Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 13.823
Filter
1.
Molecules ; 29(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731472

ABSTRACT

Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by the accumulation of amyloid beta (Aß) plaques in the brain. Aß1-42 is the main component of Aß plaque, which is toxic to neuronal cells. Si nanowires (Si NWs) have the advantages of small particle size, high specific surface area, and good biocompatibility, and have potential application prospects in suppressing Aß aggregation. In this study, we employed the vapor-liquid-solid (VLS) growth mechanism to grow Si NWs using Au nanoparticles as catalysts in a plasma-enhanced chemical vapor deposition (PECVD) system. Subsequently, these Si NWs were transferred to a phosphoric acid buffer solution (PBS). We found that Si NWs significantly reduced cell death in PC12 cells (rat adrenal pheochromocytoma cells) induced by Aß1-42 oligomers via double staining with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and fluorescein diacetate/propyl iodide (FDA/PI). Most importantly, pre-incubated Si NWs largely prevented Aß1-42 oligomer-induced PC12 cell death, suggesting that Si NWs exerts an anti-Aß neuroprotective effect by inhibiting Aß aggregation. The analysis of Fourier Transform Infrared (FTIR) results demonstrates that Si NWs reduce the toxicity of fibrils and oligomers by intervening in the formation of ß-sheet structures, thereby protecting the viability of nerve cells. Our findings suggest that Si NWs may be a potential therapeutic agent for AD by protecting neuronal cells from the toxicity of Aß1-42.


Subject(s)
Amyloid beta-Peptides , Nanowires , Silicon , Amyloid beta-Peptides/toxicity , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/antagonists & inhibitors , Nanowires/chemistry , Animals , PC12 Cells , Rats , Silicon/chemistry , Peptide Fragments/chemistry , Peptide Fragments/toxicity , Peptide Fragments/pharmacology , Cell Survival/drug effects , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Protein Aggregates/drug effects , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism
2.
J Agric Food Chem ; 72(19): 10781-10793, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38709780

ABSTRACT

In this study, 20-day-old soybean plants were watered with 100 mL of 100 mM NaCl solution and sprayed with silica nanoparticles (SiO2 NPs) or potassium silicate every 3 days over 15 days, with a final dosage of 12 mg of SiO2 per plant. We assessed the alterations in the plant's growth and physiological traits, and the responses of bacterial microbiome within the leaf endosphere, rhizosphere, and root endosphere. The result showed that the type of silicon did not significantly impact most of the plant parameters. However, the bacterial communities within the leaf and root endospheres had a stronger response to SiO2 NPs treatment, showing enrichment of 24 and 13 microbial taxa, respectively, compared with the silicate treatment, which led to the enrichment of 9 and 8 taxonomic taxa, respectively. The rhizosphere bacterial communities were less sensitive to SiO2 NPs, enriching only 2 microbial clades, compared to the 8 clades enriched by silicate treatment. Furthermore, SiO2 NPs treatment enriched beneficial genera, such as Pseudomonas, Bacillus, and Variovorax in the leaf and root endosphere, likely enhancing plant growth and salinity stress resistance. These findings highlight the potential of SiO2 NPs for foliar application in sustainable farming by enhancing plant-microbe interactions to improve salinity tolerance.


Subject(s)
Bacteria , Glycine max , Nanoparticles , Rhizosphere , Silicon , Glycine max/microbiology , Glycine max/growth & development , Glycine max/drug effects , Glycine max/chemistry , Nanoparticles/chemistry , Bacteria/classification , Bacteria/genetics , Bacteria/drug effects , Bacteria/isolation & purification , Bacteria/growth & development , Silicon/pharmacology , Silicon/chemistry , Plant Roots/microbiology , Plant Roots/growth & development , Plant Roots/drug effects , Soil Microbiology , Microbiota/drug effects , Plant Leaves/chemistry , Plant Leaves/microbiology , Plant Leaves/growth & development , Endophytes/physiology , Endophytes/drug effects , Silicon Dioxide/chemistry , Salt Stress
3.
Planta ; 259(6): 144, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38709333

