Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.947
Filter
1.
BMC Pulm Med ; 24(1): 224, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720270

ABSTRACT

BACKGROUND: Simvastatin (Sim), a hydroxy-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, has been widely used in prevention and treatment of cardiovascular diseases. Studies have suggested that Sim exerts anti-fibrotic effects by interfering fibroblast proliferation and collagen synthesis. This study was to determine whether Sim could alleviate silica-induced pulmonary fibrosis and explore the underlying mechanisms. METHODS: The rat model of silicosis was established by the tracheal perfusion method and treated with Sim (5 or 10 mg/kg), AICAR (an AMPK agonist), and apocynin (a NOX inhibitor) for 28 days. Lung tissues were collected for further analyses including pathological histology, inflammatory response, oxidative stress, epithelial mesenchymal transformation (EMT), and the AMPK-NOX pathway. RESULTS: Sim significantly reduced silica-induced pulmonary inflammation and fibrosis at 28 days after administration. Sim could reduce the levels of interleukin (IL)-1ß, IL-6, tumor necrosis factor-α and transforming growth factor-ß1 in lung tissues. The expressions of hydroxyproline, α-SMA and vimentin were down-regulated, while E-cad was increased in Sim-treated rats. In addition, NOX4, p22pox, p40phox, p-p47phox/p47phox expressions and ROS levels were all increased, whereas p-AMPK/AMPK was decreased in silica-induced rats. Sim or AICAR treatment could notably reverse the decrease of AMPK activity and increase of NOX activity induced by silica. Apocynin treatment exhibited similar protective effects to Sim, including down-regulating of oxidative stress and inhibition of the EMT process and inflammatory reactions. CONCLUSIONS: Sim attenuates silica-induced pulmonary inflammation and fibrosis by downregulating EMT and oxidative stress through the AMPK-NOX pathway.


Subject(s)
AMP-Activated Protein Kinases , Pulmonary Fibrosis , Silicon Dioxide , Simvastatin , Animals , Male , Rats , Acetophenones/pharmacology , Aminoimidazole Carboxamide/analogs & derivatives , Aminoimidazole Carboxamide/pharmacology , AMP-Activated Protein Kinases/metabolism , Disease Models, Animal , Epithelial-Mesenchymal Transition/drug effects , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Lung/pathology , Lung/drug effects , Lung/metabolism , NADPH Oxidase 4/metabolism , NADPH Oxidases/metabolism , Oxidative Stress/drug effects , Pneumonia/chemically induced , Pneumonia/prevention & control , Pneumonia/drug therapy , Pneumonia/metabolism , Pneumonia/pathology , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Ribonucleotides/pharmacology , Signal Transduction/drug effects , Silicosis/drug therapy , Silicosis/pathology , Silicosis/metabolism , Simvastatin/pharmacology , Transforming Growth Factor beta1/metabolism
2.
ACS Appl Mater Interfaces ; 16(20): 26685-26712, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38722359

ABSTRACT

The ubiquitous presence of pharmaceutical pollutants in the environment significantly threatens human health and aquatic ecosystems. Conventional wastewater treatment processes often fall short of effectively removing these emerging contaminants. Therefore, the development of high-performance adsorbents is crucial for environmental remediation. This research utilizes molecular simulation to explore the potential of novel modified metal-organic frameworks (MOFs) in pharmaceutical pollutant removal, paving the way for the design of efficient wastewater treatment strategies. Utilizing UIO-66, a robust MOF, as the base material, we developed UIO-66 functionalized with chitosan (CHI) and oxidized chitosan (OCHI). These modified MOFs' physical and chemical properties were first investigated through various characterization techniques. Subsequently, molecular dynamics simulation (MDS) and Monte Carlo simulation (MCS) were employed to elucidate the adsorption mechanisms of rosuvastatin (ROSU) and simvastatin (SIMV), two prevalent pharmaceutical pollutants, onto these nanostructures. MCS calculations demonstrated a significant enhancement in the adsorption energy by incorporating CHI and OCHI into UIO-66. This increased ROSU from -14,522 to -16,459 kcal/mol and SIMV from -17,652 to -21,207 kcal/mol. Moreover, MDS reveals ROSU rejection rates in neat UIO-66 to be at 40%, rising to 60 and 70% with CHI and OCHI. Accumulation rates increase from 4 Å in UIO-66 to 6 and 9 Å in UIO-CHI and UIO-OCHI. Concentration analysis shows SIMV rejection surges from 50 to 90%, with accumulation rates increasing from 6 to 11 Å with CHI and OCHI in UIO-66. Functionalizing UIO-66 with CHI and OCHI significantly enhanced the adsorption capacity and selectivity for ROSU and SIMV. Abundant hydroxyl and amino groups facilitated strong interactions, improving performance over that of unmodified UIO-66. Surface functionalization plays a vital role in customizing the MOFs for pharmaceutical pollutant removal. These insights guide next-gen adsorbent development, offering high efficiency and selectivity for wastewater treatment.


