Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.708
Filter
1.
Physiol Plant ; 176(3): e14386, 2024.
Article in English | MEDLINE | ID: mdl-38887947

ABSTRACT

Silk of maize (Zea mays L.) contains diverse metabolites with complicated structures and functions, making it a great challenge to explore the mechanisms of metabolic regulation. Genome-wide identification of silk-preferential genes and investigation of their expression regulation provide an opportunity to reveal the regulatory networks of metabolism. Here, we applied the expression quantitative trait locus (eQTL) mapping on a maize natural population to explore the regulation of gene expression in unpollinated silk of maize. We obtained 3,985 silk-preferential genes that were specifically or preferentially expressed in silk using our population. Silk-preferential genes showed more obvious expression variations compared with broadly expressed genes that were ubiquitously expressed in most tissues. We found that trans-eQTL regulation played a more important role for silk-preferential genes compared to the broadly expressed genes. The relationship between 38 transcription factors and 85 target genes, including silk-preferential genes, were detected. Finally, we constructed a transcriptional regulatory network around the silk-preferential gene Bx10, which was proposed to be associated with response to abiotic stress and biotic stress. Taken together, this study deepened our understanding of transcriptome variation in maize silk and the expression regulation of silk-preferential genes, enhancing the investigation of regulatory networks on metabolic pathways.


Subject(s)
Gene Expression Regulation, Plant , Gene Regulatory Networks , Quantitative Trait Loci , Zea mays , Zea mays/genetics , Zea mays/metabolism , Quantitative Trait Loci/genetics , Gene Expression Regulation, Plant/genetics , Silk/genetics , Genome, Plant/genetics , Gene Expression Profiling , Plant Proteins/genetics , Plant Proteins/metabolism , Transcriptome/genetics
2.
Sci Rep ; 14(1): 13032, 2024 06 06.
Article in English | MEDLINE | ID: mdl-38844676

ABSTRACT

Green products such as plant tints are becoming more and more well-known worldwide due to their superior biological and ayurvedic properties. In this work, colorant from Amba Haldi (Curcuma aromatica) was isolated using microwave (MW), and bio-mordants were added to produce colorfast shades. Response surface methodology was used to develop a central composite design (CCD), which maximizes coloring variables statistically. The findings from 32 series of experiments show that excellent color depth (K/S = 12.595) was established onto MW-treated silk fabric (RS = 4 min) by employing 65 mL of radiated aqueous extract (RE = 4 min) of 5 pH cutting-edge the existence of 1.5 g/100 mL used sodium chloride at 75 °C for 45 min. It was discovered that acacia (keekar) extract (1%), pomegranate extract (2%), and pistachio extract (1.5%) were present before coloring by the use of bio-mordants. On the other hand, upon dyeing, acacia extract (1.5%), pomegranate extract (1.5%), and pistachio extract (2%) have all shown extremely strong colorfast colors. Comparatively, before dyeing, salts of Al3+ (1.5%), Fe2+ (2%), and TA (1.5%) gave good results; after dyeing, salts of Al3+ (1%) and Fe2+ (1.5%) and TA (2%) gave good results. When applied to silk fabric, MW radiation has increased the production of dyes recovered from rhizomes. Additionally, the right amount of chemical and biological mordants have been added, resulting in color fastness ratings ranging from outstanding to good. Therefore, the natural color extracted from Amba Haldi can be a sustainable option for the dyeing of silk fabric in the textile dyeing and finishing industries.


Subject(s)
Coloring Agents , Curcuma , Plant Extracts , Rhizome , Silk , Curcuma/chemistry , Rhizome/chemistry , Coloring Agents/chemistry , Plant Extracts/chemistry , Silk/chemistry , Microwaves , Color , Green Chemistry Technology/methods
3.
Int J Mol Sci ; 25(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38892315