ABSTRACT

MAIN CONCLUSION: Silicon application mitigates phosphate deficiency in barley through an interplay with auxin and nitric oxide, enhancing growth, photosynthesis, and redox balance, highlighting the potential of silicon as a fertilizer for overcoming nutritional stresses. Silicon (Si) is reported to attenuate nutritional stresses in plants, but studies on the effect of Si application to plants grown under phosphate (Pi) deficiency are still very scarce, especially in barley. Therefore, the present work was undertaken to investigate the potential role of Si in mitigating the adverse impacts of Pi deficiency in barley Hordeum vulgare L. (var. BH902). Further, the involvement of two key regulatory signaling molecules--auxin and nitric oxide (NO)--in Si-induced tolerance against Pi deficiency in barley was tested. Morphological attributes, photosynthetic parameters, oxidative stress markers (O2·-, H2O2, and MDA), antioxidant system (enzymatic--APX, CAT, SOD, GR, DHAR, MDHAR as well as non-enzymatic--AsA and GSH), NO content, and proline metabolism were the key traits that were assessed under different treatments. The P deficiency distinctly declined growth of barley seedlings, which was due to enhancement in oxidative stress leading to inhibition of photosynthesis. These results were also in parallel with an enhancement in antioxidant activity, particularly SOD and CAT, and endogenous proline level and its biosynthetic enzyme (P5CS). The addition of Si exhibited beneficial effects on barley plants grown in Pi-deficient medium as reflected in increased growth, photosynthetic activity, and redox balance through the regulation of antioxidant machinery particularly ascorbate-glutathione cycle. We noticed that auxin and NO were also found to be independently participating in Si-mediated improvement of growth and other parameters in barley roots under Pi deficiency. Data of gene expression analysis for PHOSPHATE TRANSPORTER1 (HvPHT1) indicate that Si helps in increasing Pi uptake as per the need of Pi-deficient barley seedlings, and also auxin and NO both appear to help Si in accomplishing this task probably by inducing lateral root formation. These results are suggestive of possible application of Si as a fertilizer to correct the negative effects of nutritional stresses in plants. Further research at genetic level to understand Si-induced mechanisms for mitigating Pi deficiency can be helpful in the development of new varieties with improved tolerance against Pi deficiency, especially for cultivation in areas with Pi-deficient soils.


Subject(s)
Hordeum , Indoleacetic Acids , Nitric Oxide , Oxidative Stress , Phosphates , Photosynthesis , Plant Roots , Silicon , Hordeum/metabolism , Hordeum/genetics , Hordeum/drug effects , Hordeum/growth & development , Hordeum/physiology , Silicon/pharmacology , Silicon/metabolism , Indoleacetic Acids/metabolism , Phosphates/deficiency , Phosphates/metabolism , Nitric Oxide/metabolism , Plant Roots/metabolism , Plant Roots/growth & development , Plant Roots/drug effects , Plant Roots/genetics , Photosynthesis/drug effects , Antioxidants/metabolism , Seedlings/growth & development , Seedlings/metabolism , Seedlings/genetics , Seedlings/drug effects , Seedlings/physiology
4.
Plant Physiol Biochem ; 211: 108659, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38691875

ABSTRACT

Chromium (Cr) contamination in agricultural soils poses a risk to crop productivity and quality. Emerging nano-enabled strategies show great promise in remediating soils contaminated with heavy metals and enhancing crop production. The present study was aimed to investigate the efficacy of nano silicon (nSi) in promoting wheat growth and mitigating adverse effects of Cr-induced toxicity. Wheat seedlings exposed to Cr (K2Cr2O7) at a concentration of 100 mg kg-1 showed significant reductions in plant height (29.56%), fresh weight (35.60%), and dry weight (38.92%) along with enhanced Cr accumulation in roots and shoots as compared to the control plants. However, the application of nSi at a concentration of 150 mg kg-1 showcased substantial mitigation of Cr toxicity, leading to a decrease in Cr accumulation by 27.30% in roots and 35.46% in shoots of wheat seedlings. Moreover, nSi exhibited the capability to scavenge oxidative stressors, such as hydrogen peroxide (H2O2), and malondialdehyde (MDA) and electrolyte leakage, while significantly enhancing gas exchange parameters, total chlorophyll content, and antioxidant activities (enzymatic and nonenzymatic) in plants grown in Cr-contaminated soil. This study further found that the reduced Cr uptake by nSi application was due to downregulating the expression of HMs transporter genes (TaHMA2 and TaHMA3), alongwith upregulating the expression of antioxidant-responsive genes (TaSOD and TaSOD). The findings of this investigation highlight the remarkable potential of nSi in ameliorating Cr toxicity. This enhanced efficacy could be ascribed to the distinctive size and structure of nSi, which augment its ability to counteract Cr stress. Thus, the application of nSi could serve as a viable solution for production of crops in metal contaminated soils, offering an effective alternative to time-consuming and costly remediation techniques.