Subject(s)
Chitosan , Metal-Organic Frameworks , Molecular Dynamics Simulation , Nanostructures , Rosuvastatin Calcium , Simvastatin , Water Pollutants, Chemical , Chitosan/chemistry , Metal-Organic Frameworks/chemistry , Simvastatin/chemistry , Rosuvastatin Calcium/chemistry , Adsorption , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification , Nanostructures/chemistry , Oxidation-Reduction , Phthalic Acids
3.
Phytomedicine ; 129: 155662, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38728917

ABSTRACT

BACKGROUND: Naoxintong capsule (NXT) is a compound traditional Chinese medicine prescription with demonstrated effect for the treatment of cardiovascular and cerebrovascular diseases including atherosclerosis (AS). However, the pharmacological mechanisms of NXT in ameliorating early-stage AS are still unclear, especially regarding the role of gut microbiota. PURPOSE: This study is aiming to evaluate the therapeutic effect of NXT against early-stage AS, and further illustrate the potential correlations among AS, gut microbiota, and NXT. METHODS: Thirty-two male ApoE knockout mice (C57BL/6 background) were fed with a high cholesterol diet (HCD) for 4 weeks to establish an early-stage AS model. NXT in two different dosages and simvastatin (Simv) were than administrated for another 8 weeks. Lipid metabolism indicators and inflammation levels were measured with corresponding assay kits. Changes in blood vessels, liver lesions, and intestinal barrier proteins were evaluated with different staining methods. Furthermore, the gut microbiota structure was analyzed using 16S rRNA sequencing technology, while GC-MS was utilized to determine the fecal contents of short-chain fatty acids (SCFAs). RESULTS: Administration of NXT significantly ameliorated obesity, hyperlipidemia, systemic inflammation, vasculopathy, liver injury, and intestinal barrier disorder in AS mice. Administration of NXT also significantly regulated the gut microbiota disturbance and increased the total contents of fecal SCFAs in AS mice. Furthermore, acetic acid content and the relative abundance of Faecalibacterium in feces were proposed as potential therapeutic biomarkers of NXT for AS treatment as indicated via the correlation analysis. CONCLUSION: This study demonstrated that NXT could effectively treat early-stage AS induced by HCD in mice. NXT regulated the gut microbiota and metabolites, maintained intestinal homeostasis, and improved the systemic inflammatory response. These findings may provide robust experimental support for the clinical use of NXT for AS treatment.


Subject(s)
Atherosclerosis , Drugs, Chinese Herbal , Gastrointestinal Microbiome , Mice, Inbred C57BL , Animals , Gastrointestinal Microbiome/drug effects , Drugs, Chinese Herbal/pharmacology , Male , Atherosclerosis/drug therapy , Mice , Apolipoproteins E , Mice, Knockout, ApoE , Lipid Metabolism/drug effects , Fatty Acids, Volatile/metabolism , Disease Models, Animal , Capsules , Diet, High-Fat , Simvastatin/pharmacology
4.
Int J Nanomedicine ; 19: 4199-4215, 2024.
Article in English | MEDLINE | ID: mdl-38766657

ABSTRACT

Background: Breast cancer is the most common cancer in women and one of the leading causes of cancer death worldwide. Ferroptosis, a promising mechanism of killing cancer cells, has become a research hotspot in cancer therapy. Simvastatin (SIM), as a potential new anti-breast cancer drug, has been shown to cause ferroptosis of cancer cells and inhibit breast cancer metastasis and recurrence. The purpose of this study is to develop a novel strategy boosting ferroptotic cascade for synergistic cancer therapy. Methods: In this paper, iron base form of layered double hydroxide supported simvastatin (LDHs-SIM) was synthesized by hydrothermal co-precipitation method. The characterization of LDHs-SIM were assessed by various analytical techniques, including ultraviolet-visible (UV-vis) spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and transmission electron microscopy (TEM). Biological activity, ferroptosis mechanism and biocompatibility were analyzed through in vivo and in vitro analysis, so as to evaluate its therapeutic effect on breast cancer. Results: The constructed LDHs-SIM nanosystem can not only release SIM through mevalonate (MVA) pathway, inhibit the expression of glutathione peroxidase 4 (GPX4), inhibit the expression of SLC7A11 and reduce the synthesis efficiency of GSH, but also promote the accumulation of Fe2+ in cells through the release of Fe3+, and increase the intracellular ROS content. In addition, LDHs-SIM nanosystem can induce apoptosis of breast cancer cells to a certain extent, and achieve the synergistic effect of apoptosis and ferroptosis. Conclusion: In the present study, we demonstrated that nanoparticles of layered double hydroxides (LDHs) loaded with simvastatin were more effective than a free drug at inhibiting breast cancer cell growth, In addition, superior anticancer therapeutic effects were achieved with little systemic toxicity, indicating that LDHs-SIM could serve as a safe and high-performance platform for ferroptosis-apoptosis combined anticancer therapy.


