Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.621
Filter
1.
Molecules ; 29(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38792086

ABSTRACT

Photodynamic therapy (PDT) is a non-invasive anticancer treatment that uses special photosensitizer molecules (PS) to generate singlet oxygen and other reactive oxygen species (ROS) in a tissue under excitation with red or infrared light. Though the method has been known for decades, it has become more popular recently with the development of new efficient organic dyes and LED light sources. Here we introduce a ternary nanocomposite: water-soluble star-like polymer/gold nanoparticles (AuNP)/temoporfin PS, which can be considered as a third-generation PDT system. AuNPs were synthesized in situ inside the polymer molecules, and the latter were then loaded with PS molecules in an aqueous solution. The applied method of synthesis allows precise control of the size and architecture of polymer nanoparticles as well as the concentration of the components. Dynamic light scattering confirmed the formation of isolated particles (120 nm diameter) with AuNPs and PS molecules incorporated inside the polymer shell. Absorption and photoluminescence spectroscopies revealed optimal concentrations of the components that can simultaneously reduce the side effects of dark toxicity and enhance singlet oxygen generation to increase cancer cell mortality. Here, we report on the optical properties of the system and detailed mechanisms of the observed enhancement of the phototherapeutic effect. Combinations of organic dyes with gold nanoparticles allow significant enhancement of the effect of ROS generation due to surface plasmonic resonance in the latter, while the application of a biocompatible star-like polymer vehicle with a dextran core and anionic polyacrylamide arms allows better local integration of the components and targeted delivery of the PS molecules to cancer cells. In this study, we demonstrate, as proof of concept, a successful application of the developed PDT system for in vitro treatment of triple-negative breast cancer cells under irradiation with a low-power LED lamp (660 nm). We consider the developed nanocomposite to be a promising PDT system for application to other types of cancer.


Subject(s)
Acrylic Resins , Gold , Metal Nanoparticles , Photochemotherapy , Photosensitizing Agents , Gold/chemistry , Photochemotherapy/methods , Metal Nanoparticles/chemistry , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Humans , Acrylic Resins/chemistry , Cell Line, Tumor , Singlet Oxygen/chemistry , Singlet Oxygen/metabolism , Reactive Oxygen Species/metabolism , Porphyrins/chemistry , Porphyrins/pharmacology , Cell Survival/drug effects , Polymers/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry
2.
J Colloid Interface Sci ; 670: 234-245, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38761576

ABSTRACT

The clinical translation of photosensitizers based on ruthenium(II) polypyridyl complexes (RPCs) in photodynamic therapy of cancer faces several challenges. To address these limitations, we conducted an investigation to assess the potential of a cubosome formulation stabilized in water against coalescence utilizing a polyphosphoester analog of Pluronic F127 as a stabilizer and loaded with newly synthesized RPC-based photosensitizer [Ru(dppn)2(bpy-morph)](PF6)2 (bpy-morph = 2,2'-bipyridine-4,4'-diylbis(morpholinomethanone)), PS-Ru. The photophysical characterization of PS-Ru revealed its robust capacity to induce the formation of singlet oxygen (1O2). Furthermore, the physicochemical analysis of the PS-Ru-loaded cubosomes dispersion demonstrated that the encapsulation of the photosensitizer within the nanoparticles did not disrupt the three-dimensional arrangement of the lipid bilayer. The biological tests showed that PS-Ru-loaded cubosomes exhibited significant phototoxic activity when exposed to the light source, in stark contrast to empty cubosomes and to the same formulation without irradiation. This promising outcome suggests the potential of the formulation in overcoming the drawbacks associated with the clinical use of RPCs in photodynamic therapy for anticancer treatments.


Subject(s)
Lung Neoplasms , Photochemotherapy , Photosensitizing Agents , Ruthenium , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemical synthesis , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Humans , Ruthenium/chemistry , Ruthenium/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemical synthesis , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/pathology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Particle Size , Singlet Oxygen/metabolism , Singlet Oxygen/chemistry , Nanoparticles/chemistry , Cell Survival/drug effects , Poloxamer/chemistry , Drug Screening Assays, Antitumor , Surface Properties , A549 Cells
3.
Anal Chem ; 96(19): 7697-7705, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38697043