Subject(s)
Chromium , Silicon , Triticum , Triticum/drug effects , Triticum/metabolism , Triticum/growth & development , Silicon/pharmacology , Chromium/toxicity , Soil Pollutants/toxicity , Plant Roots/drug effects , Plant Roots/metabolism , Oxidative Stress/drug effects , Antioxidants/metabolism , Seedlings/drug effects , Seedlings/metabolism
5.
Plant Physiol Biochem ; 211: 108680, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38701606

ABSTRACT

Fruit crops are frequently subjected to biotic and abiotic stresses that can significantly reduce the absorption and translocation of essential elements, ultimately leading to a decrease in crop yield. It is imperative to grow fruits and vegetables in areas prone to drought, salinity, and extreme high, and low temperatures to meet the world's minimum nutrient demand. The use of integrated approaches, including supplementation of beneficial elements like silicon (Si), can enhance plant resilience under various stresses. Silicon is the second most abundant element on the earth crust, following oxygen, which plays a significant role in development and promote plant growth. Extensive efforts have been made to explore the advantages of Si supplementation in fruit crops. The application of Si to plants reinforces the cell wall, providing additional support through enhancing a mechanical and biochemical processes, thereby improving the stress tolerance capacity of crops. In this review, the molecular and physiological mechanisms that explain the beneficial effects of Si supplementation in horticultural crop species have been discussed. The review describes the role of Si and its transporters in mitigation of abiotic stress conditions in horticultural plants.


Subject(s)
Crops, Agricultural , Silicon , Stress, Physiological , Crops, Agricultural/metabolism , Silicon/pharmacology , Silicon/metabolism , Fruit/metabolism , Fruit/growth & development
6.
Food Chem ; 451: 139454, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38703725

ABSTRACT

Morphology regulation of heterodimer nanoparticles and the use of their asymmetric features for further practical applications are crucial because of the rich optical properties and various combinations of heterodimers. This work used silicon to asymmetrically wrap half of a gold sphere and grew gold branches on the bare gold surface to form heterogeneous nano pineapples (NPPs) which can effectively improve Surface-enhanced Raman scattering (SERS) properties through chemical enhancement and lightning-rod effect respectively. The asymmetric structures of NPPs enabled them to self-assemble into the monolayer membrane with consistent branch orientation. The prepared substrate had high homogeneity and better SERS ability than disorganized substrates, and achieved reliable detection of malachite green (MG) in clams with a detection limit of 7.8 × 10-11 M. This work provided a guide to further revise the morphology of heterodimers and a new idea for the use of asymmetric dimers for practically photochemical and biomedical sensing.


Subject(s)
Gold , Rosaniline Dyes , Silicon , Spectrum Analysis, Raman , Rosaniline Dyes/chemistry , Spectrum Analysis, Raman/methods , Gold/chemistry , Silicon/chemistry , Animals , Ananas/chemistry , Metal Nanoparticles/chemistry , Bivalvia/chemistry , Limit of Detection , Surface Properties
7.
ACS Appl Bio Mater ; 7(5): 3154-3163, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38695332

ABSTRACT

ß-Galactosidase (ß-Gala) is an essential biomarker enzyme for early detection of breast tumors and cellular senescence. Creating an accurate way to monitor ß-Gala activity is critical for biological research and early cancer detection. This work used fluorometric, colorimetric, and paper-based color sensing approaches to determine ß-Gala activity effectively. Via the sensing performance, the catalytic activity of ß-Gala resulted in silicon nanoparticles (SiNPs), fluorescent indicators obtained via a one-pot hydrothermal process. As a standard enzymatic hydrolysis product of the substrate, kaempferol 3-O-ß-d-galactopyranoside (KOßDG) caused the fluorometric signal to be attenuated on kaempferol-silicon nanoparticles (K-SiNPs). The sensing methods demonstrated a satisfactory linear response in sensing ß-Gala and a low detection limit. The findings showed the low limit of detection (LOD) as 0.00057 and 0.098 U/mL for fluorometric and colorimetric, respectively. The designed probe was then used to evaluate the catalytic activity of ß-Gala in yogurt and human serum, with recoveries ranging from 98.33 to 107.9%. The designed sensing approach was also applied to biological sample analysis. In contrast, breast cancer cells (MCF-7) were used as a model to test the in vitro toxicity and molecular fluorescence imaging potential of K-SiNPs. Hence, our fluorescent K-SiNPs can be used in the clinic to diagnose breast cellular carcinoma, since they can accurately measure the presence of invasive ductal carcinoma in serologic tests.