Subject(s)
Apoptosis , Breast Neoplasms , Ferroptosis , Hydroxides , Simvastatin , Ferroptosis/drug effects , Female , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Hydroxides/chemistry , Hydroxides/pharmacology , Simvastatin/pharmacology , Simvastatin/chemistry , Simvastatin/administration & dosage , Apoptosis/drug effects , Animals , Cell Line, Tumor , Nanoparticles/chemistry , Drug Synergism , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Mice, Nude , Mice, Inbred BALB C , MCF-7 Cells , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism
5.
Int J Biol Macromol ; 268(Pt 2): 131516, 2024 May.
Article in English | MEDLINE | ID: mdl-38621556

ABSTRACT

Simvastatin (SV) is a statin drug that can effectively control cholesterol and prevent cardiovascular diseases. However, SV is water-insoluble, and poor oral bioavailability (<5 %). Solid self-emulsifying carrier system is more stable than liquid emulsions, facilitating to improve the solubility and bioavailability of poorly soluble drugs. In the present study, a solid self-emulsifying carrier stabilized by casein (Cas-SSE) was successfully used to load SV to improve its solubility in water, by formulation selection and emulsification process optimization. Compared with oral tablets, the release of SV from Cas-SSE was significantly enhanced in artificial intestinal fluid. Furthermore, everted gut sac experiments indicated some water-soluble dispersing agents such as hydroxyethyl starch (HES), were not conducive to drug absorption. Pharmacokinetic studies suggested Cas-SSE without dispersing agent has much higher relative bioavailability (184.1 % of SV and 284.5 % of simvastatin acid) than SV tablet. The present work suggests Cas-SSE is a promising drug delivery platform with good biocompatibility for improving oral bioavailability of poorly water-soluble drugs.


Subject(s)
Biological Availability , Caseins , Drug Carriers , Emulsions , Simvastatin , Solubility , Simvastatin/pharmacokinetics , Simvastatin/chemistry , Simvastatin/administration & dosage , Caseins/chemistry , Caseins/pharmacokinetics , Administration, Oral , Animals , Drug Carriers/chemistry , Emulsions/chemistry , Rats , Male , Drug Liberation
6.
Int J Cardiol ; 406: 132035, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38604450

ABSTRACT

BACKGROUND: Secreted glycoproteins of the Dickkopf (DKK) family modify Wnt signaling and may influence plaque destabilization but their modulation by statins in MI patients is not known. METHODS: We measured plasma DKK-1 and DKK-3 in patients with acute ST-segment elevation MI (STEMI) before percutaneous coronary intervention (PCI) and after 2 and 7 days and 2 months in patients receiving short-term high-dose (40 mg rosuvastatin, given before PCI; n = 25) and moderate dose (20 mg simvastatin, given the day after PCI; n = 34). In vitro modulation of DKK-1 in human umbilical vein endothelial cells (HUVECs) by statins were assessed. RESULTS: (i) Patients receiving high dose rosuvastatin had a marked decline in DKK-1 at day 2 which was maintained throughout the study period. However, a more prevalent use of ß-blockers in the simvastatin group, that could have contributed to higher DKK-1 levels in these patients. (ii) There was a strong correlation between baseline DKK-1 levels and change in DKK-1 from baseline to day 2 in patients receiving high dose rosuvastatin treatment. (iii) DKK-3 increased at day 2 but returned to baseline levels at 2 months in both treatment groups. (iv) Statin treatment dose-dependently decreased DKK-1 mRNA and protein levels in HUVEC. CONCLUSIONS: Our findings suggest that high dose statin treatment with 40 mg rosuvastatin could persistently down-regulate DKK-1 levels, even at 2 months after the initial event in STEMI patients.


Subject(s)
Adaptor Proteins, Signal Transducing , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Intercellular Signaling Peptides and Proteins , Rosuvastatin Calcium , Humans , Male , Female , Rosuvastatin Calcium/administration & dosage , Rosuvastatin Calcium/therapeutic use , Middle Aged , Hydroxymethylglutaryl-CoA Reductase Inhibitors/administration & dosage , Aged , Intercellular Signaling Peptides and Proteins/blood , Dose-Response Relationship, Drug , Simvastatin/administration & dosage , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Myocardial Infarction/drug therapy , Myocardial Infarction/blood , Biomarkers/blood , ST Elevation Myocardial Infarction/blood , ST Elevation Myocardial Infarction/drug therapy , Cells, Cultured
8.
PLoS One ; 19(4): e0297766, 2024.
Article in English | MEDLINE | ID: mdl-38648228

ABSTRACT

OBJECTIVE: This study comprehensively evaluated the causal relationship between different types of statins use and knee/hip osteoarthritis (OA) using a two-sample and multivariate Mendelian randomization (MR) method. METHODS: MR analysis was conducted using publicly available summary statistics data from genome-wide association studies (GWAS) to assess the causal associations between total statins use (including specific types) and knee/hip OA. The primary analysis utilized the inverse variance-weighted (IVW) method, with sensitivity analysis conducted to assess robustness. Multivariable MR (MVMR) analysis adjusted for low-density lipoprotein cholesterol (LDL-C), intermediate-density lipoprotein cholesterol (IDL-C), high-density lipoprotein cholesterol (HDL-C), and body mass index (BMI). RESULTS: The MR analysis revealed a significant inverse association between genetically predicted total statins use and the risk of knee OA (OR = 0.950, 95%CI: 0.920-0.982, p = 0.002) as well as hip OA (OR = 0.932, 95%CI: 0.899-0.966, p <0.001). Furthermore, this study highlighted a reduced risk of knee/hip OA with the use of atorvastatin and simvastatin. Rosuvastatin use was associated with a decreased risk of hip OA but showed no association with knee OA. MVMR results indicated no correlation between exposure factors and outcomes after adjusting for LDL-C or IDL-C. HDL-C may not significantly contribute to statin-induced osteoarthritis, while BMI may play an important role. CONCLUSION: This study provides compelling evidence of the close relationship between statin use and a reduced risk of knee/hip OA, particularly with atorvastatin and simvastatin. LDL-C and IDL-C may mediate these effects. These findings have important implications for the clinical prevention and treatment of knee/hip OA.


