Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 631
Filter
1.
Arch Virol ; 169(7): 134, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38834736

ABSTRACT

Anthrax is an acute infectious zoonotic disease caused by Bacillus anthracis, a bacterium that is considered a potential biological warfare agent. Bacillus bacteriophages shape the composition and evolution of bacterial communities in nature and therefore have important roles in the ecosystem community. B. anthracis phages are not only used in etiological diagnostics but also have promising prospects in clinical therapeutics or for disinfection in anthrax outbreaks. In this study, two temperate B. anthracis phages, vB_BanS_A16R1 (A16R1) and vB_BanS_A16R4 (A16R4), were isolated and showed siphovirus-like morphological characteristics. Genome sequencing showed that the genomes of phages A16R1 and A16R4 are 36,569 bp and 40,059 bp in length, respectively. A16R1 belongs to the genus Wbetavirus, while A16R4 belongs to the genus Hubeivirus and is the first phage of that genus found to lyse B. anthracis. Because these two phages can comparatively specifically lyse B. anthracis, they could be used as alternative diagnostic tools for identification of B. anthracis infections.


Subject(s)
Bacillus Phages , Bacillus anthracis , Genome, Viral , Bacillus anthracis/virology , Genome, Viral/genetics , Bacillus Phages/isolation & purification , Bacillus Phages/genetics , Bacillus Phages/classification , Siphoviridae/genetics , Siphoviridae/isolation & purification , Siphoviridae/classification , Phylogeny
2.
Rev. esp. patol ; 57(2): 111-115, Abr-Jun, 2024. tab, ilus
Article in English | IBECS | ID: ibc-232414

ABSTRACT

Russell bodies (RBs) are round eosinophilic intracytoplasmic inclusions formed by condensed immunoglobulins in mature plasma cells, which are called Mott cells. These cells are rarely found in the gastric tract, with even less cases reported in the colorectal region. There are still many questions about this event, as it is still unknown the relationship between the agents reported of increasing the probability of appearance of these cells and the generation of RBs. In this case report we describe the fifth patient presenting an infiltration of Mott cells in a colorectal polyp, being the second case with a monoclonal origin without a neoplastic cause, and the first one monoclonal for lambda. A comparison with previously similar reported cases is also done, and a possible etiopathogenic hypothesis proposed. (AU)


Los cuerpos de Russell (RB) son inclusiones intracitoplasmáticas eosinofílicas redondas formadas por inmunoglobulinas condensadas en las células plasmáticas maduras, que se denominan células de Mott. Estas células rara vez se encuentran en el tracto gástrico, y son aún más infrecuentes en la región colorrectal. Actualmente hay muchas dudas sobre este evento, ya que se desconoce la relación entre los agentes causantes de aumentar la probabilidad de aparición tanto de estas células como de la de RB. En este caso describimos al quinto paciente con un pólipo colorrectal, localizado en el tracto colorrectal e infiltrado por células de Mott, siendo el segundo caso de origen monoclonal sin causa neoplásica y el primero monoclonal para lambda. También se hace una comparación con casos similares previamente reportados y se propone una hipótesis etiopatogénica. (AU)


Subject(s)
Humans , Siphoviridae , Colonic Polyps , Plasma Cells , Lewy Bodies , Immunoglobulins
3.
PLoS One ; 19(5): e0301292, 2024.
Article in English | MEDLINE | ID: mdl-38743671