ABSTRACT

The traditional production mode of the sericulture industry is no longer suitable for the development requirements of modern agriculture; to facilitate the sustainable development of the sericulture industry, factory all-age artificial diet feeding came into being. Understanding the structural characteristics and properties of silk fibers obtained from factory all-age artificial diet feeding is an important prerequisite for application in the fields of textiles, clothing, biomedicine, and others. However, there have been no reports so far. In this paper, by feeding silkworms with factory all-age artificial diets (AD group) and mulberry leaves (ML group), silk fibers were obtained via two different feeding methods. The structure, mechanical properties, hygroscopic properties, and degradation properties were studied by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). Structurally, no new functional groups appeared in the AD group. Compared with the ML group, the structure of the two groups was similar, and there was no significant difference in mechanical properties and moisture absorption. The structure of degummed silk fibers is dominated by crystalline regions, but α-chymotrypsin hydrolyzes the amorphous regions of silk proteins, so that after 28 d of degradation, the weight loss of both is very small. This provides further justification for the feasibility of factory all-age artificial diets for silkworms.


Subject(s)
Bombyx , Silk , Animals , Silk/chemistry , Bombyx/chemistry , X-Ray Diffraction , Spectroscopy, Fourier Transform Infrared , Thermogravimetry , Morus/chemistry
4.
ACS Biomater Sci Eng ; 10(5): 2827-2840, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38690985

ABSTRACT

Silk fibroin, extracted from the silk of the Bombyx mori silkworm, stands out as a biomaterial due to its nontoxic nature, excellent biocompatibility, and adjustable biodegradability. Porous scaffolds, a type of biomaterial, are crucial for creating an optimal microenvironment that supports cell adhesion and proliferation, thereby playing an essential role in tissue remodeling and repair. Therefore, this review focuses on 3D porous silk fibroin-based scaffolds, first summarizing their preparation methods and then detailing their regenerative effects on bone, cartilage, tendon, vascular, neural, skin, hepatic, and tracheal epithelial tissue engineering in recent years.


Subject(s)
Fibroins , Tissue Engineering , Tissue Scaffolds , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Porosity , Animals , Humans , Fibroins/chemistry , Bombyx , Biocompatible Materials/chemistry , Silk/chemistry
5.
ACS Nano ; 18(23): 15312-15325, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38809601

ABSTRACT

The exceptional biocompatibility and adaptability of hydrogels have garnered significant interest in the biomedical field for the fabrication of biomedical devices. However, conventional synthetic hydrogels still exhibit relatively weak and fragile properties. Drawing inspiration from the photosynthesis process, we developed a facile approach to achieve a harmonious combination of superior mechanical properties and efficient preparation of silk fibroin hydrogel through photo-cross-linking technology, accomplished within 60 s. The utilization of riboflavin and H2O2 enabled a sustainable cyclic photo-cross-linking reaction, facilitating the transformation from tyrosine to dityrosine and ultimately contributing to the formation of highly cross-linked hydrogels. These photo-cross-linking hydrogels exhibited excellent elasticity and restorability even after undergoing 1000 cycles of compression. Importantly, our findings presented that hydrogel-encapsulated adipose stem cells possess the ability to stimulate cell proliferation along with stem cell stemness. This was evidenced by the continuous high expression levels of OCT4 and SOX2 over 21 days. Additionally, the utilization of photo-cross-linking hydrogels can be extended to various material molding platforms, including microneedles, microcarriers, and bone screws. Consequently, this study offered a significant approach to fabricating biomedical hydrogels capable of facilitating real-time cell delivery, thereby introducing an innovative avenue for designing silk devices with exceptional machinability and adaptability in biomedical applications.


Subject(s)
Cell Proliferation , Hydrogels , Hydrogels/chemistry , Hydrogels/pharmacology , Hydrogels/chemical synthesis , Cell Proliferation/drug effects , Fibroins/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Biocompatible Materials/chemical synthesis , Animals , Cross-Linking Reagents/chemistry , Silk/chemistry , Photochemical Processes , Stem Cells/cytology , Stem Cells/metabolism , Stem Cells/drug effects , Riboflavin/chemistry , Riboflavin/pharmacology , Bombyx , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/pharmacology , Humans
6.
Nat Commun ; 15(1): 4670, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38821983