Subject(s)
Genome-Wide Association Study , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Mendelian Randomization Analysis , Osteoarthritis, Hip , Osteoarthritis, Knee , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/adverse effects , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Osteoarthritis, Knee/genetics , Osteoarthritis, Knee/epidemiology , Osteoarthritis, Hip/genetics , Cholesterol, LDL/blood , Simvastatin/therapeutic use , Simvastatin/adverse effects , Body Mass Index , Cholesterol, HDL/blood , Polymorphism, Single Nucleotide , Risk Factors
9.
Cell Signal ; 119: 111172, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38604342

ABSTRACT

Simvastatin is an inhibitor of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase, which is a rate-limiting enzyme of the cholesterol synthesis pathway. It has been used clinically as a lipid-lowering agent to reduce low-density lipoprotein (LDL) cholesterol levels. In addition, antitumor activity has been demonstrated. Although simvastatin attenuates the prenylation of small GTPases, its effects on cell division in which small GTPases play an important role, have not been examined as a mechanism underlying its cytostatic effects. In this study, we determined its effect on cell division. Cell cycle synchronization experiments revealed a delay in mitotic progression in simvastatin-treated cells at concentrations lower than the IC50. Time-lapse imaging analysis indicated that the duration of mitosis, especially from mitotic entry to anaphase onset, was prolonged. In addition, simvastatin increased the number of cells exhibiting misoriented anaphase/telophase and bleb formation. Inhibition of the spindle assembly checkpoint (SAC) kinase Mps1 canceled the mitotic delay. Additionally, the number of cells exhibiting kinetochore localization of BubR1, an essential component of SAC, was increased, suggesting an involvement of SAC in the mitotic delay. Enhancement of F-actin formation and cell rounding at mitotic entry indicates that cortical actin dynamics were affected by simvastatin. The cholesterol removal agent methyl-ß-cyclodextrin (MßCD) accelerated mitotic progression differently from simvastatin, suggesting that cholesterol loss from the plasma membrane is not involved in the mitotic delay. Of note, the small GTPase RhoA, which is a critical factor for cortical actin dynamics, exhibited upregulated expression. In addition, Rap1 was likely not geranylgeranylated. Our results demonstrate that simvastatin affects actin dynamics by modifying small GTPases, thereby activating the spindle assembly checkpoint and causing abnormal cell division.


Subject(s)
M Phase Cell Cycle Checkpoints , Simvastatin , Simvastatin/pharmacology , Humans , M Phase Cell Cycle Checkpoints/drug effects , HeLa Cells , Monomeric GTP-Binding Proteins/metabolism , Mitosis/drug effects , Cell Division/drug effects , rhoA GTP-Binding Protein/metabolism
10.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167157, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38582266

ABSTRACT

Statins are the first line of choice for the treatment for atherosclerosis, but their use can cause myotoxicity, a common side effect that may require dosage reduction or discontinuation. The exact mechanism of statin-induced myotoxicity is unknown. Previous research has demonstrated that the combination of idebenone and statin yielded superior anti-atherosclerotic outcomes. Here, we investigated the mechanism of statin-induced myotoxicity in atherosclerotic ApoE-/- mice and whether idebenone could counteract it. After administering simvastatin to ApoE-/- mice, we observed a reduction in plaque formation as well as a decrease in their exercise capacity. We observed elevated levels of lactic acid and creatine kinase, along with a reduction in the cross-sectional area of muscle fibers, an increased presence of ragged red fibers, heightened mitochondrial crista lysis, impaired mitochondrial complex activity, and decreased levels of CoQ9 and CoQ10. Two-photon fluorescence imaging revealed elevated H2O2 levels in the quadriceps, indicating increased oxidative stress. Proteomic analysis indicated that simvastatin inhibited the tricarboxylic acid cycle. Idebenone treatment not only further reduced plaque formation but also ameliorated the impaired exercise capacity caused by simvastatin. Our study represents the inaugural comprehensive investigation into the mechanisms underlying statin-induced myotoxicity. We have demonstrated that statins inhibit CoQ synthesis, impair mitochondrial complex functionality, and elevate oxidative stress, ultimately resulting in myotoxic effects. Furthermore, our research marks the pioneering identification of idebenone's capability to mitigate statin-induced myotoxicity by attenuating oxidative stress, thereby safeguarding mitochondrial complex functionality. The synergistic use of idebenone and statin not only enhances the effectiveness against atherosclerosis but also mitigates statin-induced myotoxicity.