Subject(s)
Breast Neoplasms , Kaempferols , Materials Testing , Nanoparticles , Silicon , beta-Galactosidase , Humans , beta-Galactosidase/metabolism , Silicon/chemistry , MCF-7 Cells , Nanoparticles/chemistry , Kaempferols/chemistry , Kaempferols/pharmacology , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Particle Size , Colorimetry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Biocompatible Materials/chemical synthesis , Female , Molecular Structure
8.
BMC Plant Biol ; 24(1): 471, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811870

ABSTRACT

BACKGROUND: Nutritional disorders of phosphorus (P), due to deficiency or toxicity, reduce the development of Eucalyptus spp. seedlings. Phosphorus deficiency often results in stunted growth and reduced vigor, while phosphorus toxicity can lead to nutrient imbalances and decreased physiological function. These sensitivities highlight the need for precise management of P levels in cultivation practices. The use of the beneficial element silicon (Si) has shown promising results under nutritional stress; nevertheless, comprehensive studies on its effects on Eucalyptus spp. seedlings are still emerging. To further elucidate the role of Si under varying P conditions, an experiment was conducted with clonal seedlings of a hybrid Eucalyptus spp. (Eucalyptus grandis × Eucalyptus urophylla, A207) in a soilless cultivation system. Seedlings were propagated using the minicutting method in vermiculite-filled tubes, followed by treatment with a nutrient solution at three P concentrations: a deficient dose (0.1 mM), an adequate dose (1.0 mM) and an excessive dose (10 mM), with and without the addition of Si (2mM). This study assessed P and Si concentration, nutritional efficiency, oxidative metabolism, photosynthetic parameters, and dry matter production. RESULTS: Si supply increased phenolic compounds production and reduced electrolyte leakage in seedlings provided with 0.1 mM of P. On the other hand, Si favored quantum efficiency of photosystem II as well as chlorophyll a content in seedlings supplemented with 10 mM of P. In general, Si attenuates P nutritional disorder by reducing the oxidative stress, favoring the non-enzymatic antioxidant system and photosynthetic parameters in seedlings of Eucalyptus grandis × Eucalyptus urophylla. CONCLUSION: The results of this study indicate that Eucalyptus grandis × Eucalyptus urophylla seedlings are sensitive to P deficiency and toxicity and Si has shown a beneficial effect, attenuating P nutritional disorder by reducing the oxidative stress, favoring the non-enzymatic antioxidant system and photosynthetic parameters.


Subject(s)
Eucalyptus , Phosphorus , Photosynthesis , Seedlings , Silicon , Eucalyptus/drug effects , Eucalyptus/physiology , Seedlings/physiology , Seedlings/drug effects , Seedlings/growth & development , Silicon/pharmacology , Phosphorus/metabolism , Phosphorus/deficiency , Photosynthesis/drug effects , Antioxidants/metabolism , Chlorophyll/metabolism , Oxidative Stress/drug effects
9.
Int J Biol Macromol ; 269(Pt 1): 132134, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38719013

ABSTRACT

Stimulus-responsive nanomaterials, particularly with targeting capabilities, have garnered significant attention in the cancer therapy. However, the biological safety of these innovative materials in vivo remains unknown, posing a hurdle to their clinical application. Here, a pH/H2O2 dual-responsive and targeting nano carrier system (NCS) was developed using core shell structure of Fe3O4 mesoporous silicon (MSN@Fe3O4) as main body, scutellarin (SCU) as antitumor drug and polymer cyclodextrin (PCD) as molecular switch (denoted as PCD@SCU@MSN@Fe3O4, abbreviated as NCS). The NCS, with an average particle size of 100 nm, displayed exceptional SCU loading capacity, a result of its uniform radial channel structure. The in vitro investigation under condition of pH and H2O2 indicated that NCS performed excellent pH/H2O2-triggered SCU release behavior. The NCS displayed a higher cytotoxicity against tumor cells (Huh7 and HCT116) due to its pH/H2O2 dual-triggered responsiveness, while the PCD@MSN@Fe3O4 demonstrated lower cytotoxicity for both Huh7 and HCT116 cells. In vivo therapeutic evaluation of NCS indicates significant inhibition of tumor growth in mouse subcutaneous tumor models, with no apparent side-effects detected. The NCS not only enhances the bioavailability of SCU, but also utilizes magnetic targeting technology to deliver SCU accurately to tumor sites. These findings underscore the substantial clinical application potential of NCS.