ABSTRACT

Enterococcus faecalis, a Gram-positive bacterium, poses a significant clinical challenge owing to its intrinsic resistance to a broad spectrum of antibiotics, warranting urgent exploration of innovative therapeutic strategies. This study investigated the viability of phage therapy as an alternative intervention for antibiotic-resistant E. faecalis, with a specific emphasis on the comprehensive genomic analysis of bacteriophage SAM-E.f 12. The investigation involved whole-genome sequencing of SAM-E.f 12 using Illumina technology, resulting in a robust dataset for detailed genomic characterization. Bioinformatics analyses were employed to predict genes and assign functional annotations. The bacteriophage SAM-E.f 12, which belongs to the Siphoviridae family, exhibited substantial potential, with a burst size of 5.7 PFU/infected cells and a latent period of 20 min. Host range determination experiments demonstrated its effectiveness against clinical E. faecalis strains, positioning SAM-E.f 12 as a precise therapeutic agent. Stability assays underscore resilience across diverse environmental conditions. This study provides a comprehensive understanding of SAM-E.f 12 genomic composition, lytic lifecycle parameters, and practical applications, particularly its efficacy in murine wound models. These results emphasize the promising role of phage therapy, specifically its targeted approach against antibiotic-resistant E. faecalis strains. The nuanced insights derived from this research will contribute to the ongoing pursuit of efficacious phage therapies and offer valuable implications for addressing the clinical challenges associated with E. faecalis infections.


Subject(s)
Bacteriophages , Enterococcus faecalis , Genome, Viral , Enterococcus faecalis/virology , Enterococcus faecalis/genetics , Bacteriophages/genetics , Animals , Mice , Phage Therapy , Host Specificity/genetics , Gram-Positive Bacterial Infections/microbiology , Gram-Positive Bacterial Infections/therapy , Whole Genome Sequencing , Genomics/methods , Siphoviridae/genetics
4.
BMC Infect Dis ; 24(1): 310, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38486152

ABSTRACT

BACKGROUND: Escherichia coli is a common fecal coliform, facultative aerobic, gram-negative bacterium. Pathogenic strains of such microbes have evolved to cause diarrhea, urinary tract infections, and septicemias. The emergence of antibiotic resistance urged the identification of an alternative strategy. The use of lytic bacteriophages against the control of pathogenic E. coli in clinics and different environmental setups (waste and drink water management) has become an alternative therapy to antibiotic therapy. Thus, this study aimed to isolate and characterize lytic bacteriophage from various sources in Addis Ababa, tested them against antimicrobial-resistant diarrheagenic E. coli strains and evaluated their therapeutic potential under in vitro conditions. METHODS: A total of 14 samples were processed against six different diarrheagenic E. coli strains. The conventional culture and plaque analysis agar overlay method was used to recover lytic bacteriophage isolates. The phage isolates were characterized to determine their lytic effect, growth characteristics, host range activity, and stability under different temperature and pH conditions. Phage isolates were identified by scanning electron microscope (SEM), and molecular techniques (PCR). RESULTS: In total, 17 phages were recovered from 84 tested plates. Of the 17 phage isolates, 11 (65%) were Myoviridae-like phages, and 6 (35%) phage isolates were Podoviridae and Siphoviridae by morphology and PCR identification. Based on the host range test, growth characteristics, and stability test 7 potent phages were selected. These phages demonstrated better growth characteristics, including short latent periods, highest burst sizes, and wider host ranges, as well as thermal stability and the ability to survive in a wide range of pH levels. CONCLUSIONS: The promising effect of the phages isolated in this study against AMR pathogenic E. coli has raised the possibility of their use in the future treatment of E. coli infections.


Subject(s)
Bacteriophages , Escherichia coli Infections , Siphoviridae , Humans , Escherichia coli , Ethiopia , Escherichia coli Infections/therapy , Anti-Bacterial Agents/pharmacology
5.
Methods Mol Biol ; 2738: 215-228, 2024.
Article in English | MEDLINE | ID: mdl-37966602

ABSTRACT

Cryogenic electron microscopy (cryo-EM) single-particle analysis has revolutionized the structural analysis of icosahedral viruses, including tailed bacteriophages. In recent years, localized (or focused) reconstruction has emerged as a powerful data analysis method to capture symmetry mismatches and resolve asymmetric features in icosahedral viruses. Here, we describe the methods used to reconstruct the 2.65-MDa tail apparatus of the Shigella phage Sf6, a representative member of the Podoviridae superfamily.