ABSTRACT

The major ampullate Spidroin 1 (MaSp1) is the main protein of the dragline spider silk. The C-terminal (CT) domain of MaSp1 is crucial for the self-assembly into fibers but the details of how it contributes to the fiber formation remain unsolved. Here we exploit the fact that the CT domain can form silk-like fibers by itself to gain knowledge about this transition. Structural investigations of fibers from recombinantly produced CT domain from E. australis MaSp1 reveal an α-helix to ß-sheet transition upon fiber formation and highlight the helix No4 segment as most likely to initiate the structural conversion. This prediction is corroborated by the finding that a peptide corresponding to helix No4 has the ability of pH-induced conversion into ß-sheets and self-assembly into nanofibrils. Our results provide structural information about the CT domain in fiber form and clues about its role in triggering the structural conversion of spidroins during fiber assembly.


Subject(s)
Fibroins , Spiders , Fibroins/chemistry , Fibroins/metabolism , Animals , Spiders/metabolism , Silk/chemistry , Silk/metabolism , Protein Domains , Amino Acid Sequence , Protein Conformation, beta-Strand , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Hydrogen-Ion Concentration , Protein Conformation, alpha-Helical , Protein Structure, Secondary
7.
Talanta ; 276: 126280, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38788380

ABSTRACT

The sensitive materials of current gas sensors are fabricated on planar substrates, significantly limiting the quantity of sensitive material available on the sensor and the complete exposure of the sensitive material to the target gas. In this work, we harnessed the finest, resilient, naturally degradable, and low-cost lotus silk derived from plant fibers, to fabricate a high-performance bio-sensor for toxic and harmful gas detection, employing peptides with full surface connectivity. The proposed approach to fabricate gas sensors eliminated the need for substrates and electrodes. To ascertain the effectiveness and versatility of the sensors created via this method, sensors for three distinct representative gases (isoamyl alcohol, 4-vinylanisole, and benzene) were prepared and characterized. These sensors surpassed reported detection limits by at least one order of magnitude. The inherent pliancy of lotus silk imparts adaptability to the sensor architecture, facilitating the realization of 1D, 2D, or 3D configurations, all while upholding consistent performance characteristics. This innovative sensor paradigm, grounded in lotus silk, represents great potential toward the advancement of highly proficient bio gas sensors and associated applications.


Subject(s)
Biosensing Techniques , Lotus , Peptides , Silk , Biosensing Techniques/methods , Lotus/chemistry , Silk/chemistry , Peptides/chemistry , Peptides/analysis , Anisoles/chemistry , Anisoles/analysis , Gases/chemistry , Gases/analysis
8.
Biosens Bioelectron ; 260: 116447, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38820723

ABSTRACT

Nitrate is prevalent in environment and present in foods of plant origin as part of nitrogen cycle. It is now one of the most pervasive and persistent contaminants in animal food chain. Present work is focussed on development of a novel green nanosensor using corn silk extract for nitrate detection in leafy vegetables (Spinacia oleracea, Amaranthus viridis and Amaranthus cruentus). The green reduced graphene oxide (rGO) and a nanocomposite (G-Fe3O4@rGO) was synthesized for the first-time using corn silk extract and used for fabrication of the nanosensor. Various characterization techniques were used to expose the optical, crystallographic and surface morphology details of the nanosubstrates. Electrochemical studies of the fabricated nanosensor were conducted using the electrochemical impedance spectroscopy (EIS) technique. The performance of NiR/G-Fe3O4@rGO/ITO green nanosensor was the best, in terms of the electrochemical performance parameters among different fabricated nanosensors in the study. The developed green nanosensor demonstrated high sensitivity of 122.1 Ohm/log(mg/L)/cm2 and lower limit of detection 0.076 mg/L for detection of nitrate in leafy vegetables. The green nanosensor exhibited higher recovery rates (>86%) and high precision in nitrate detection in leafy vegetables (RSD <5.2%). Validation studies were conducted with HPLC technique also. The results of green nanosensor were found in good agreement with HPLC studies (p < 0.05) highlighting the market acceptability with usefulness and effectiveness of the nanosensor for food quality and safety evaluation.