Subject(s)
Apigenin , Cyclodextrins , Drug Carriers , Glucuronates , Hydrogen Peroxide , Silicon , Animals , Humans , Cyclodextrins/chemistry , Mice , Hydrogen Peroxide/chemistry , Apigenin/chemistry , Apigenin/pharmacology , Drug Carriers/chemistry , Hydrogen-Ion Concentration , Glucuronates/chemistry , Glucuronates/pharmacology , Silicon/chemistry , Porosity , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Line, Tumor , Xenograft Model Antitumor Assays , Drug Liberation , Neoplasms/drug therapy , Nanoparticles/chemistry , Cellulose
10.
Sensors (Basel) ; 24(10)2024 May 20.
Article in English | MEDLINE | ID: mdl-38794104

ABSTRACT

A high-sensitivity silicon microring (Si MRR) optical biosensor for detecting the nucleocapsid protein of SARS-CoV-2 is proposed and demonstrated. In the proposed biosensor, the surface of a Si MRR waveguide is modified with antibodies, and the target protein is detected by measuring a resonant wavelength shift of the MRR caused by the selective adsorption of the protein to the surface of the waveguide. A Si MRR is fabricated on a silicon-on-insulator substrate using a CMOS-compatible fabrication process. The quality factor of the MRR is approximately 20,000. The resonant wavelength shift of the MRR and the detection limit for the environmental refractive index change are evaluated to be 89 nm/refractive index unit (RIU) and 10-4 RIU, respectively. The sensing characteristics are examined using a polydimethylsiloxane flow channel after the surface of the Si MRR waveguide is modified with the IgG antibodies through the Si-tagged protein. First, the selective detection of the protein by the MRR sensor is experimentally demonstrated by the detection of bovine serum albumin and human serum albumin. Next, various concentrations of nucleocapsid protein solutions are measured by the MRR, in which the waveguide surface is modified with the IgG antibodies through the Si-tagged protein. Although the experimental results are very preliminary, they show that the proposed sensor has a potential nucleocapsid sensitivity in the order of 10 pg/mL, which is comparable to the sensitivity of current antigen tests. The detection time is less than 10 min, which is much shorter than those of other antigen tests.


Subject(s)
Biosensing Techniques , Coronavirus Nucleocapsid Proteins , SARS-CoV-2 , Silicon , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Silicon/chemistry , SARS-CoV-2/isolation & purification , SARS-CoV-2/immunology , Humans , Coronavirus Nucleocapsid Proteins/immunology , COVID-19/diagnosis , COVID-19/virology , Phosphoproteins , Limit of Detection
11.
Behav Brain Res ; 468: 115040, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38723675

ABSTRACT

Neurotoxins have been extensively investigated, particularly in the field of neuroscience. They induce toxic damage, oxidative stress, and inflammation on neurons, triggering neuronal dysfunction and neurodegenerative diseases. Here we demonstrate the neuroprotective effect of a silicon (Si)-based hydrogen-producing agent (Si-based agent) in a juvenile neurotoxic mouse model induced by 6-hydroxydopamine (6-OHDA). The Si-based agent produces hydrogen in bowels and functions as an antioxidant and anti-inflammatory agent. However, the effects of the Si-based agent on neural degeneration in areas other than the lesion and behavioral alterations caused by it are largely unknown. Moreover, the neuroprotective effects of Si-based agent in the context of lactation and use during infancy have not been explored in prior studies. In this study, we show the neuroprotective effect of the Si-based agent on 6-OHDA during lactation period and infancy using the mouse model. The Si-based agent safeguards against the degradation and neuronal cell death of dopaminergic neurons and loss of dopaminergic fibers in the striatum (STR) and ventral tegmental area (VTA) caused by 6-OHDA. Furthermore, the Si-based agent exhibits a neuroprotective effect on the length of axon initial segment (AIS) in the layer 2/3 (L2/3) neurons of the medial prefrontal cortex (mPFC). As a result, the Si-based agent mitigates hyperactive behavior in a juvenile neurotoxic mouse model induced by 6-OHDA. These results suggest that the Si-based agent serves as an effective neuroprotectant and antioxidant against neurotoxic effects in the brain, offering the possibility of the Si-based agent as a neuroprotectant for nervous system diseases.


Subject(s)
Disease Models, Animal , Dopaminergic Neurons , Hydrogen , Neuroprotective Agents , Oxidopamine , Silicon , Animals , Neuroprotective Agents/pharmacology , Oxidopamine/pharmacology , Mice , Silicon/pharmacology , Dopaminergic Neurons/drug effects , Female , Hydrogen/pharmacology , Hydrogen/administration & dosage , Male , Neurotoxicity Syndromes/drug therapy , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Ventral Tegmental Area/drug effects , Mice, Inbred C57BL
12.
Mol Biol Rep ; 51(1): 543, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38642191