Subject(s)
Atherosclerosis , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Oxidative Stress , Simvastatin , Ubiquinone , Animals , Oxidative Stress/drug effects , Ubiquinone/analogs & derivatives , Ubiquinone/pharmacology , Mice , Atherosclerosis/drug therapy , Atherosclerosis/metabolism , Atherosclerosis/pathology , Atherosclerosis/chemically induced , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Simvastatin/pharmacology , Myotoxicity/drug therapy , Myotoxicity/pathology , Myotoxicity/metabolism , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Male , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondria/pathology , Mice, Knockout , Mice, Inbred C57BL , Antioxidants/pharmacology , Mitochondria, Muscle/drug effects , Mitochondria, Muscle/metabolism , Mitochondria, Muscle/pathology
11.
Sci Rep ; 14(1): 9878, 2024 04 30.
Article in English | MEDLINE | ID: mdl-38684848

ABSTRACT

Chronic stress is associated with major depressive disorder (MDD). Increased glucocorticoid levels caused by uncontrolled release through the hypothalamic‒pituitary‒adrenal (HPA) axis can cause changes in the lipid content of the cellular plasma membrane. These changes are suspected to be involved in the development of depressive disorders. St. John's wort extract (SJW) Ze 117 has long been used as an alternative to synthetic antidepressants. Part of its effect may be due to an effect on the cellular lipid composition and thus on the properties of plasma membranes and receptor systems embedded therein. In this study, we investigated the effect of Ze 117 on that of dexamethasone and simvastatin. Dexamethasone increases the fluidity of C6 cell plasma membranes. This effect is counteracted by administration of Ze 117. Here we demonstrate that this is not due to a change in C16:1/16:0 and C18:1/18:0 ratios in C6 cell fatty acids. On the other hand, Ze 117 increased the cellular cholesterol content by 42.5%, whereas dexamethasone reduced cholesterol levels similarly to simvastatin. Lowering cholesterol levels by dexamethasone or simvastatin resulted in decreased ß-arrestin 2 recruitment to the 5-HT1a receptor. This effect was counterbalanced by Ze 117, whereas the SJW extract had little effect on ß-arrestin 2 recruitment in non-stressed cells. Taken together, in C6 cells, Ze 117 induces changes in membrane fluidity through its effect on cellular cholesterol metabolism rather than by affecting fatty acid saturation. This effect is reflected in an altered signal transduction of the 5-HT1a receptor under Ze 117 administration. The current in vitro results support the hypothesis that Ze 117 addresses relevant parts of the cellular lipid metabolism, possibly explaining some of the antidepressant actions of Ze 117.


Subject(s)
Cholesterol , Dexamethasone , Hypericum , Membrane Fluidity , Plant Extracts , Simvastatin , Hypericum/chemistry , Plant Extracts/pharmacology , Cholesterol/metabolism , Membrane Fluidity/drug effects , Dexamethasone/pharmacology , Cell Line, Tumor , Simvastatin/pharmacology , Glioma/metabolism , Glioma/drug therapy , Glioma/pathology , Animals , Rats , Cell Membrane/metabolism , Cell Membrane/drug effects , Receptor, Serotonin, 5-HT1A/metabolism , Fatty Acids/metabolism
12.
Int J Mol Sci ; 25(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38674010

ABSTRACT

The solute carrier organic anion transporter family member 1B1 (SLCO1B1) encodes the organic anion-transporting polypeptide 1B1 (OATP1B1 protein) that transports statins to liver cells. Common genetic variants in SLCO1B1, such as *5, cause altered systemic exposure to statins and therefore affect statin outcomes, with potential pharmacogenetic applications; yet, evidence is inconclusive. We studied common and rare SLCO1B1 variants in up to 64,000 patients from UK Biobank prescribed simvastatin or atorvastatin, combining whole-exome sequencing data with up to 25-year routine clinical records. We studied 51 predicted gain/loss-of-function variants affecting OATP1B1. Both SLCO1B1*5 alone and the SLCO1B1*15 haplotype increased LDL during treatment (beta*5 = 0.08 mmol/L, p = 6 × 10-8; beta*15 = 0.03 mmol/L, p = 3 × 10-4), as did the likelihood of discontinuing statin prescriptions (hazard ratio*5 = 1.12, p = 0.04; HR*15 = 1.05, p = 0.04). SLCO1B1*15 and SLCO1B1*20 increased the risk of General Practice (GP)-diagnosed muscle symptoms (HR*15 = 1.22, p = 0.003; HR*20 = 1.25, p = 0.01). We estimated that genotype-guided prescribing could potentially prevent 18% and 10% of GP-diagnosed muscle symptoms experienced by statin patients, with *15 and *20, respectively. The remaining common variants were not individually significant. Rare variants in SLCO1B1 increased LDL in statin users by up to 1.05 mmol/L, but replication is needed. We conclude that genotype-guided treatment could reduce GP-diagnosed muscle symptoms in statin patients; incorporating further SLCO1B1 variants into clinical prediction scores could improve LDL control and decrease adverse events, including discontinuation.


Subject(s)
Biological Specimen Banks , Exome Sequencing , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Liver-Specific Organic Anion Transporter 1 , Humans , Liver-Specific Organic Anion Transporter 1/genetics , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Hydroxymethylglutaryl-CoA Reductase Inhibitors/adverse effects , Exome Sequencing/methods , United Kingdom , Male , Female , Middle Aged , Aged , Simvastatin/therapeutic use , Treatment Outcome , Atorvastatin/therapeutic use , Polymorphism, Single Nucleotide , UK Biobank
13.
Biochem Biophys Res Commun ; 710: 149841, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38588613