ABSTRACT

Dual/multimodal imaging strategies are increasingly recognized for their potential to provide comprehensive diagnostic insights in cancer imaging by harnessing complementary data. This study presents an innovative probe that capitalizes on the synergistic benefits of afterglow luminescence and magnetic resonance imaging (MRI), effectively eliminating autofluorescence interference and delivering a superior signal-to-noise ratio. Additionally, it facilitates deep tissue penetration and enables noninvasive imaging. Despite the advantages, only a limited number of probes have demonstrated the capability to simultaneously enhance afterglow luminescence and achieve high-resolution MRI and afterglow imaging. Herein, we introduce a cutting-edge imaging platform based on semiconducting polymer nanoparticles (PFODBT) integrated with NaYF4@NaGdF4 (Y@Gd@PFO-SPNs), which can directly amplify afterglow luminescence and generate MRI and afterglow signals in tumor tissues. The proposed mechanism involves lanthanide nanoparticles producing singlet oxygen (1O2) upon white light irradiation, which subsequently oxidizes PFODBT, thereby intensifying afterglow luminescence. This innovative platform paves the way for the development of high signal-to-background ratio imaging modalities, promising noninvasive diagnostics for cancer.


Subject(s)
Lanthanoid Series Elements , Magnetic Resonance Imaging , Nanoparticles , Polymers , Semiconductors , Magnetic Resonance Imaging/methods , Animals , Lanthanoid Series Elements/chemistry , Polymers/chemistry , Nanoparticles/chemistry , Mice , Humans , Gadolinium/chemistry , Luminescence , Singlet Oxygen/chemistry , Yttrium/chemistry , Fluorides/chemistry , Mice, Nude
4.
Int J Biol Macromol ; 269(Pt 1): 131992, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697433

ABSTRACT

Amyloids, proteinous aggregates with ß-sheet-rich fibrils, are involved in several neurodegenerative diseases such as Alzheimer's disease; thus, their detection is critically important. The most common fluorescent dye for amyloid detection is thioflavin-T (ThT), which shows on/off fluorescence upon amyloid binding. We previously reported that an engineered globular protein with a flat ß-sheet, peptide self-assembly mimic (PSAM), can be used as an amyloid binding model. In this study, we further explored the residue-specific properties of ThT-binding to the flat ß-sheet by introducing systematic mutations. We found that site-specific mutations at the ThT-binding channel enhanced affinity. We also evaluated the binding of a ThT-based photocatalyst, which showed the photooxygenation activity on the amyloid fibril upon light radiation. Upon binding of the photocatalyst to the PSAM variant, singlet oxygen-generating activity was observed. The results of this study expand our understanding of the detailed binding mechanism of amyloid-specific molecules.


Subject(s)
Benzothiazoles , Benzothiazoles/chemistry , Catalysis , Protein Binding , Protein Conformation, beta-Strand , Amyloid/chemistry , Mutation , Singlet Oxygen/chemistry , Singlet Oxygen/metabolism , Fluorescent Dyes/chemistry
5.
Anal Chem ; 96(22): 9192-9199, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38758357

ABSTRACT

Singlet oxygen (1O2) plays imperative roles in a variety of biotic or abiotic stresses in crops. The change of its concentration within a crop is closely related to the crop growth and development. Accordingly, there is an urgent need to develop an efficient analytical method for on-site quantitative detection of 1O2 in crops. Here, we judiciously constructed a novel ratiometric fluorescent probe, SX-2, for the detection of 1O2 in crops. Upon treating with 1O2, probe SX-2 displayed highly selective ratiometric fluorescence response, which is favorable for the quantitative detection of 1O2. Concurrently, the fluorescence solution color of probe SX-2 was varied, obviously from blue to yellow, indicating that the probe is beneficial for on-site detection by the naked eye. Sensing reaction mechanism studies showed that the 2,3-diphenyl imidazole group in SX-2 could function as a new selective recognition group for 1O2. Probe SX-2 was utilized for the detection of photoirradiation-induced 1O2 and endogenous 1O2 in living cells. The changes in the 1O2 level in zebrafish were also tracked by fluorescence imaging. In addition, the production of 1O2 in crop leaves under a light source of different wavelengths was studied. The results demonstrated more 1O2 were produced under a light source of 365 nm. Furthermore, to achieve on-site quantitative detection, a mobile fluorescence analysis device has been made. Probe SX-2 and mobile fluorescence analysis device were capable of on-site quantitative detecting of 1O2 in crops. The method developed herein will be convenient for the on-site quantitative measurement of 1O2 in distinct crops.