ABSTRACT

Heavy metal stress is a major problem in present scenario and the consequences are well known. The agroecosystems are heavily affected by the heavy metal stress and the question arises on the sustainability of the agricultural products. Heavy metals inhibit the process to influence the reactive oxygen species production. When abundantly present copper metal ion has toxic effects which is mitigated by the exogenous application of Si. The role of silicon is to enhance physical parameters as well as gas exchange parameters. Si is likely to increase antioxidant enzymes in response to copper stress which can relocate toxic metals at subcellular level and remove heavy metals from the cell. Silicon regulates phytohormones when excess copper is present. Rate of photosynthesis and mineral absorption is increased in response to metal stress. Silicon manages enzymatic and non-enzymatic activities to balance metal stress condition. Cu transport by the plasma membrane is controlled by a family of proteins called copper transporter present at cell surface. Plants maintain balance in absorption, use and storage for proper copper ion homeostasis. Copper chaperones play vital role in copper ion movement within cells. Prior to that metallochaperones control Cu levels. The genes responsible in copper stress mitigation are discovered in various plant species and their function are decoded. However, detailed molecular mechanism is yet to be studied. This review discusses about the crucial mechanisms of Si-mediated alleviation of copper stress, the role of copper binding proteins in copper homeostasis. Moreover, it also provides a brief information on the genes, their function and regulation of their expression in relevance to Cu abundance in different plant species which will be beneficial for further understanding of the role of silicon in stabilization of copper stress.


Subject(s)
Copper , Metals, Heavy , Copper/metabolism , Silicon/pharmacology , Silicon/metabolism , Metals, Heavy/metabolism , Antioxidants/metabolism , Plants/metabolism , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Dietary Supplements
13.
J Insect Sci ; 24(2)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38597909

ABSTRACT

The stink bug Glyphepomis spinosa Campos & Grazia (Hemiptera: Pentatomidae) is a potential rice pest in Brazil. This study evaluates the interaction between silicon sources and 3 rice cultivars (BRS Esmeralda, Canela de Ferro, and IRGA 417) and examines how increasing silicon levels affect the stylet probing behavior of G. spinosa. The experiment was set up in a completely randomized design with a 3 × 3 factorial scheme (silicon sources: calcium silicate, potassium silicate, a control, and 3 rice cultivars). Fertilizing rice plants with Si altered the probing behavior of the stink bug G. spinosa. The cultivar interaction by Si source was significant in a few variables. This was evidenced by longer periods without ingestion, prolonged time to the first stylet probe (initial probing), and less time spent in cellular maceration. This result supports the use of electropenetrography as a tool to evaluate resistance inducers in plants.


Subject(s)
Heteroptera , Oryza , Animals , Silicon , Brazil
14.
Anal Chem ; 96(16): 6467-6475, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38602368

ABSTRACT

Room temperature phosphorescence (RTP) nanoprobes play crucial roles in hypoxia imaging due to their high signal-to-background ratio (SBR) in the time domain. However, synthesizing RTP probes in aqueous media with a small size and high quantum yield remains challenging for intracellular hypoxic imaging up to present. Herein, aqueous RTP nanoprobes consisting of naphthalene anhydride derivatives, cucurbit[7]uril (CB[7]), and organosilicon are reported via supermolecular confined methods. Benefiting from the noncovalent confinement of CB[7] and hydrolysis reactions of organosilicon, such small-sized RTP nanoprobes (5-10 nm) exhibit inherent tunable phosphorescence (from 400 to 680 nm) with microsecond second lifetimes (up to ∼158.7 µs) and high quantum yield (up to ∼30%). The as-prepared RTP nanoprobes illustrate excellent intracellular hypoxia responsibility in a broad range from ∼0.1 to 21% oxygen concentrations. Compared to traditional fluorescence mode, the SBR value (∼108.69) of microsecond-range time-resolved in vitro imaging is up to 2.26 times greater in severe hypoxia (<0.1% O2), offering opportunities for precision imaging analysis in a hypoxic environment.


Subject(s)
Heterocyclic Compounds, 2-Ring , Imidazoles , Imidazolidines , Macrocyclic Compounds , Humans , Imidazoles/chemistry , Silicon/chemistry , Nanoparticles/chemistry , Cell Hypoxia , Bridged-Ring Compounds/chemistry , Optical Imaging , Fluorescent Dyes/chemistry , Luminescent Measurements , Naphthalenes/chemistry , Time Factors , HeLa Cells
15.
PLoS One ; 19(4): e0302009, 2024.
Article in English | MEDLINE | ID: mdl-38620042