ABSTRACT

Prostate cancer is the most prevalent malignancy in men. While diagnostic and therapeutic interventions have substantially improved in recent years, disease relapse, treatment resistance, and metastasis remain significant contributors to prostate cancer-related mortality. Therefore, novel therapeutic approaches are needed. Statins are inhibitors of the 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), the rate-limiting enzyme of the mevalonate pathway which plays an essential role in cholesterol homeostasis. Numerous preclinical studies have provided evidence for the pleiotropic antitumor effects of statins. However, results from clinical studies remain controversial and have shown substantial benefits to even no effects on human malignancies including prostate cancer. Potential statin resistance mechanisms of tumor cells may account for such discrepancies. In our study, we treated human prostate cancer cell lines (PC3, C4-2B, DU-145, LNCaP) with simvastatin, atorvastatin, and rosuvastatin. PC3 cells demonstrated high statin sensitivity, resulting in a significant loss of vitality and clonogenic potential (up to - 70%; p < 0.001) along with an activation of caspases (up to 4-fold; p < 0.001). In contrast, C4-2B and DU-145 cells were statin-resistant. Statin treatment induced a restorative feedback in statin-resistant C4-2B and DU-145 cells through upregulation of the HMGCR gene and protein expression (up to 3-folds; p < 0.01) and its transcription factor sterol-regulatory element binding protein 2 (SREBP-2). This feedback was absent in PC3 cells. Blocking the feedback using HMGCR-specific small-interfering (si)RNA, the SREBP-2 activation inhibitor dipyridamole or the HMGCR degrader SR12813 abolished statin resistance in C4-2B and DU-145 and induced significant activation of caspases by statin treatment (up to 10-fold; p < 0.001). Consistently, long-term treatment with sublethal concentrations of simvastatin established a stable statin resistance of a PC3SIM subclone accompanied by a significant upregulation of both baseline as well as post-statin HMGCR protein (gene expression up to 70-fold; p < 0.001). Importantly, the statin-resistant phenotype of PC3SIM cells was reversible by HMGCR-specific siRNA and dipyridamole. Our investigations reveal a key role of a restorative feedback driven by the HMGCR/SREBP-2 axis in statin resistance mechanisms of prostate cancer cells.


Subject(s)
Acyl Coenzyme A , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Prostatic Neoplasms , Male , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hydroxymethylglutaryl CoA Reductases/genetics , Hydroxymethylglutaryl CoA Reductases/metabolism , Sterol Regulatory Element Binding Protein 1 , Simvastatin/pharmacology , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Caspases , Dipyridamole
14.
Nat Commun ; 15(1): 2966, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38580683

ABSTRACT

Between 30% and 70% of patients with breast cancer have pre-existing chronic conditions, and more than half are on long-term non-cancer medication at the time of diagnosis. Preliminary epidemiological evidence suggests that some non-cancer medications may affect breast cancer risk, recurrence, and survival. In this nationwide cohort study, we assessed the association between medication use at breast cancer diagnosis and survival. We included 235,368 French women with newly diagnosed non-metastatic breast cancer. In analyzes of 288 medications, we identified eight medications positively associated with either overall survival or disease-free survival: rabeprazole, alverine, atenolol, simvastatin, rosuvastatin, estriol (vaginal or transmucosal), nomegestrol, and hypromellose; and eight medications negatively associated with overall survival or disease-free survival: ferrous fumarate, prednisolone, carbimazole, pristinamycin, oxazepam, alprazolam, hydroxyzine, and mianserin. Full results are available online from an interactive platform ( https://adrenaline.curie.fr ). This resource provides hypotheses for drugs that may naturally influence breast cancer evolution.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/epidemiology , Breast Neoplasms/pathology , Cohort Studies , Comorbidity , Simvastatin
15.
PLoS One ; 19(3): e0298127, 2024.
Article in English | MEDLINE | ID: mdl-38489280

ABSTRACT

BACKGROUND: Ovarian Cancer (OC) stands as the most lethal gynecological malignancy, presenting an urgent clinical challenge in the quest to improve response rates. One approach to address this challenge is through drug repurposing, exemplified by the investigation of metabolic-modulating drugs such as Metformin (MTF) and Simvastatin (SIM). This study aims to explore the molecular mechanisms contributing to the potential synergistic anti-cancer effects between MTF and SIM on ovarian cancer cells. METHODS: We assessed the effects of the combination on the proliferation and viability of two cell lines OVCAR-3 and SKOV-3. IC50 concentrations of MTF and SIM were determined using a proliferation assay, followed by subtoxic concentrations to explore the potential synergistic effects on the viability of both cell lines. Transcriptomic analysis was conducted on OVCAR-3 treated cells, and the findings were validated by assessing the expression levels of differentially expressed genes (DEGs) through real-time PCR in both cell lines SK-OV-3 and OVCAR-3. RESULTS: Cytotoxicity analysis guided the selection of treatment concentrations as such MTF 10 mM and SIM 5 µM. The combined treatment of MTF and SIM demonstrated a synergistic inhibition of proliferation and viability in both cell lines. In OVCAR-3, exclusive identification of 507 DEGs was seen in the combination arm. Upregulation of FOXO3, RhoA, and TNFα, along with downregulation of PIK3R1, SKP2, and ATP6V1D levels, was observed in OVCAR-3 treated cells. Real-time PCR validation confirmed the consistency of expression levels for the mentioned DEGs. CONCLUSION: Our data strongly supports the presence of synergy between MTF and SIM in OC cells. The combination's effect is associated with the dysregulation of genes in the key regulators AMPK and mTOR alongside other interconnected pathways.