Subject(s)
Crops, Agricultural , Fluorescent Dyes , Singlet Oxygen , Zebrafish , Fluorescent Dyes/chemistry , Singlet Oxygen/metabolism , Singlet Oxygen/chemistry , Crops, Agricultural/chemistry , Crops, Agricultural/metabolism , Animals , Optical Imaging , Humans
6.
Nanoscale ; 16(19): 9462-9475, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38639449

ABSTRACT

The dimerization of boron dipyrromethene (BODIPY) moieties is an appealing molecular design approach for developing heavy-atom-free triplet photosensitizers (PSs). However, BODIPY dimer-based PSs generally lack target specificity, which limits their clinical use for photodynamic therapy. This study reports the synthesis of two mitochondria-targeting triphenylphosphonium (TPP)-functionalized meso-ß directly linked BODIPY dimers (BTPP and BeTPP). Both BODIPY dimers exhibited solvent-polarity-dependent singlet oxygen (1O2) quantum yields, with maximum values of 0.84 and 0.55 for BTPP and BeTPP, respectively, in tetrahydrofuran. The compact orthogonal geometry of the BODIPY dimers facilitated the generation of triplet excited states via photoinduced charge separation (CS) and subsequent spin-orbit charge-transfer intersystem crossing (SOCT-ISC) processes and their rates were dependent on the energetic configuration between the frontier molecular orbitals of the two BODIPY subunits. The as-synthesized compounds were amphiphilic and hence formed stable nanoparticles (∼36 nm in diameter) in aqueous solutions, with a zeta potential of ∼33 mV beneficial for mitochondrial targeting. In vitro experiments with MCF-7 and HeLa cancer cells indicated the effective localization of BTPP and BeTPP within cancer-cell mitochondria. Under light irradiation, BTPP and BeTPP exhibited robust photo-induced therapeutic effects in both cell lines, with half-maximal inhibitory concentration (IC50) values of ∼30 and ∼55 nM, respectively.


Subject(s)
Boron Compounds , Mitochondria , Nanoparticles , Organophosphorus Compounds , Photochemotherapy , Photosensitizing Agents , Singlet Oxygen , Humans , Boron Compounds/chemistry , Boron Compounds/pharmacology , Organophosphorus Compounds/chemistry , Organophosphorus Compounds/pharmacology , Mitochondria/metabolism , Mitochondria/drug effects , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Nanoparticles/chemistry , Singlet Oxygen/metabolism , Singlet Oxygen/chemistry , MCF-7 Cells , Cell Survival/drug effects , HeLa Cells , Dimerization
7.
Nanoscale ; 16(16): 8074-8089, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38563405

ABSTRACT

Amyloid aggregation is implicated in the pathogenesis of various neurodegenerative disorders, such as Alzheimer's disease (AD) and Parkinson's disease (PD). It is critical to develop high-performance drugs to combat amyloid-related diseases. Most identified nanomaterials exhibit limited biocompatibility and therapeutic efficacy. In this work, we used a solvent-free carbonization process to prepare new photo-responsive carbon nanodots (CNDs). The surface of the CNDs is densely packed with chemical groups. CNDs with large, conjugated domains can interact with proteins through π-π stacking and hydrophobic interactions. Furthermore, CNDs possess the ability to generate singlet oxygen species (1O2) and can be used to oxidize amyloid. The hydrophobic interaction and photo-oxidation can both influence amyloid aggregation and disaggregation. Thioflavin T (ThT) fluorescence analysis and circular dichroism (CD) spectroscopy indicate that CNDs can block the transition of amyloid from an α-helix structure to a ß-sheet structure. CNDs demonstrate efficacy in alleviating cytotoxicity induced by Aß42 and exhibit promising blood-brain barrier (BBB) permeability. CNDs have small size, low biotoxicity, good fluorescence and photocatalytic properties, and provide new ideas for the diagnosis and treatment of amyloid-related diseases.


Subject(s)
Amyloid beta-Peptides , Carbon , Carbon/chemistry , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/chemistry , Humans , Catalysis , Singlet Oxygen/metabolism , Singlet Oxygen/chemistry , Blood-Brain Barrier/metabolism , Animals , Protein Aggregates/drug effects , Quantum Dots/chemistry , Amyloid/chemistry , Amyloid/metabolism , Cell Survival/drug effects , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Hydrophobic and Hydrophilic Interactions
8.
Int J Mol Sci ; 25(8)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38673875

ABSTRACT

Photodynamic therapy is expected to be a less invasive treatment, and strategies for targeting mitochondria, the main sources of singlet oxygen, are attracting attention to increase the efficacy of photodynamic therapy and reduce its side effects. To date, we have succeeded in encapsulating the photosensitizer rTPA into MITO-Porter (MP), a mitochondria-targeted Drug Delivery System (DDS), aimed at mitochondrial delivery of the photosensitizer while maintaining its activity. In this study, we report the results of our studies to alleviate rTPA aggregation in an effort to improve drug efficacy and assess the usefulness of modifying the rTPA side chain to improve the mitochondrial retention of MITO-Porter, which exhibits high therapeutic efficacy. Conventional rTPA with anionic side chains and two rTPA analogs with side chains that were converted to neutral or cationic side chains were encapsulated into MITO-Porter. Low-MP (MITO-Porter with Low Drug/Lipid) exhibited high drug efficacy for all three types of rTPA, and in Low-MP, charged rTPA-encapsulated MP exhibited high drug efficacy. The cellular uptake and mitochondrial translocation capacities were similar for all particles, suggesting that differences in aggregation rates during the incorporation of rTPA into MITO-Porter resulted in differences in drug efficacy.