ABSTRACT

Phytoliths of biogenic silica play a vital role in the silicon biogeochemical cycle and occlude a fraction of organic carbon. The location, chemical speciation, and quantification of this carbon within phytoliths have remained elusive due to limited direct experimental evidence. In this work, phytoliths (bilobate morphotype) from the sugarcane stalk epidermis are sectioned with a focused ion beam to produce lamellas (≈10 × 10 µm2 size, <500 nm thickness) and probed by synchrotron scanning transmission X-ray microspectroscopy (≈100-200 nm pixel size; energies near the silicon and carbon K-absorption edges). Analysis of the spectral image stacks reveals the complementarity of the silica and carbon spatial distributions, with carbon found at the borders of the lamellas, in islands within the silica, and dispersed in extended regions that can be described as a mixed silica-carbonaceous matrix. Carbon spectra are assigned mainly to lignin-like compounds as well as to proteins. Carbon contents of 3-14 wt.% are estimated from the spectral maps of four distinct phytolith lamellas. The results provide unprecedented spatial and chemical information on the carbon in phytoliths obtained without interference from wet-chemical digestion.


Subject(s)
Silicon Dioxide , Silicon , Silicon Dioxide/chemistry , X-Rays , Carbon/analysis , Synchrotrons
16.
Methods Mol Biol ; 2788: 197-207, 2024.
Article in English | MEDLINE | ID: mdl-38656515

ABSTRACT

The best Vaccinium corymbosum plant growth under in vitro conditions can be achieved by using the right composition and pH of the medium. For the initial phase of in vitro culture, a combination of cytokinins-mostly zeatin-can usually be used. Organic supplementation of the medium enables the use of a replacement for the expensive natural cytokinin used in micropropagation of highbush blueberry. This chapter describes the experiments with silicon Hydroplus™ Actisil (Si), coconut water (CW), and different pH (5.0; 5.5, and 6.0) as a stress factor. The addition of 200 mg dm-3 silicon solution and 15% coconut water strongly stimulated highbush blueberry plant growth in vitro. Moreover, silicon solution benefits the negative effects of higher pH of the medium used for micropropagation of V. corymbosum. Maximum vegetative development of blueberry explants was obtained at pH 5.


Subject(s)
Blueberry Plants , Culture Media , Culture Media/chemistry , Hydrogen-Ion Concentration , Blueberry Plants/growth & development , Vaccinium/growth & development , Acclimatization , Silicon/pharmacology
17.
ACS Nano ; 18(15): 10374-10387, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38567845

ABSTRACT

The advent of mRNA for nucleic acid (NA) therapeutics has unlocked many diverse areas of research and clinical investigation. However, the shorter intracellular half-life of mRNA compared with other NAs may necessitate more frequent dosing regimens. Because lipid nanoparticles (LNPs) are the principal delivery system used for mRNA, this could lead to tolerability challenges associated with an accumulated lipid burden. This can be addressed by introducing enzymatically cleaved carboxylic esters into the hydrophobic domains of lipid components, notably, the ionizable lipid. However, enzymatic activity can vary significantly with age, disease state, and species, potentially limiting the application in humans. Here we report an alternative approach to ionizable lipid degradability that relies on nonenzymatic hydrolysis, leading to a controlled and highly efficient lipid clearance profile. We identify highly potent examples and demonstrate their exceptional tolerability in multiple preclinical species, including multidosing in nonhuman primates (NHP).


Subject(s)
Liposomes , Nanoparticles , Silicon , Animals , Humans , Ether , RNA, Messenger/genetics , RNA, Messenger/chemistry , Lipids/chemistry , Nanoparticles/chemistry , Ethyl Ethers , Ethers , RNA, Small Interfering/genetics
18.
Int J Phytoremediation ; 26(6): 936-946, 2024.
Article in English | MEDLINE | ID: mdl-38630443

ABSTRACT

Vegetable cultivation under sewage irrigation is a common practice mostly in developing countries due to a lack of freshwater. Long-term usage provokes heavy metals accumulation in soil and ultimately hinders the growth and physiology of crop plants and deteriorates the quality of food. A study was performed to investigate the role of brassinosteroid (BRs) and silicon (Si) on lettuce, spinach, and cabbage under lead (Pb) and cadmium (Cd) contaminated sewage water. The experiment comprises three treatments (control, BRs, and Si) applied under a completely randomized design (CRD) in a growth chamber. BRs and Si application resulted in the highest increase of growth, physiology, and antioxidant enzyme activities when applied under canal water followed by distilled water and sewage water. However, BRs and Si increased the above-determined attributes under the sewage water by reducing the Pb and Cd uptake as compared to the control. It's concluded that sewerage water adversely affected the growth and development of vegetables by increasing Pb and Cd, and foliar spray of Si and BRs could have great potential to mitigate the adverse effects of heavy metals and improve the growth. The long-term alleviating effect of BRs and Si will be evaluated in the field conditions at different ecological zones.