Subject(s)
Biosensing Techniques , Graphite , Nitrates , Vegetables , Zea mays , Graphite/chemistry , Zea mays/chemistry , Vegetables/chemistry , Nitrates/analysis , Biosensing Techniques/methods , Limit of Detection , Plant Extracts/chemistry , Spinacia oleracea/chemistry , Green Chemistry Technology , Amaranthus/chemistry , Nanocomposites/chemistry , Silk/chemistry , Plant Leaves/chemistry , Electrochemical Techniques/methods , Food Contamination/analysis
9.
Int J Biol Macromol ; 270(Pt 2): 132384, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38754682

ABSTRACT

The impairment of phenotype switching of pro-inflammatory M1 to pro-healing M2 macrophage induced by hyperglycemic microenvironment often elevates oxidative stress, impairs angiogenesis, and leads to chronic non-healing wounds in diabetic patients. Administration of M2 macrophage-derived exosomes (M2Exo) at wound site is known to polarize M1 to M2 macrophage and can accelerate wound healing by enhancing collagen deposition, angiogenesis, and re-epithelialization. In the present study, M2Exo were conjugated with oxidized hyaluronic acid and mixed with PEGylated silk fibroin to develop self-healing Exo-gel to achieve an efficient therapy for diabetic wounds. Exo-gel depicted porous networked morphology with self-healing and excellent water retention behaviour. Fibroblast cells treated with Exo-gel showed significant uptake of M2Exo that increased their proliferation and migration in vitro. Interestingly, in a diabetic wound model of wistar rats, Exo-gel treatment induced 75 % wound closure within 7 days with complete epithelial layer regeneration by modulating cytokine levels, stimulating fibroblast-keratinocyte interaction and migration, angiogenesis, and organized collagen deposition. Taken together, this study suggests that Exo-gel depict properties of an excellent wound healing matrix and can be used as a therapeutic alternative to treat chronic non-healing diabetic wounds.


Subject(s)
Exosomes , Hyaluronic Acid , Hydrogels , Macrophages , Wound Healing , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Animals , Exosomes/metabolism , Wound Healing/drug effects , Rats , Macrophages/drug effects , Macrophages/metabolism , Hydrogels/chemistry , Hydrogels/pharmacology , Diabetes Mellitus, Experimental , Rats, Wistar , Fibroblasts/drug effects , Fibroblasts/metabolism , Male , Mice , Silk/chemistry , Silk/pharmacology , Cellular Microenvironment/drug effects , Humans , Cell Proliferation/drug effects , Cell Movement/drug effects
10.
Sci Rep ; 14(1): 11011, 2024 05 14.
Article in English | MEDLINE | ID: mdl-38744937

ABSTRACT

Spider silk is a promising material with great potential in biomedical applications due to its incredible mechanical properties and resistance to degradation of commercially available bacterial strains. However, little is known about the bacterial communities that may inhabit spider webs and how these microorganisms interact with spider silk. In this study, we exposed two exopolysaccharide-secreting bacteria, isolated from webs of an orb spider, to major ampullate (MA) silk from host spiders. The naturally occurring lipid and glycoprotein surface layers of MA silk were experimentally removed to further probe the interaction between bacteria and silk. Extensibility of major ampullate silk produced by Triconephila clavata that was exposed to either Microbacterium sp. or Novosphigobium sp. was significantly higher than that of silk that was not exposed to bacteria (differed by 58.7%). This strain-enhancing effect was not observed when the lipid and glycoprotein surface layers of MA silks were removed. The presence of exopolysaccharides was detected through NMR from MA silks exposed to these two bacteria but not from those without exposure. Here we report for the first time that exopolysaccharide-secreting bacteria inhabiting spider webs can enhance extensibility of host MA silks and silk surface layers play a vital role in mediating such effects.