Subject(s)
Hydrophobic and Hydrophilic Interactions , Mitochondria , Photochemotherapy , Photosensitizing Agents , Porphyrins , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Mitochondria/metabolism , Mitochondria/drug effects , Humans , Photochemotherapy/methods , Porphyrins/chemistry , Porphyrins/pharmacology , Nanoparticles/chemistry , Drug Delivery Systems/methods , Cell Line, Tumor , Singlet Oxygen/metabolism , Singlet Oxygen/chemistry
9.
J Chem Phys ; 160(16)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38682739

ABSTRACT

In photodynamic therapy (PDT) treatment, heavy-atom-free photosensitizers (PSs) are a great source of singlet oxygen photosensitizer. Reactive oxygen species (ROS) are produced by an energy transfer from the lowest energy triplet excited state to the molecular oxygen of cancer cells. To clarify the photophysical characteristics in the excited states of a few experimentally identified thionated (>C=S) molecules and their oxygenated congeners (>C=O), a quantum chemical study is conducted. This study illustrates the properties of the excited states in oxygen congeners that render them unsuitable for PDT treatment. Concurrently, a hierarchy is presented based on the utility of the lowest-energy triplet excitons of thionated compounds. Their non-radiative decay rates are calculated for reverse-ISC and inter-system crossover (ISC) processes. In addition, the vibronic importance of C=O and C=S bonds is clarified by the computation of the Huang-Rhys factor, effective vibrational mode, and reorganization energy inside the Marcus-Levich-Jörtner system. ROS generation in thionated PSs exceeds their oxygen congeners as kf ≪ kISC, where radiative decay rate is designated as kf. As a result, the current work offers a calculated strategy for analyzing the effectiveness of thionated photosensitizers in PDT.


Subject(s)
Photochemotherapy , Photosensitizing Agents , Singlet Oxygen , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Singlet Oxygen/chemistry , Quantum Theory
10.
Int J Biol Macromol ; 268(Pt 1): 131861, 2024 May.
Article in English | MEDLINE | ID: mdl-38670207

ABSTRACT

This study characterized four corrole derivatives, namely Cbz-Cor, MetCbz-Cor, PTz-Cor, and PTzEt-Cor, examining their photophysical, electrochemical, photobiological, and biomolecule-binding properties. Experimental photophysical data of absorption and emission elements correlated with a theoretical analysis obtained through time-dependent density functional theory (TD-DFT). As for the photophysical properties, we observed lower fluorescence quantum yields and discernible differences between the excited and ground states, as indicated by Stokes shift values. Natural Transition Orbit (NTO) plots presented high occupied molecular orbital - low unoccupied molecular orbital (HOMO-LUMO) densities around the tetrapyrrolic macrocycle in all examples. Our findings demonstrate that corroles maintain stability in solution and offer photostability (<20 %), predominantly in DMSO(5 %)/Tris-HCl (pH 7.4) buffer solution. Furthermore, the singlet oxygen (1O2) quantum yield and log POW values underscore their potential application in photoinactivation approaches, as these corroles serve as effective ROS generators with more lipophilic features. We also evaluated their biomolecular binding capacity towards salmon sperm DNA and human serum albumin using spectroscopic techniques and molecular docking analysis for sustenance. Concerning biomolecule interaction profiles, the corrole derivatives showed a propensity for interacting in the minor grooves of the double helix DNA due to secondary forces, which were more pronounced in site III of the human serum protein.