Subject(s)
Shigella , Siphoviridae , Virion , Research Design , Single Molecule Imaging
6.
Viruses ; 15(12)2023 12 15.
Article in English | MEDLINE | ID: mdl-38140681

ABSTRACT

Bacteria are engaged in a constant battle against preying viruses, called bacteriophages (or phages). These remarkable nano-machines pack and store their genomes in a capsid and inject it into the cytoplasm of their bacterial prey following specific adhesion to the host cell surface. Tailed phages possessing dsDNA genomes are the most abundant phages in the bacterial virosphere, particularly those with long, non-contractile tails. All tailed phages possess a nano-device at their tail tip that specifically recognizes and adheres to a suitable host cell surface receptor, being proteinaceous and/or saccharidic. Adhesion devices of tailed phages infecting Gram-positive bacteria are highly diverse and, for the majority, remain poorly understood. Their long, flexible, multi-domain-encompassing tail limits experimental approaches to determine their complete structure. We have previously shown that the recently developed protein structure prediction program AlphaFold2 can overcome this limitation by predicting the structures of phage adhesion devices with confidence. Here, we extend this approach and employ AlphaFold2 to determine the structure of a complete phage, the lactococcal P335 phage TP901-1. Herein we report the structures of its capsid and neck, its extended tail, and the complete adhesion device, the baseplate, which was previously partially determined using X-ray crystallography.


Subject(s)
Bacteriophages , Lactococcus lactis , Siphoviridae , Siphoviridae/genetics , Bacteriophages/genetics , Capsid Proteins/genetics , Capsid Proteins/metabolism , Crystallography, X-Ray
7.
Sci Rep ; 13(1): 20153, 2023 11 17.
Article in English | MEDLINE | ID: mdl-37978256

ABSTRACT

Despite the rising interest in bacteriophages, little is known about their infection cycle and lifestyle in a multicellular host. Even in the model system Streptomyces, only a small number of phages have been sequenced and well characterized so far. Here, we report the complete characterization and genome sequences of Streptomyces phages Vanseggelen and Verabelle isolated using Streptomyces coelicolor as a host. A wide range of Streptomyces strains could be infected by both phages, but neither of the two phages was able to infect members of the closely related sister genus Kitasatospora. The phages Vanseggelen and Verabelle have a double-stranded DNA genome with lengths of 48,720 and 48,126 bp, respectively. Both phage genomes contain 72 putative genes, and the presence of an integrase encoding protein indicates a lysogenic lifestyle. Characterization of the phages revealed their stability over a wide range of temperatures (30-45 °C) and pH values (4-10). In conclusion, Streptomyces phage Vanseggelen and Streptomyces phage Verabelle are newly isolated phages that can be classified as new species in the genus Camvirus, within the subfamily Arquattrovirinae.


Subject(s)
Bacteriophages , Siphoviridae , Streptomyces , Streptomyces/genetics , Genome, Viral , DNA, Viral/genetics , Siphoviridae/genetics , Phylogeny
8.
Mar Genomics ; 72: 101069, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38008529

ABSTRACT

Pseudoalteromonas is a widely distributed bacterial genus that is associated with marine algae. However, there is still limited knowledge about their bacteriophage. In this study, we reported the isolation of a novel lytic bacteriophage that infects Pseudoalteromonas marina. Transmission electron microscopy revealed that PS_L5 had an icosahedral head of 52.6 ± 2 nm and a non-contractile tail with length of 96.5 ± 2 nm. The genome sequence of this phage was 34, 257 bp and had a GC content of 40.75%. Furthermore, this genome contained 61 predicted open reading frames (ORFs), which involved in various functions such as phage structure, packaging, DNA metabolism, host lysis and other additional functions. Additionally, the phylogenetic analysis based on major capsid protein showed that the phage PS_L5 was closely related to five other Pseudoalteromonas phages, namely PHS3, PHS21, AL, SL25 and Pq0 which also possessed the non-contractile long tail. This study provided the fundamental insights into the evolutionary dynamics of Pseudoalteromonas phages and the interaction between phage and host.