Subject(s)
Silk , Spiders , Animals , Spiders/microbiology , Spiders/metabolism , Silk/metabolism , Bacteria/metabolism , Polysaccharides, Bacterial/metabolism
11.
BMC Genomics ; 25(1): 472, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745159

ABSTRACT

Caddisfly larvae produce silk containing heavy and light fibroins, similar to the silk of Lepidoptera, for the construction of underwater structures. We analyzed the silk of Limnephilus lunatus belonging to the case-forming suborder Integripalpia. We analyzed the transcriptome, mapped the transcripts to a reference genome and identified over 80 proteins using proteomic methods, and checked the specificity of their expression. For comparison, we also analyzed the transcriptome and silk proteome of Limnephilus flavicornis. Our results show that fibroins and adhesives are produced together in the middle and posterior parts of the silk glands, while the anterior part produces enzymes and an unknown protein AT24. The number of silk proteins of L. lunatus far exceeds that of the web-spinning Plectrocnemia conspersa, a previously described species from the suborder Annulipalpia. Our results support the idea of increasing the structural complexity of silk in rigid case builders compared to trap web builders.


Subject(s)
Silk , Animals , Silk/metabolism , Silk/chemistry , Insect Proteins/genetics , Insect Proteins/metabolism , Transcriptome , Insecta/metabolism , Insecta/genetics , Fibroins/genetics , Fibroins/metabolism , Fibroins/chemistry , Proteomics/methods , Proteome , Gene Expression Profiling
12.
Int J Biol Macromol ; 271(Pt 1): 132438, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38761906

ABSTRACT

Spider silk is the self-assembling product of silk proteins each containing multiple repeating units. Each repeating unit is entirely intrinsically disordered or contains a small disordered domain. The role of the disordered domain/unit in conferring silk protein storage and self-assembly is not fully understood yet. Here, we used biophysical and biochemical techniques to investigate the self-assembly of a miniature version of a minor ampullate spidroin (denoted as miniMiSp). miniMiSp consists of two identical intrinsically disordered domains, one folded repetitive domain, and two folded terminal domains. Our data indicated that miniMiSp self-assembles into oligomers and further into liquid droplets. The oligomerization is attributed to the aggregation-prone property of both the disordered domains and the folded repetitive domain. Our results support the model of micellar structure for silk proteins at high protein concentrations. The disordered domain is indispensable for liquid droplet formation via liquid-liquid phase separation, and tyrosine residues located in the disordered domain make dominant contributions to stability of the liquid droplets. As the same tyrosine residues are also critical to fibrillation, the liquid droplets are likely an intermediate state between the solution state and the fiber state. Additionally, the terminal domains contribute to the pH- and salt-dependent self-assembly properties.


Subject(s)
Fibroins , Intrinsically Disordered Proteins , Spiders , Spiders/chemistry , Animals , Intrinsically Disordered Proteins/chemistry , Fibroins/chemistry , Silk/chemistry , Hydrogen-Ion Concentration , Protein Domains , Protein Multimerization , Amino Acid Sequence
13.
Int J Biol Macromol ; 271(Pt 2): 132695, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38810858

ABSTRACT

The silk glands are the specialized tissue where silk protein synthesis, secretion, and conformational transitions take place, with pH playing a critical role in both silk protein synthesis and fiber formation. In the present study, we have identified erythrocyte carbonic anhydrase (BmeryCA) belonging to the α-CA class in the silk gland, which is a Zn2+ dependent metalloenzyme capable of efficiently and reversibly catalyzing the hydrated reaction of CO2 to HCO3-, thus participating in the regulation of acid-base balance. Multiple sequence alignments revealed that the active site of BmeryCA was highly conserved. Tissue expression profiling showed that BmeryCA had relatively high expression levels in hemolymph and epidermis but is barely expressed in the posterior silk gland (PSG). By specifically overexpressing BmeryCA in the PSG, we generated transgenic silkworms. Ion-selective microelectrode (ISM) measurements demonstrated that specifically overexpression of BmeryCA in the PSG led to a shift in pH from weakly alkaline to slightly neutral conditions. Moreover, the resultant PSG-specific BmeryCA overexpression mutant strain displayed a significant increase in both silk yield and silk fiber mechanical properties. Our research provided new insights into enhancing silk yield and improving the mechanical properties of silk fibers.