Subject(s)
Carbazoles , DNA , Phenothiazines , Serum Albumin, Human , DNA/chemistry , Phenothiazines/chemistry , Humans , Carbazoles/chemistry , Serum Albumin, Human/chemistry , Serum Albumin, Human/metabolism , Porphyrins/chemistry , Animals , Protein Binding , Salmon , Molecular Docking Simulation , Singlet Oxygen/chemistry , Singlet Oxygen/metabolism
11.
Biochemistry ; 63(9): 1214-1224, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38679935

ABSTRACT

A central goal of photoprotective energy dissipation processes is the regulation of singlet oxygen (1O2*) and reactive oxygen species in the photosynthetic apparatus. Despite the involvement of 1O2* in photodamage and cell signaling, few studies directly correlate 1O2* formation to nonphotochemical quenching (NPQ) or lack thereof. Here, we combine spin-trapping electron paramagnetic resonance (EPR) and time-resolved fluorescence spectroscopies to track in real time the involvement of 1O2* during photoprotection in plant thylakoid membranes. The EPR spin-trapping method for detection of 1O2* was first optimized for photosensitization in dye-based chemical systems and then used to establish methods for monitoring the temporal dynamics of 1O2* in chlorophyll-containing photosynthetic membranes. We find that the apparent 1O2* concentration in membranes changes throughout a 1 h period of continuous illumination. During an initial response to high light intensity, the concentration of 1O2* decreased in parallel with a decrease in the chlorophyll fluorescence lifetime via NPQ. Treatment of membranes with nigericin, an uncoupler of the transmembrane proton gradient, delayed the activation of NPQ and the associated quenching of 1O2* during high light. Upon saturation of NPQ, the concentration of 1O2* increased in both untreated and nigericin-treated membranes, reflecting the utility of excess energy dissipation in mitigating photooxidative stress in the short term (i.e., the initial ∼10 min of high light).


Subject(s)
Photosynthesis , Singlet Oxygen , Thylakoids , Electron Spin Resonance Spectroscopy/methods , Singlet Oxygen/metabolism , Singlet Oxygen/chemistry , Thylakoids/metabolism , Thylakoids/chemistry , Spin Trapping/methods , Chlorophyll/metabolism , Chlorophyll/chemistry , Spinacia oleracea/metabolism , Spinacia oleracea/chemistry , Light
12.
J Environ Manage ; 358: 120846, 2024 May.
Article in English | MEDLINE | ID: mdl-38599079

ABSTRACT

Recently, the Fenton-like reaction using peroxymonosulfate (PMS) has been acknowledged as a potential method for breaking down organic pollutants. In this study, we successfully synthesized a highly efficient and stable single atom molybdenum (Mo) catalyst dispersed on nitrogen-doped carbon (Mo-NC-0.1). This catalyst was then utilized for the first time to activate PMS and degrade bisphenol A (BPA). The Mo-NC-0.1/PMS system demonstrated the ability to completely degrade BPA within just 20 min. Scavenging tests and density functional theory (DFT) calculations have demonstrated that the primary reactive oxygen species was singlet oxygen (1O2) produced by Mo-N4 sites. The self-cycling of Mo facilitated PMS activation and the transition from a free radical activation pathway to a non-radical pathway mediated by 1O2. Simultaneously, the nearby pyridinic N served as adsorption sites to immobilize BPA and PMS molecules. The exceptionally high catalytic activity of Mo-NC-0.1 derived from its unique Mo-N coordination, which markedly reduced the distance for 1O2 to migrate to the BPA molecules. The Mo-NC-0.1/PMS system effectively reduced the acute toxicity of BPA and exhibited excellent cycling stability with minimal leaching. This study presented a new catalyst with high selectivity for 1O2 generation and provided valuable insights for the application of single atom catalysts in PMS-based AOPs.


Subject(s)
Molybdenum , Singlet Oxygen , Catalysis , Molybdenum/chemistry , Singlet Oxygen/chemistry , Nitrogen/chemistry , Benzhydryl Compounds/chemistry , Phenols/chemistry , Peroxides/chemistry
13.
J Colloid Interface Sci ; 667: 91-100, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38621335

ABSTRACT

The development of efficient and multifunctional sonosensitizers is crucial for enhancing the efficacy of sonodynamic therapy (SDT). Herein, we have successfully constructed a CoOx-loaded amorphous metal-organic framework (MOF) UIO-66 (A-UIO-66-CoOx) sonosensitizer with excellent catalase (CAT)- and glutathione-oxidase (GSH-OXD)-like activities. The A-UIO-66-CoOx exhibits a 2.6-fold increase in singlet oxygen (1O2) generation under ultrasound (US) exposure compared to crystalline UIO-66 sonosensitizer, which is attributed to its superior charge transfer efficiency and consistent oxygen (O2) supply. Additionally, the A-UIO-66-CoOx composite reduces the expression of glutathione peroxidase (GPX4) by depleting glutathione (GSH) through Co3+ and Co2+ valence changes. The high levels of highly cytotoxic 1O2 and deactivation of GPX4 can lead to lethal lipid peroxidation, resulting in concurrent apoptosis and ferroptosis. Both in vitro and vivo tumor models comprehensively confirmed the enhanced SDT antitumor effect using A-UIO-66-CoOx sonosensitizer. Overall, this study emphasizes the possibility of utilizing amorphization engineering to improve the effectiveness of MOFs-based sonosensitizers for combined cancer therapies.