Subject(s)
Bacteriophages , Pseudoalteromonas , Siphoviridae , Phylogeny , Pseudoalteromonas/genetics , DNA, Viral/genetics , Genome, Viral , Siphoviridae/genetics , Bacteriophages/genetics , Genomics , Open Reading Frames
9.
Int J Mol Sci ; 24(16)2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37628765

ABSTRACT

Bacteriophages are widely recognized as alternatives to traditional antibiotics commonly used in the treatment of bacterial infection diseases and in the food industry, as phages offer a potential solution in combating multidrug-resistant bacterial pathogens. In this study, we describe a novel bacteriophage, Kirovirus kirovense Kirov, which infects members of the Bacillus cereus group. Kirovirus kirovense Kirov is a broad-host-range phage belonging to the Caudoviricetes class. Its chromosome is a linear 165,667 bp double-stranded DNA molecule that contains two short, direct terminal repeats, each 284 bp long. According to bioinformatics predictions, the genomic DNA contains 275 protein-coding genes and 5 tRNA genes. A comparative genomic analysis suggests that Kirovirus kirovense Kirov is a novel species within the Kirovirus genus, belonging to the Andregratiavirinae subfamily. Kirovirus kirovense Kirov demonstrates the ability to preserve and decontaminate B. cereus from cow milk when present in milk at a concentration of 104 PFU/mL. After 4 h of incubation with the phage, the bacterial titer drops from 105 to less than 102 CFU/mL.


Subject(s)
Milk , Siphoviridae , Milk/microbiology , Animals , Food Storage , Food Preservation , Bacteriophages , Bacillus/virology , Genome, Viral , Siphoviridae/genetics , Hydrogen-Ion Concentration
10.
Viruses ; 15(8)2023 08 06.
Article in English | MEDLINE | ID: mdl-37632043

ABSTRACT

Soil Sinorhizobium phage AP-16-3, a strain phylogenetically close to Rhizobium phage 16-3, was isolated in a mountainous region of Dagestan, belonging to the origin of cultivated plants in the Caucasus, according to Vavilov N.I. The genome of phage AP-16-3 is 61 kbp in size and contains 62 ORFs, of which 42 ORFs have homologues in the genome of Rhizobium phage 16-3, which was studied in the 1960s-1980s. A search for Rhizobium phage 16-3-related sequences was performed in the genomes of modern strains of root nodule bacteria belonging to different species, genera, and families. A total of 43 prophages of interest were identified out of 437 prophages found in the genomes of 42 strains, of which 31 belonged to Sinorhizobium meliloti species. However, almost all of the mentioned prophages contained single ORFs, and only two prophages contained 51 and 39 ORFs homologous to phages related to 16-3. These prophages were detected in S. meliloti NV1.1.1 and Rh. leguminosarum OyaliB strains belonging to different genera; however, the similarity level of these two prophages did not exceed 14.7%. Analysis of the orphan genes in these prophages showed that they encoded predominantly virion structural elements, but also enzymes and an extensive group of hypothetical proteins belonging to the L, S, and E regions of viral genes of phage 16-3. The data obtained indicate that temperate phages related to 16-3 had high infectivity against nodule bacteria and participated in intragenomic recombination events involving other phages, and in horizontal gene transfer between rhizobia of different genera. According to the data obtained, it is assumed that the repetitive lysogenic cycle of temperate bacteriophages promotes the dissolution of the phage genetic material in the host bacterial genome, and radical updating of phage and host bacterial genomes takes place.


Subject(s)
Bacteriophages , Sinorhizobium , Siphoviridae , Humans , Prophages/genetics , Lysogeny
11.
Sci Rep ; 13(1): 11663, 2023 07 19.
Article in English | MEDLINE | ID: mdl-37468551

ABSTRACT

Travertines, which precipitate from high temperature water saturated with calcium carbonate, are generally considered to be dominated by physico-chemical and microbial precipitates. Here, as an additional influence on organomineral formation, metagenomic data and microscopic analyses clearly demonstrate that highly diverse viral, bacterial and archaeal communities occur in the biofilms associated with several modern classic travertine sites in Europe and Asia, along with virus-like particles. Metagenomic analysis reveals that bacteriophages (bacterial viruses) containing icosahedral capsids and belonging to the Siphoviridae, Myoviridae and Podoviridae families are the most abundant of all viral strains, although the bacteriophage distribution does vary across the sampling sites. Icosahedral shapes of capsids are also the most frequently observed under the microscope, occurring as non-mineralized through to mineralized viruses and virus-like particles. Viruses are initially mineralized by Ca-Si amorphous precipitates with subordinate Mg and Al contents; these then alter to nanospheroids composed of Ca carbonate with minor silicate 80-300 nm in diameter. Understanding the roles of bacteriophages in modern carbonate-saturated settings and related organomineralization processes is critical for their broader inclusion in the geological record and ecosystem models.