Subject(s)
Bombyx , Carbonic Anhydrases , Silk , Animals , Bombyx/genetics , Bombyx/metabolism , Silk/metabolism , Silk/chemistry , Silk/genetics , Hydrogen-Ion Concentration , Carbonic Anhydrases/metabolism , Carbonic Anhydrases/genetics , Carbonic Anhydrases/chemistry , Animals, Genetically Modified , Amino Acid Sequence , Insect Proteins/genetics , Insect Proteins/metabolism , Insect Proteins/chemistry , Mechanical Phenomena , Gene Expression
14.
Int J Biol Macromol ; 269(Pt 2): 131954, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697424

ABSTRACT

Silk fibroin (SF) from the cocoon of silkworm has exceptional mechanical properties and biocompatibility and is used as a biomaterial in a variety of fields. Sustainable, affordable, and scalable manufacturing of SF would enable its large-scale use. We report for the first time the high-level secretory production of recombinant SF peptides in engineered Pichia pastoris cell factories and the processing thereof to nanomaterials. Two SF peptides (BmSPR3 and BmSPR4) were synthesized and secreted by P. pastoris using signal peptides and appropriate spacing between hydrophilic sequences. By strain engineering to reduce protein degradation, increase glycyl-tRNA supply, and improve protein secretion, we created the optimized P. pastoris chassis PPGSP-8 to produce BmSPR3 and BmSPR4. The SF fed-batch fermentation titers of the resulting two P. pastoris cell factories were 11.39 and 9.48 g/L, respectively. Protein self-assembly was inhibited by adding Tween 80 to the medium. Recombinant SF peptides were processed to nanoparticles (NPs) and nanofibrils. The physicochemical properties of nanoparticles R3NPs and R4NPs from the recombinant SFs synthesized in P. pastoris cell factories were similar or superior to those of RSFNPs (Regenerated Silk Fibroin NanoParticles) originating from commercially available SF. Our work will facilitate the production by microbial fermentation of functional SF for use as a biomaterial.


Subject(s)
Fibroins , Recombinant Proteins , Fibroins/chemistry , Fibroins/biosynthesis , Fibroins/genetics , Recombinant Proteins/genetics , Recombinant Proteins/biosynthesis , Nanostructures/chemistry , Fermentation , Saccharomycetales/metabolism , Saccharomycetales/genetics , Silk/chemistry , Silk/biosynthesis , Animals , Bombyx/metabolism , Bombyx/genetics
15.
Int J Biol Macromol ; 269(Pt 1): 132016, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697442

ABSTRACT

Silk is a biocompatible and biodegradable material that enables the formation of various morphological forms, including nanospheres. The functionalization of bioengineered silk makes it possible to produce particles with specific properties. In addition to tumor cells, the tumor microenvironment (TME) includes stromal, immune, endothelial cells, signaling molecules, and the extracellular matrix (ECM). Matrix metalloproteinases (MMPs) are overexpressed in TME. We investigated bioengineered spider silks functionalized with MMP-responsive peptides to obtain targeted drug release from spheres within TME. Soluble silks MS12.2MS1, MS12.9MS1, and MS22.9MS2 and the corresponding silk spheres carrying MMP-2 or MMP-2/9 responsive peptides were produced, loaded with doxorubicin (Dox), and analyzed for their susceptibility to MMP-2/9 digestion. Although all variants of functionalized silks and spheres were specifically degraded by MMP-2/9, the MS22.9MS2 nanospheres showed the highest levels of degradation and release of Dox after enzyme treatment. Moreover, functionalized spheres were degraded in the presence of cancer cells releasing MMP-2/9. In the 2D and 3D spheroid cancer models, the MMP-2/9-responsive substrate was degraded and released from spheres when loaded into MS22.9MS2 particles but not into the control MS2 spheres. The present study demonstrated that a silk-based MMP-responsive delivery system could be used for controlled drug release within the tumor microenvironment.