Subject(s)
Metformin , Ovarian Neoplasms , Humans , Female , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Metformin/pharmacology , Metformin/therapeutic use , Apoptosis , Simvastatin/pharmacology , Simvastatin/therapeutic use , Cell Line, Tumor
16.
Skin Res Technol ; 30(3): e13642, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38454597

ABSTRACT

AIMS AND OBJECTIVES: The purpose of this study is to investigate the effectiveness and safety of oral and injectable systemic treatments, such as methotrexate, azathioprine, cyclosporine, tofacitinib, baricitinib, corticosteroids, statins, zinc, apremilast, etc., for treating vitiligo lesions. METHOD: Databases including PubMed, Scopus, and Web of Science were meticulously searched for studies spanning from 2010 to August 2023, focusing on systemic oral and injectable therapies for vitiligo, using comprehensive keywords and search syntaxes tailored to each database. Key data extracted included study design, treatment efficacy, patient outcomes, patient satisfaction, and safety profiles. RESULTS: In a total of 42 included studies, oral mini-pulse corticosteroid therapy (OMP) was the subject of six studies (14.2%). Minocycline was the focus of five studies (11.9%), while methotrexate, apremilast, and tofacitinib each were examined in four studies (9.5%). Antioxidants and Afamelanotide were the subjects of three studies each (7.1%). Cyclosporine, simvastatin, oral zinc, oral corticosteroids (excluding OMP) and injections, and baricitinib were each explored in two studies (4.8%). Azathioprine, mycophenolate mofetil, and Alefacept were the subjects of one study each (2.4%). CONCLUSION: Systemic treatments for vitiligo have been successful in controlling lesions without notable side effects. OMP, Methotrexate, Azathioprine, Cyclosporine, Mycophenolate mofetil, Simvastatin, Apremilast, Minocycline, Afamelanotide, Tofacitinib, Baricitinib, Antioxidants, and oral/injectable corticosteroids are effective treatment methods. However, oral zinc and alefacept did not show effectiveness.


Subject(s)
Azetidines , Hypopigmentation , Purines , Pyrazoles , Sulfonamides , Thalidomide/analogs & derivatives , Vitiligo , Humans , Methotrexate/therapeutic use , Azathioprine/therapeutic use , Vitiligo/drug therapy , Vitiligo/pathology , Mycophenolic Acid/therapeutic use , Minocycline/therapeutic use , Alefacept/therapeutic use , Cyclosporine/therapeutic use , Adrenal Cortex Hormones , Simvastatin/therapeutic use , Zinc/therapeutic use
17.
Toxicol Appl Pharmacol ; 485: 116900, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38508403

ABSTRACT

One of the major hitches for statins' utilization is the development of myotoxicity. Versatile studies reported that the underlining molecular mechanisms including coenzyme Q10 (CoQ10)/ubiquinone depletion, as well as the disturbance in the cytoplasmic Ca2+ homeostasis. Therefore, we investigated the consequences of supplementing CoQ10 and dantrolene, a cytoplasmic Ca2+ reducing agent, in combination with simvastatin. This adjuvant therapy normalized the simvastatin-mediated elevation in serum ALT, AST, CK-MM, as well as tissue Ca2+ content, in addition to suppressing the simvastatin-mediated oxidative stress in simvastatin-treated rats, while having no effect upon statin-induced antihyperlipidemic effect. Additionally, the combination inhibited the simvastatin-induced TGF-ß/ Smad4 pathway activation. Collectively, the current study emphasizes on the potential utilization of dantrolene and CoQ10 as an adjuvant therapy to statins treatment for improving their side effect profile.


Subject(s)
Dantrolene , Diet, High-Fat , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Reactive Oxygen Species , Signal Transduction , Simvastatin , Smad4 Protein , Transforming Growth Factor beta , Ubiquinone , Ubiquinone/analogs & derivatives , Animals , Dantrolene/pharmacology , Dantrolene/therapeutic use , Ubiquinone/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Signal Transduction/drug effects , Male , Reactive Oxygen Species/metabolism , Simvastatin/pharmacology , Smad4 Protein/metabolism , Rats , Transforming Growth Factor beta/metabolism , Diet, High-Fat/adverse effects , Muscular Diseases/chemically induced , Muscular Diseases/metabolism , Muscular Diseases/prevention & control , Drug Therapy, Combination , Oxidative Stress/drug effects , Rats, Wistar
18.
Int J Biol Macromol ; 266(Pt 2): 130978, 2024 May.
Article in English | MEDLINE | ID: mdl-38508565

ABSTRACT

Guided bone regeneration (GBR) membranes are widely used to treat bone defects. In this study, sequential electrospinning and electrospraying techniques were used to prepare a dual-layer GBR membrane composed of gelatin (Gel) and chitosan (CS) containing simvastatin (Sim)-loaded poly(lactic-co-glycolic acid) (PLGA) microspheres (Sim@PLGA/Gel-CS). As a GBR membrane, Sim@PLGA/Gel-CS could act as a barrier to prevent soft tissue from occupying regions of bone tissue. Furthermore, compared with traditional GBR membranes, Sim@PLGA/Gel-CS played an active role on stimulating osteogenesis and angiogenesis. Determination of the physical, chemical, and biological properties of Sim@PLGA/Gel-CS membranes revealed uniform sizes of the nanofibers and microspheres and appropriate morphologies. Fourier-transform infrared spectroscopy was used to characterize the interactions between Sim@PLGA/Gel-CS molecules and the increase in the number of amide groups in crosslinked membranes. The thermal stability and tensile strength of the membranes increased after N-(3-dimethylaminopropyl)-N9- ethylcarbodiimide/N-hydroxysuccinimide crosslinking. The increased fiber density of the barrier layer decreased fibroblast migration compared with that in the osteogenic layer. Osteogenic function was indicated by the increased alkaline phosphatase activity, calcium deposition, and neovascularization. In conclusion, the multifunctional effects of Sim@PLGA/Gel-CS on the barrier and bone microenvironment were achieved via its dual-layer structure and simvastatin coating. Sim@PLGA/Gel-CS has potential applications in bone tissue regeneration.