Subject(s)
Vegetables , Wastewater , Brassinosteroids , Sewage , Cadmium , Antioxidants , Silicon , Lead , Biodegradation, Environmental , Water
19.
Physiol Plant ; 176(3): e14313, 2024.
Article in English | MEDLINE | ID: mdl-38666351

ABSTRACT

Bipolaris setariae is known to cause brown stripe disease in sugarcane, resulting in significant yield losses. Silicon (Si) has the potential to enhance plant growth and biotic resistance. In this study, the impact of Si on brown stripe disease was investigated across susceptible and resistant sugarcane varieties, utilizing four Si concentrations (0, 15, 30, and 45 g per barrel of Na2SiO3·5H2O). Si significantly reduced the incidence of brown stripe disease (7.41-59.23%) and alleviated damage to sugarcane growth parameters, photosynthetic parameters, and photosynthetic pigments. Submicroscopic observations revealed that Si induced the accumulation of silicified cells in leaves, reduced spore accumulation, decreased stomatal size, and protected organelles from B. setariae damage. In addition, Si increased the activity of antioxidant enzymes (superoxide dismutase, peroxidase, and catalase), reduced reactive oxygen species production (malondialdehyde and hydrogen peroxide) and modulated the expression of genes associated with hormone signalling (PR1, TGA, AOS, AOC, LOX, PYL8, and SnRK2), leading to the accumulation of abscisic acid and jasmonic acid and inhibiting SA synthesis. Si also activated the activity of metabolism-related enzymes (polyphenol oxidase and phenylalanine ammonia lyase) and the gene expression of PAL-dependent genes (PAL, C4H, and 4CL), regulating the accumulation of metabolites, such as chlorogenic acid and lignin. The antifungal test showed that chlorogenic acid (15ug µL-1) had a significant inhibitory effect on the growth of B. setariae. This study is the first to demonstrate the inhibitory effect of Si on B. setariae in sugarcane, highlighting Si as a promising and environmentally friendly strategy for managing brown stripe disease.


Subject(s)
Plant Diseases , Plant Growth Regulators , Reactive Oxygen Species , Saccharum , Silicon , Saccharum/drug effects , Saccharum/metabolism , Saccharum/microbiology , Saccharum/genetics , Saccharum/growth & development , Silicon/pharmacology , Silicon/metabolism , Plant Diseases/microbiology , Reactive Oxygen Species/metabolism , Plant Growth Regulators/metabolism , Antifungal Agents/pharmacology , Antifungal Agents/metabolism , Plant Leaves/metabolism , Plant Leaves/drug effects , Plant Leaves/microbiology , Plant Leaves/genetics , Ascomycota/physiology , Ascomycota/drug effects , Signal Transduction/drug effects , Photosynthesis/drug effects , Free Radical Scavengers/metabolism
20.
PLoS One ; 19(4): e0301980, 2024.
Article in English | MEDLINE | ID: mdl-38669276

ABSTRACT

This research introduces a new designing process and analysis of an innovative Silicon-on-Insulator Metal-Semiconductor Field-Effect (SOI MESFET) structure that demonstrates improved DC and RF characteristics. The design incorporates several modifications to control and reduce the electric field concentration within the channel. These modifications include relocating the transistor channel to sub-regions near the source and drain, adjusting the position of the gate electrode closer to the source, introducing an aluminum layer beneath the channel, and integrating an oxide layer adjacent to the gate. The results show that the AlOx-MESFET configuration exhibits a remarkable increase of 128% in breakdown voltage and 156% in peak power. Furthermore, due to enhanced conductivity and a significant reduction in gate-drain capacitance, there is a notable improvement of 53% in the cut-off frequency and a 28% increase in the maximum oscillation frequency. Additionally, the current gain experiences a boost of 15%. The improved breakdown voltage and peak power make it suitable for applications requiring robust performance under high voltage and power conditions. The increased maximum oscillation frequency and cut-off frequency make it ideal for high-frequency applications where fast signal processing is crucial. Moreover, the enhanced current gain ensures efficient amplification of signals. The introduced SOI MESFET structure with its modifications offers significant improvements in various performance metrics. It provides high oscillation frequency, better breakdown voltage and good cut-off frequency, and current gain compared to the traditional designs. These enhancements make it a highly desirable choice for applications that demand high-frequency and high-power capabilities.


Subject(s)
Equipment Design , Silicon , Silicon/chemistry , Semiconductors , Transistors, Electronic , Electric Conductivity , Electric Power Supplies , Metals/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...