Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Biol (Stuttg) ; 23(2): 275-284, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33179369

ABSTRACT

Intraspecific flower colour variation has been generally proposed to evolve as a result of selection driven by biotic or abiotic agents. In a polymorphic population of Silene littorea with pink- and white-flowered plants, we studied pollinators, analysed flower colour perception and tested for differences in pollinator visitation. We also experimentally analysed pollinator limitation in fruit and seed set, and the degree of autonomous selfing. The incidence of florivory and leaf herbivory was compared over 3-4 years. Silene littorea is mainly pollinated by bees and butterflies. Pollinators preferred pink flowers, which did not show pollinator limitation. On the contrary, white flowers showed pollinator limitation in fruit set. White-flowered plants had less floral display and higher levels of florivory than pink plants. Flower colour morphs of S. littorea can reproduce in the absence of pollinators by autonomous selfing, setting 20% and 12% of fruit and seeds in the pink morph and 27% and 20% in the white morph, respectively. Fruit set of white flowers produced by autonomous selfing did not differ from open-pollinated flowers. In conclusion, S. littorea is pollinated by insects of different orders that more frequently visit pink flowers, which is reflected in pollinator limitation of fruit set in white flowers. Moreover, this species has a mixed mating system in which both colour morphs can reproduce in the absence of pollinators by autonomous selfing, although white flowers mainly produce fruits by autogamy. We suggest that reproductive assurance by autonomous selfing helps to maintain flower colour polymorphism in this population.


Subject(s)
Flowers , Herbivory , Pigmentation , Pollination , Silene , Animals , Bees/physiology , Butterflies/physiology , Flowers/anatomy & histology , Flowers/chemistry , Flowers/metabolism , Pigmentation/physiology , Pigments, Biological/metabolism , Reproduction/physiology , Silene/chemistry , Silene/parasitology , Silene/physiology
2.
Ann Bot ; 122(4): 593-603, 2018 09 24.
Article in English | MEDLINE | ID: mdl-29850821

ABSTRACT

Background and Aims: Population genetic structures and patterns of gene flow of interacting species provide important insights into the spatial scale of their interactions and the potential for local co-adaptation. We analysed the genetic structures of the plant Silene stellata and the nocturnal moth Hadena ectypa. Hadena ectypa acts as one of the important pollinators of S. stellata as well as being an obligate seed parasite on the plant. Although H. ectypa provides a substantial pollination service to S. stellata, this system is largely considered parasitic due to the severe seed predation by the Hadena larvae. Previous research on this system has found variable interaction outcomes across space, indicating the potential for a geographical selection mosaic. Methods: Using 11 microsatellite markers for S. stellata and nine markers for H. ectypa, we analysed the population genetic structure and the patterns and intensity of gene flow within and among three local populations in the Appalachians. Key Results: We found no spatial genetic structure in the moth populations, while significant differentiation was detected among the local plant populations. Additionally, we observed that gene flow rates among H. ectypa populations were more uniform and that the mean gene flow rate in H. ectypa was twice as large as that in S. stellata. Conclusions: Our results suggest that although the moths move frequently among populations, long-distance pollen carryover only happens occasionally. The difference in gene flow rates between S. stellata and H. ectypa could prevent strict local co-adaptation. Furthermore, higher gene flow rates in H. ectypa could also increase resistance of the local S. stellata populations to the parasitic effect of H. ectypa and therefore help to stabilize the Silene-Hadena interaction dynamics.


Subject(s)
Gene Flow , Genetics, Population , Host-Parasite Interactions , Moths/physiology , Silene/genetics , Animals , Microsatellite Repeats/genetics , Moths/genetics , Pollen/genetics , Pollen/parasitology , Pollination , Seeds/genetics , Seeds/parasitology , Silene/parasitology
3.
Oecologia ; 161(1): 87-98, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19424727