Subject(s)
Apoptosis , Ferroptosis , Metal-Organic Frameworks , Ultrasonic Therapy , Ferroptosis/drug effects , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Humans , Apoptosis/drug effects , Animals , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Mice, Inbred BALB C , Drug Screening Assays, Antitumor , Cell Survival/drug effects , Cell Proliferation/drug effects , Particle Size , Cobalt/chemistry , Cobalt/pharmacology , Surface Properties , Singlet Oxygen/metabolism , Singlet Oxygen/chemistry , Cell Line, Tumor
14.
Chemosphere ; 357: 141858, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636910

ABSTRACT

The non-free radical oxidation pathway (PMS-NOPs) of peroxymonosulfate (PMS) holds significant promise for practical wastewater treatment applications, owing to its low oxidation potential, high PMS utilization rate, and robust anti-interference capability in the degradation of pollutants. A novel activator copper nitrogen co-doped porous biochar (Cu-N-BC) with rich defect edges and functional groups was obtained by adding Cu and N to the biochar matrix generated by sodium alginate through pyrolysis in this study. Under the condition of 1 mM PMS, 30 mg/L activator was used to activate PMS and achieve efficient degradation of 10 mg/L paracetamol (PCT) within 15 min, with a high reaction rate constants (kobs) of 0.391 min-1. The activation mechanism of the Cu-N-BC/PMS/PCT system was a non-radical activation pathway with the dominance of singlet oxygen (1O2) and the presence of catalyst-mediated electron transfer. The graphite nitrogen, pyridine nitrogen, and Cu-N coordination introduced by Cu/N co-doping, as well as the carbon skeleton and CO functional group of biochar, were considered active sites that promote the 1O2 generation. The Cu-N-BC/PMS system exhibits strong stability, eco-friendliness, effective mineralization, and interference resistance across diverse pH levels (3-11) and interfering ions, including Cl-, H2PO4-, NO3-, SO42-, and humic acid. Remarkably, it efficiently degrades PCT in tap and lake water, achieving a notable 63.73% TOC mineralization rate, with leached copper ions below 0.02 mg/L. This research introduces a novel method for obtaining metal nitrogen carbon activators and enhances understanding of PMS non-radical activation pathways and active sites.


Subject(s)
Acetaminophen , Charcoal , Copper , Nitrogen , Oxidation-Reduction , Peroxides , Singlet Oxygen , Water Pollutants, Chemical , Charcoal/chemistry , Copper/chemistry , Acetaminophen/chemistry , Water Pollutants, Chemical/chemistry , Singlet Oxygen/chemistry , Nitrogen/chemistry , Peroxides/chemistry , Electron Transport , Wastewater/chemistry , Catalysis
15.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124311, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38663131

ABSTRACT

In this study, a set of potential quasi-intrinsic photosensitizers for two-photon photodynamic therapy (PDT) are proposed based on the unnatural 2-amino-8-(1'-ß-ᴅ-2'-deoxyribofuranosyl)-imidazo[1,2-ɑ]-1,3,5-triazin-4(8H)-one (P), which is paired with the 6-amino-5-nitro-3-(1'-ß-ᴅ-2'-deoxyribofuranosyl)-2(1H)-pyridone (Z) and can specifically recognize breast and liver cancer cells. Herein, the effects of sulfur substitution and electron-donating/electron-withdrawing groups on the photophysical properties in aqueous solution are systematically investigated. The one- and two-photon absorption spectra evidence that the modifications could result in red-shifted absorption wavelength and large two-photon absorption cross-section, which contributes to selective excitation and provides effective PDT for deep-seated tissues. To ensure the efficient triplet state population, the singlet-triplet energy gaps and spin-orbit coupling constants were examined, which is responsible for a rapid intersystem crossing rate. Furthermore, these thiobase derivatives are characterized by the long-lived T1 state and the large energy gap for radiationless transition to ensure the generation of cytotoxic singlet oxygen.