Subject(s)
Chitosan , Gelatin , Membranes, Artificial , Neovascularization, Physiologic , Osteogenesis , Chitosan/chemistry , Gelatin/chemistry , Osteogenesis/drug effects , Neovascularization, Physiologic/drug effects , Simvastatin/chemistry , Simvastatin/pharmacology , Bone Regeneration/drug effects , Guided Tissue Regeneration/methods , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Humans , Animals , Tissue Scaffolds/chemistry , Nanofibers/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Microspheres , Angiogenesis
19.
Int Ophthalmol ; 44(1): 158, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38530532

ABSTRACT

PURPOSE: Rhegmatogenous retinal detachment is a severe vision-threatening complication that can result into proliferative vitreoretinopathy (PVR) and re-detachment of the retina if recovery from surgery fails. Inflammation and changes in retinal pigment epithelial (RPE) cells are important contributors to the disease. Here, we studied the effects of simvastatin and amfenac on ARPE-19 cells under inflammatory conditions. METHODS: ARPE-19 cells were pre-treated with simvastatin and/or amfenac for 24 h after which interleukin (IL)-1α or IL-1ß was added for another 24 h. After treatments, lactate dehydrogenase release, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) processing, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activity, prostaglandin E2 (PGE2) level, and extracellular levels of IL-6, IL-8, monocytic chemoattractant protein (MCP-1), vascular endothelial growth factor (VEGF), and pigment epithelium-derived factor, as well as the production of reactive oxygen species (ROS) were determined. RESULTS: Pre-treatment of human ARPE-19 cells with simvastatin reduced the production of IL-6, IL-8, and MCP-1 cytokines, PGE2 levels, as well as NF-κB activity upon inflammation, whereas amfenac reduced IL-8 and MCP-1 release but increased ROS production. Together, simvastatin and amfenac reduced the release of IL-6, IL-8, and MCP-1 cytokines as well as NF-κB activity but increased the VEGF release upon inflammation in ARPE-19 cells. CONCLUSION: Our present study supports the anti-inflammatory capacity of simvastatin as pre-treatment against inflammation in human RPE cells, and the addition of amfenac complements the effect. The early modulation of local conditions in the retina can prevent inflammation induced PVR formation and subsequent retinal re-detachment.


Subject(s)
Phenylacetates , Retinal Detachment , Vitreoretinopathy, Proliferative , Humans , Vitreoretinopathy, Proliferative/metabolism , Retinal Detachment/surgery , NF-kappa B/metabolism , NF-kappa B/pharmacology , Vascular Endothelial Growth Factor A/metabolism , Retinal Pigment Epithelium , Simvastatin/metabolism , Simvastatin/pharmacology , Reactive Oxygen Species/metabolism , Dinoprostone/metabolism , Dinoprostone/pharmacology , Interleukin-6/metabolism , Interleukin-8/metabolism , Cytokines/metabolism , Anti-Inflammatory Agents , Inflammation/metabolism
20.
Int J Biol Macromol ; 265(Pt 1): 130954, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38499125

ABSTRACT

Designing multifunctional wound dressings is a prerequisite to prevent infection and stimulate healing. In this study, a bilayer scaffold (BS) with a top layer (TL) comprising 3D printed pectin/polyacrylic acid/platelet rich fibrin hydrogel (Pec/PAA/PRF) and a bottom nanofibrous layer (NL) containing Pec/PAA/simvastatin (SIM) was produced. The biodegradable and biocompatible polymers Pec and PAA were cross-linked to form hydrogels via Ca2+ activation through galacturonate linkage and chelation, respectively. PRF as an autologous growth factor (GF) source and SIM together augmented angiogenesis and neovascularization. Because of 3D printing, the BS possessed a uniform distribution of PRF in TL and an average fiber diameter of 96.71 ± 18.14 nm was obtained in NL. The Young's modulus of BS was recorded as 6.02 ± 0.31 MPa and its elongation at break was measured as 30.16 ± 2.70 %. The wound dressing gradually released growth factors over 7 days of investigation. Furthermore, the BS significantly outperformed other groups in increasing cell viability and in vivo wound closure rate (95.80 ± 3.47 % after 14 days). Wounds covered with BS healed faster with more collagen deposition and re-epithelialization. The results demonstrate that the BS can be a potential remedy for skin tissue regeneration.


Subject(s)
Platelet-Rich Fibrin , Simvastatin/pharmacology , Simvastatin/metabolism , Pectins/pharmacology , Pectins/metabolism , Skin/metabolism , Printing, Three-Dimensional
SELECTION OF CITATIONS
SEARCH DETAIL
...