU groups (p<0.05).


Subject(s)
Dental Bonding , Silanes , Silanes/chemistry , Dental Cements , Surface Properties , Materials Testing , Ceramics/chemistry , Shear Strength , Resin Cements/chemistry
19.
Biomed Phys Eng Express ; 10(4)2024 May 24.
Article in English | MEDLINE | ID: mdl-38479000

ABSTRACT

Diagnosis of diseases with low facilities, speed, accuracy and sensitivity is an important matter in treatment. Bioprobes based on iron oxide nanoparticles are a good candidate for early detection of deadly and infectious diseases such as tetanus due to their high reactivity, biocompatibility, low production cost and sample separation under a magnetic field. In this study, silane groups were coated on surface of iron oxide nanoparticles using tetraethoxysilane (TEOS) hydrolysis. Also, NH2groups were generated on the surface of silanized nanoparticles using 3-aminopropyl triethoxy silane (APTES). Antibody was immobilized on the surface of silanized nanoparticles using TCT trichlorothriazine as activator. Silanization and stabilized antibody were investigated by using of FT-IR, EDX, VSM, SRB technique. UV/vis spectroscopy, fluorescence, agglutination test and ELISA were used for biosensor performance and specificity. The results of FT-IR spectroscopy showed that Si-O-Si and Si-O-Fe bonds and TCT chlorine and amine groups of tetanus anti-toxoid antibodies were formed on the surface of iron oxide nanoparticles. The presence of Si, N and C elements in EDX analysis confirms the silanization of iron oxide nanoparticles. VSM results showed that the amount of magnetic nanoparticles after conjugation is sufficient for biological applications. Antibody stabilization on nanoparticles increased the adsorption intensity in the uv/vis spectrometer. The fluorescence intensity of nano bioprobe increased in the presence of 10 ng ml-1. Nanobio probes were observed as agglomerates in the presence of tetanus toxoid antigen. The presence of tetanus antigen caused the formation of antigen-nanobioprobe antigen complex. Identification of this complex by HRP-bound antibody confirmed the specificity of nanobioprobe. Tetanus magnetic nanobioprobe with a diagnostic limit of 10 ng ml-1of tetanus antigen in a short time can be a good tool in LOC devices and microfluidic chips.


Subject(s)
Biosensing Techniques , Propylamines , Silanes , Tetanus Toxoid , Tetanus Toxoid/chemistry , Tetanus Toxoid/immunology , Silanes/chemistry , Spectroscopy, Fourier Transform Infrared , Biosensing Techniques/methods , Propylamines/chemistry , Humans , Enzyme-Linked Immunosorbent Assay , Magnetic Iron Oxide Nanoparticles/chemistry , Tetanus/diagnosis , Tetanus/prevention & control , Magnetite Nanoparticles/chemistry , Antibodies, Immobilized/chemistry , Antibodies, Immobilized/immunology , Limit of Detection , Iron/chemistry , Agglutination Tests/methods
20.
BMC Oral Health ; 24(1): 171, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38308281

ABSTRACT

BACKGROUND: To assess the micro tensile bond strength (µTBS) of two resin matrix ceramic (RMC) blocks bonded to composite resin by using different repair protocols with and without chewing simulation (CS). MATERIALS AND METHODS: Two resin matrix ceramic blocks (Vita Enamic and Lava Ultimate) were divided into 4 groups according to the surface treatments: Bur grinding (control), Bur grinding + silane, 9.5% HF acid etching, and 9.5% HF acid etching + silane. The single bond universal adhesive was applied on all specimens after the surface treatments according to the manufacturer's instructions, it was administered actively on the treated surface for 20 s and then light cured for 10 s, followed by incremental packing of composite resin to the treated surface. Each group was further divided into 2 subgroups (with/without chewing simulation for 500,000 cycles). A micro tensile bond strength test was performed for each group (n = 15). The effect of surface treatments on the materials was examined by using a scanning electron microscope (SEM). The micro tensile bond strength (MPa) data were analyzed with a three-way ANOVA, the independent t-test, and one-way ANOVA followed by the Tukey post-hoc test. RESULTS: µTBS results were significantly higher for Lava Ultimate than Vita Enamic for all the surface treatment protocols with (p < 0.01). The chewing simulation significantly negatively affected the micro-tensile bond strength (p < 0.001). Bur grinding + saline exhibited the highest bond strength values for Lava Ultimate, both with and without chewing simulation. For Vita Enamic, bur grinding + saline and HF acid + saline showed significantly higher bond strength values compared to other surface treatments, both with and without chewing simulation (p ≤ 0.05). CONCLUSION: Bur grinding + silane could be recommended as a durable repair protocol for indirect resin matrix ceramics blocks with composite resin material.


Subject(s)
Composite Resins , Dental Bonding , Humans , Composite Resins/chemistry , Dental Porcelain/chemistry , Silanes/chemistry , Mastication , Acid Etching, Dental/methods , Surface Properties , Resin Cements/chemistry , Ceramics/chemistry , Materials Testing , Tensile Strength , Dental Stress Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...