ABSTRACT

Plant-pollinator interactions are well-known examples of mutualism, but are not free of antagonism. Antagonistic interactions and defenses or counter-defenses are expected particularly in nursery pollination. In these systems, adult insects, while pollinating, lay their eggs in flowers, and juveniles consume the seeds from one or several fruits, thereby substantially reducing plant fitness. The outcome of such interactions will depend, for the plant, on the balance between pollination versus seed predation and for the larvae on the balance between the food and shelter provided versus the costs imposed by plant defenses, e.g., through abortion of infested fruits. Here, we examine the costs and benefits to the larvae in the nursery-pollination system Silene latifolia/Hadena bicruris. Using selection lines that varied in flower size (large- vs. small-flowered plants), we investigated the effects of variation in flower and fruit size and of a potential defense, fruit abortion, on larval performance. In this system, infested fruits are significantly more likely to be aborted than non-infested fruits; however, it is unclear whether fruit abortion is effective as a defense. Larger flowers gave rise to larger fruits with more seeds, and larvae that were heavier at emergence. Fruit abortion was frequently observed (ca. 40% of the infested fruits). From aborted fruits, larvae emerged earlier and were substantially lighter than larvae emerging from non-aborted fruits. The lower mass at emergence of larvae from aborted fruits indicates that abortion is a resistance mechanism. Assuming that lower larval mass implies fewer resources invested in the frugivore, these results also suggest that abortion is likely to benefit the plant as a defense mechanism, by limiting both resources invested in attacked fruits, as well as the risk of secondary attack. This suggests that selective fruit abortion may contribute to the stability of mutualism also in this non-obligate system.


Subject(s)
Moths/physiology , Pollination/physiology , Silene/parasitology , Symbiosis , Animals , Body Weight , Flowers/anatomy & histology , Fruit/anatomy & histology , Fruit/growth & development , Fruit/parasitology , Larva/physiology , Linear Models
4.
PLoS Pathog ; 3(11): e176, 2007 Nov.
Article in English | MEDLINE | ID: mdl-18020704

ABSTRACT

Population models of host-parasite interactions predict that when different parasite genotypes compete within a host for limited resources, those that exploit the host faster will be selected, leading to an increase in parasite virulence. When parasites sharing a host are related, however, kin selection should lead to more cooperative host exploitation that may involve slower rates of parasite reproduction. Despite their potential importance, studies that assess the prevalence of multiple genotype infections in natural populations remain rare, and studies quantifying the relatedness of parasites occurring together as natural multiple infections are particularly scarce. We investigated multiple infections in natural populations of the systemic fungal plant parasite Microbotryum violaceum, the anther smut of Caryophyllaceae, on its host, Silene latifolia. We found that multiple infections can be extremely frequent, with different fungal genotypes found in different stems of single plants. Multiple infections involved parasite genotypes more closely related than would be expected based upon their genetic diversity or due to spatial substructuring within the parasite populations. Together with previous sequential inoculation experiments, our results suggest that M. violaceum actively excludes divergent competitors while tolerating closely related genotypes. Such an exclusion mechanism might explain why multiple infections were less frequent in populations with the highest genetic diversity, which is at odds with intuitive expectations. Thus, these results demonstrate that genetic diversity can influence the prevalence of multiple infections in nature, which will have important consequences for their optimal levels of virulence. Measuring the occurrence of multiple infections and the relatedness among parasites within hosts in natural populations may be important for understanding the evolutionary dynamics of disease, the consequences of vaccine use, and forces driving the population genetic structure of parasites.


Subject(s)
Mycoses/epidemiology , Mycoses/parasitology , Plant Diseases/parasitology , Silene/parasitology , Ustilaginales/physiology , Genetic Variation , Genotype , Host-Parasite Interactions , Polymerase Chain Reaction , Ustilaginales/pathogenicity
5.
Proc Biol Sci ; 269(1506): 2197-204, 2002 Nov 07.
Article in English | MEDLINE | ID: mdl-12427312

ABSTRACT

An important mechanism in stabilizing tightly linked host-parasitoid and prey-predator interactions is the presence of refuges that protect organisms from their natural enemies. However, the presence and quality of refuges can be strongly affected by the environment. We show that infection of the host plant Silene latifolia by its specialist fungal plant pathogen Microbotryum violaceum dramatically alters the enemy-free space of a herbivore, the specialist noctuid seed predator Hadena bicruris, on their shared host plant. The pathogen arrests the development of seed capsules that serve as refuges for the herbivore's offspring against the specialist parasitoid Microplitis tristis, a major source of mortality of H. bicruris in the field. Pathogen infection resulted both in lower host-plant food quality, causing reduced adult emergence, and in twofold higher rates of parasitism of the herbivore. We interpret the strong oviposition preference of H. bicruris for uninfected plants in the field as an adaptive response, positioning offspring on refuge-rich, high-quality hosts. To our knowledge, this is the first demonstration that plant-inhabiting micro-organisms can affect higher trophic interactions through alteration of host refuge quality. We speculate that such interference can potentially destabilize tightly linked multitrophic interactions.


Subject(s)
Basidiomycota/pathogenicity , Insecta/physiology , Plants/microbiology , Plants/parasitology , Adaptation, Physiological , Animals , Ecosystem , Feeding Behavior , Female , Food , Host-Parasite Interactions , Oviposition , Predatory Behavior , Silene/microbiology , Silene/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL
...