Subject(s)
Delayed-Action Preparations , Doxorubicin , Drug Liberation , Matrix Metalloproteinase 2 , Silk , Tumor Microenvironment , Tumor Microenvironment/drug effects , Doxorubicin/pharmacology , Doxorubicin/chemistry , Humans , Silk/chemistry , Matrix Metalloproteinase 2/metabolism , Delayed-Action Preparations/pharmacology , Matrix Metalloproteinase 9/metabolism , Cell Line, Tumor , Matrix Metalloproteinases/metabolism , Drug Carriers/chemistry , Animals
16.
Molecules ; 29(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38792219

ABSTRACT

Most traditional synthetic dyes and functional reagents used in silk fabrics are not biodegradable and lack green environmental protection. Natural dyes have attracted more and more attention because of their coloring, functionalization effects, and environmental benefits. In this study, natural dyes were extracted from lac and used for coloring and functionalization in silk fabrics without any other harmful dyes. The extraction conditions were studied and analyzed by the univariate method. The optimal extraction process was that the volume ratio of ethanol to water was 60:40 with a solid-liquid ratio of 1:10, and reacting under the neutrality condition for 1 h at 70 °C. Silk fabric can be dyed dark owing to the certain lifting property of lac. After being dyed by Al3+ post-medium, the levels of the washing fastness, light fastness, and friction fastness of silk fabric are all above four with excellent fastness. The results show that the dyed silk fabrics have good UV protection, antioxidation, and antibacterial properties. The UV protection coefficient UPF is 42.68, the antioxidant property is 98.57%, and the antibacterial property can reach more than 80%. Therefore, the dyeing and functionalization of silk fabrics by utilizing naturally lac dyes show broad prospects in terms of the application of green sustainable dyeing and functionalization.


Subject(s)
Coloring Agents , Silk , Textiles , Coloring Agents/chemistry , Silk/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antioxidants/chemistry
17.
Molecules ; 29(9)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38731513

ABSTRACT

The various wastes generated by silkworm silk textiles that are no longer in use are increasing, which is causing considerable waste and contamination. This issue has attracted widespread attention in countries that use a lot of silk. Therefore, enhancing the mechanical properties of regenerated silk fibroin (RSF) and enriching the function of silk are important directions to expand the comprehensive utilization of silk products. In this paper, the preparation of RSF/Al2O3 nanoparticles (NPs) hybrid fiber with different Al2O3 NPs contents by wet spinning and its novel performance are reported. It was found that the RSF/Al2O3 NPs hybrid fiber was a multifunctional fiber material with thermal insulation and UV resistance. Natural light tests showed that the temperature rise rate of RSF/Al2O3 NPs hybrid fibers was slower than that of RSF fibers, and the average temperature rose from 29.1 °C to about 35.4 °C in 15 min, while RSF fibers could rise to about 40.1 °C. UV absorption tests showed that the hybrid fiber was resistant to UV radiation. Furthermore, the addition of Al2O3 NPs may improve the mechanical properties of the hybrid fibers. This was because the blending of Al2O3 NPs promoted the self-assembly of ß-sheets in the RSF reaction mixture in a dose-dependent manner, which was manifested as the RSF/Al2O3 NPs hybrid fibers had more ß-sheets, crystallinity, and a smaller crystal size. In addition, RSF/Al2O3 NPs hybrid fibers had good biocompatibility and durability in micro-alkaline sweat environments. The above performance makes the RSF/Al2O3 NPs hybrid fibers promising candidates for application in heat-insulating and UV-resistant fabrics as well as military clothing.


Subject(s)
Aluminum Oxide , Fibroins , Nanoparticles , Ultraviolet Rays , Fibroins/chemistry , Nanoparticles/chemistry , Aluminum Oxide/chemistry , Animals , Bombyx , Hot Temperature , Humans , Silk/chemistry
18.
J Mol Model ; 30(5): 156, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38693294