Subject(s)
Photochemotherapy , Photons , Photosensitizing Agents , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Humans , Singlet Oxygen/metabolism , Singlet Oxygen/chemistry , Cell Line, Tumor
16.
J Photochem Photobiol B ; 255: 112906, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38688040

ABSTRACT

New functionalities were added to biocompatible polycaprolactone nanofiber materials through the co-encapsulation of chlorin e6 trimethyl ester (Ce6) photogenerating singlet oxygen and absorbing light both in the blue and red regions, and using 4-(N-(aminopropyl)-3-(trifluoromethyl)-4-nitrobenzenamine)-7-nitrobenzofurazan, NO-photodonor (NOP), absorbing light in the blue region of visible light. Time-resolved and steady-state luminescence, as well as absorption spectroscopy, were used to monitor both photoactive compounds. The nanofiber material exhibited photogeneration of antibacterial species, specifically nitric oxide and singlet oxygen, upon visible light excitation. This process resulted in the efficient photodynamic inactivation of E. coli not only close to nanofiber material surfaces due to short-lived singlet oxygen, but even at longer distances due to diffusion of longer-lived nitric oxide. Interestingly, nitric oxide was also formed by processes involving photosensitization of Ce6 during irradiation by red light. This is promising for numerous applications, especially in the biomedical field, where strictly local photogeneration of NO and its therapeutic benefits can be applied using excitation in the "human body phototherapeutic window" (600-850 nm). Generally, due to the high permeability of red light, the photogeneration of NO can be achieved in any aqueous environment where direct excitation of NOP to its absorbance in the blue region is limited.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Light , Nanofibers , Nitric Oxide , Porphyrins , Singlet Oxygen , Singlet Oxygen/chemistry , Singlet Oxygen/metabolism , Nitric Oxide/chemistry , Nitric Oxide/metabolism , Nanofibers/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Escherichia coli/radiation effects , Porphyrins/chemistry , Porphyrins/pharmacology , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Chlorophyllides , Polyesters/chemistry
17.
Chembiochem ; 25(9): e202400138, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38478375

ABSTRACT

A porphyrin-BODIPY dyad (P-BDP) was obtained through covalent bonding, featuring a two-segment design comprising a light-harvesting antenna system connected to an energy acceptor unit. The absorption spectrum of P-BDP resulted from an overlap of the individual spectra of its constituent parts, with the fluorescence emission of the BODIPY unit experiencing significant quenching (96 %) due to the presence of the porphyrin unit. Spectroscopic, computational, and redox investigations revealed a competition between photoinduced energy and electron transfer processes. The dyad demonstrated the capability to sensitize both singlet molecular oxygen and superoxide radical anions. Additionally, P-BDP effectively induced the photooxidation of L-tryptophan. In suspensions of Staphylococcus aureus cells, the dyad led to a reduction of over 3.5 log (99.99 %) in cell survival following 30 min of irradiation with green light. Photodynamic inactivation caused by P-BDP was also extended to the individual bacterium level, focusing on bacterial cells adhered to a surface. This dyad successfully achieved the total elimination of the bacteria upon 20 min of irradiation. Therefore, P-BDP presents an interesting photosensitizing structure that takes advantage of the light-harvesting antenna properties of the BODIPY unit combined with porphyrin, offering potential to enhance photoinactivation of bacteria.


Subject(s)
Boron Compounds , Photosensitizing Agents , Porphyrins , Staphylococcus aureus , Boron Compounds/chemistry , Boron Compounds/pharmacology , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Staphylococcus aureus/drug effects , Porphyrins/chemistry , Porphyrins/pharmacology , Singlet Oxygen/metabolism , Singlet Oxygen/chemistry , Light , Molecular Structure
18.
Environ Pollut ; 348: 123865, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38548162

ABSTRACT

Singlet oxygen (1O2) is a reactive species for the selective degradation of stubborn organic pollutants. Given its resistance to harsh water environment, the effective and exclusive generation of 1O2 is acknowledged as a key strategy to mitigate water production costs and ensure water supply safety. Herein, we synthesized MnOx intercalated MnFe layered double hydroxides (MF-MnOx) to selectively produce 1O2 through the activation of PMS. The distinctive confined structure endowed MF-MnOx with a special pathway for the PMS activation. The direct oxidation of BPA on the intercalated MnOx induced the charge imbalance in the MnFe-LDH layer, resulting in the selective generation of 1O2. Moreover, acceptable activity deterioration of MF-MnOx was observed in a 10 h continuous degradation test in actual water, substantiating the application potential of MF-MnOx. This work presents a novel catalyst for the selective production of 1O2, and evaluates its prospects in the remediation of micro-polluted water.