ABSTRACT

CONTEXT: Due to their excellent biocompatibility and degradability, cellulose/spider silk protein composites hold a significant value in biomedical applications such as tissue engineering, drug delivery, and medical dressings. The interfacial interactions between cellulose and spider silk protein affect the properties of the composite. Therefore, it is important to understand the interfacial interactions between spider silk protein and cellulose to guide the design and optimization of composites. The study of the adsorption of protein on specific surfaces of cellulose crystal can be very complex using experimental methods. Molecular dynamics simulations allow the exploration of various physical and chemical changes at the atomic level of the material and enable an atomic description of the interactions between cellulose crystal planes and spider silk protein. In this study, molecular dynamics simulations were employed to investigate the interfacial interactions between spider silk protein (NTD) and cellulose surfaces. Findings of RMSD, RMSF, and secondary structure showed that the structure of NTD proteins remained unchanged during the adsorption process. Cellulose contact numbers and hydrogen bonding trends on different crystalline surfaces suggest that van der Waals forces and hydrogen bonding interactions drive the binding of proteins to cellulose. These findings reveal the interaction between cellulose and protein at the molecular level and provide theoretical guidance for the design and synthesis of cellulose/spider silk protein composites. METHODS: MD simulations were all performed using the GROMACS-5.1 software package and run with CHARMM36 carbohydrate force field. Molecular dynamics simulations were performed for 500 ns for the simulated system.


Subject(s)
Cellulose , Hydrogen Bonding , Molecular Dynamics Simulation , Silk , Spiders , Cellulose/chemistry , Spiders/chemistry , Animals , Silk/chemistry , Adsorption , Protein Binding , Fibroins/chemistry
19.
Methods Mol Biol ; 2800: 147-165, 2024.
Article in English | MEDLINE | ID: mdl-38709483

ABSTRACT

Molecular forces are increasingly recognized as an important parameter to understand cellular signaling processes. In the recent years, evidence accumulated that also T-cells exert tensile forces via their T-cell receptor during the antigen recognition process. To measure such intercellular pulling forces, one can make use of the elastic properties of spider silk peptides, which act similar to Hookean springs: increased strain corresponds to increased stress applied to the peptide. Combined with Förster resonance energy transfer (FRET) to read out the strain, such peptides represent powerful and versatile nanoscopic force sensing tools. In this paper, we provide a detailed protocol how to synthesize a molecular force sensor for application in T-cell antigen recognition and hands-on guidelines on experiments and analysis of obtained single molecule FRET data.


Subject(s)
Fluorescence Resonance Energy Transfer , Receptors, Antigen, T-Cell , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell/immunology , Fluorescence Resonance Energy Transfer/methods , Humans , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Single Molecule Imaging/methods , Animals , Peptides/chemistry , Peptides/immunology , Peptides/metabolism , Silk/chemistry
20.
Int J Mol Sci ; 25(9)2024 May 04.
Article in English | MEDLINE | ID: mdl-38732243

ABSTRACT

This study presents the functionalization of silk fabric with SWCNT ink. The first step was the formation of a polydopamine (PDA) thin coating on the silk fabric to allow for effective bonding of SWCNTs. PDA formation was carried out directly on the fabric by means of polymerization of dopamine in alkali conditions. The Silk/PDA fabric was functionalized with SWCNT ink of different SWCNT concentrations by using the dip-coating method. IR and Raman analyses show that the dominant ß-sheet structure of silk fibroin after the functionalization process remains unchanged. The heat resistance is even slightly improved. The hydrophobic silk fabric becomes hydrophilic after functionalization due to the influence of PDA and the surfactant in SWCNT ink. The ink significantly changes the electrical properties of the silk fabric, from insulating to conductive. The volume resistance changes by nine orders of magnitude, from 2.4 × 1012 Ω to 2.3 × 103 Ω for 0.12 wt.% of SWCNTs. The surface resistance changes by seven orders of magnitude, from 2.1 × 1012 Ω to 2.4 × 105 Ω for 0.17 wt.% of SWCNTs. The volume and surface resistance thresholds are determined to be about 0.05 wt.% and 0.06 wt.%, respectively. The low value of the percolation threshold indicates efficient functionalization, with high-quality ink facilitating the formation of percolation paths through SWCNTs and the influence of the PDA linker.


Subject(s)
Electric Conductivity , Indoles , Ink , Nanotubes, Carbon , Polymers , Silk , Indoles/chemistry , Polymers/chemistry , Silk/chemistry , Nanotubes, Carbon/chemistry , Textiles , Hydrophobic and Hydrophilic Interactions
SELECTION OF CITATIONS
SEARCH DETAIL
...