Subject(s)
Peroxides , Singlet Oxygen , Singlet Oxygen/chemistry , Peroxides/chemistry , Hydroxides/chemistry , Water , Oxygen
19.
Environ Sci Pollut Res Int ; 31(19): 28025-28039, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38523211

ABSTRACT

Azo dyes, widely used in the textile industry, contribute to effluents with significant organic content. Therefore, the aim of this work was to synthesize cobalt ferrite (CoFe2O4) using the combustion method and assess its efficacy in degrading the azo dye Direct Red 80 (DR80). TEM showed a spherical structure with an average size of 33 ± 12 nm. Selected area electron diffraction and XRD confirmed the presence of characteristic crystalline planes specific to CoFe2O4. The amount of Co and Fe metals were determined by ICP-OES, indicating an n(Fe)/n(Co) ratio of 2.02. FTIR exhibited distinct bands corresponding to Co-O (455 cm-1) and Fe-O (523 cm-1) bonds. Raman spectroscopy detected peaks associated with octahedral and tetrahedral sites. For the first time, the material was applied to degrade DR80 in an aqueous system, with the addition of persulfate. Consistently, within 60 min, these trials achieved nearly 100% removal of DR80, even after the material had undergone five cycles of reuse. The pseudo-second-order model was found to be the most fitting model for the experimental data (k2 = 0.07007 L mg-1 min-1). The results strongly suggest that degradation primarily occurred via superoxide radicals and singlet oxygen. Furthermore, the presence of UV light considerably accelerated the degradation process (k2 = 1.54093 L mg-1 min-1). The material was applied in a synthetic effluent containing various ions, and its performance consistently approached 100% in the photo-Fenton system. Finally, two degradation byproducts were identified through HPLC-MS/MS analysis.


Subject(s)
Cobalt , Ferric Compounds , Singlet Oxygen , Cobalt/chemistry , Ferric Compounds/chemistry , Singlet Oxygen/chemistry , Superoxides/chemistry , Azo Compounds/chemistry , Water Pollutants, Chemical/chemistry , Coloring Agents/chemistry , Iron/chemistry , Hydrogen Peroxide/chemistry
20.
Photochem Photobiol Sci ; 23(3): 539-560, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38457119

ABSTRACT

Antibiotic resistance represents a pressing global health challenge, now acknowledged as a critical concern within the framework of One Health. Photodynamic inactivation of microorganisms (PDI) offers an attractive, non-invasive approach known for its flexibility, independence from microbial resistance patterns, broad-spectrum efficacy, and minimal risk of inducing resistance. Various photosensitizers, including porphyrin derivatives have been explored for pathogen eradication. In this context, we present the synthesis, spectroscopic and photophysical characteristics as well as antimicrobial properties of a palladium(II)-porphyrin derivative (PdF2POH), along with its zinc(II)- and free-base counterparts (ZnF2POH and F2POH, respectively). Our findings reveal that the palladium(II)-porphyrin complex can be classified as an excellent generator of reactive oxygen species (ROS), encompassing both singlet oxygen (Φ△ = 0.93) and oxygen-centered radicals. The ability of photosensitizers to generate ROS was assessed using a variety of direct (luminescence measurements) and indirect techniques, including specific fluorescent probes both in solution and in microorganisms during the PDI procedure. We investigated the PDI efficacy of F2POH, ZnF2POH, and PdF2POH against both Gram-negative and Gram-positive bacteria. All tested compounds proved high activity against Gram-positive species, with PdF2POH exhibiting superior efficacy, leading to up to a 6-log reduction in S. aureus viability. Notably, PdF2POH-mediated PDI displayed remarkable effectiveness against S. aureus biofilm, a challenging target due to its complex structure and increased resistance to conventional treatments. Furthermore, our results show that PDI with PdF2POH is more selective for bacterial than for mammalian cells, particularly at lower light doses (up to 5 J/cm2 of blue light illumination). This enhanced efficacy of PdF2POH-mediated PDI as compared to ZnF2POH and F2POH can be attributed to more pronounced ROS generation by palladium derivative via both types of photochemical mechanisms (high yields of singlet oxygen generation as well as oxygen-centered radicals). Additionally, PDI proved effective in eliminating bacteria within S. aureus-infected human keratinocytes, inhibiting infection progression while preserving the viability and integrity of infected HaCaT cells. These findings underscore the potential of metalloporphyrins, particularly the Pd(II)-porphyrin complex, as promising photosensitizers for PDI in various bacterial infections, warranting further investigation in advanced infection models.


Subject(s)
Anti-Infective Agents , Photochemotherapy , Porphyrins , Animals , Humans , Porphyrins/pharmacology , Porphyrins/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Reactive Oxygen Species , Staphylococcus aureus , Singlet Oxygen/chemistry , Plankton , Palladium/pharmacology , Photochemotherapy/methods , Anti-Infective Agents/chemistry , Biofilms , Oxygen , Mammals
SELECTION OF CITATIONS
SEARCH DETAIL
...