Subject(s)
Bacteriophages , Podoviridae , Siphoviridae , Viruses , Humans , Ecosystem , Bacteriophages/genetics , Podoviridae/ultrastructure , Siphoviridae/genetics , Siphoviridae/ultrastructure
12.
Int J Mol Sci ; 24(10)2023 May 10.
Article in English | MEDLINE | ID: mdl-37239874

ABSTRACT

The emergence of multidrug-resistant (MDR) bacteria has risen rapidly, leading to a great threat to global public health. A promising solution to this problem is the exploitation of phage endolysins. In the present study, a putative N-acetylmuramoyl-L-alanine type-2 amidase (NALAA-2, EC 3.5.1.28) from Propionibacterium bacteriophage PAC1 was characterized. The enzyme (PaAmi1) was cloned into a T7 expression vector and expressed in E. coli BL21 cells. Kinetics analysis using turbidity reduction assays allowed the determination of the optimal conditions for lytic activity against a range of Gram-positive and negative human pathogens. The peptidoglycan degradation activity of PaAmi1 was confirmed using isolated peptidoglycan from P. acnes. The antibacterial activity of PaAmi1 was investigated using live P. acnes cells growing on agar plates. Two engineered variants of PaAmi1 were designed by fusion to its N-terminus two short antimicrobial peptides (AMPs). One AMP was selected by searching the genomes of Propionibacterium bacteriophages using bioinformatics tools, whereas the other AMP sequence was selected from the antimicrobial peptide databases. Both engineered variants exhibited improved lytic activity towards P. acnes and the enterococci species Enterococcus faecalis and Enterococcus faecium. The results of the present study suggest that PaAmi1 is a new antimicrobial agent and provide proof of concept that bacteriophage genomes are a rich source of AMP sequences that can be further exploited for designing novel or improved endolysins.


Subject(s)
Bacteriophages , Siphoviridae , Humans , Propionibacterium acnes/genetics , Peptidoglycan/metabolism , Escherichia coli/metabolism , Endopeptidases/metabolism , Siphoviridae/metabolism , Bacteriophages/metabolism , Anti-Bacterial Agents/chemistry
13.
J Microbiol Biotechnol ; 33(8): 1050-1056, 2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37218442

ABSTRACT

Weizmannia coagulans (formerly Bacillus coagulans) is Gram-positive, and spore-forming bacteria causing food spoilage, especially in acidic canned food products. To control W. coagulans, we isolated a bacteriophage Youna2 from a sewage sludge sample. Morphological analysis revealed that phage Youna2 belongs to the Siphoviridae family with a non-contractile and flexible tail. Youna2 has 52,903 bp double-stranded DNA containing 61 open reading frames. There are no lysogeny-related genes, suggesting that Youna2 is a virulent phage. plyYouna2, a putative endolysin gene was identified in the genome of Youna2 and predicted to be composed of a N-acetylmuramoyl-L-alanine amidase domain (PF01520) at the N-terminus and unknown function DUF5776 domain (PF19087) at the C-terminus. While phage Youna2 has a narrow host range, infecting only certain strains of W. coagulans, PlyYouna2 exhibited a broad antimicrobial spectrum beyond the Bacillus genus. Interestingly, PlyYouna2 can lyse Gram-negative bacteria such as Escherichia coli, Yersinia enterocolitica, Pseudomonas putida and Cronobacter sakazakii without other additives to destabilize bacterial outer membrane. To the best of our knowledge, Youna2 is the first W. coagulans-infecting phage and we speculate its endolysin PlyYouna2 can provide the basis for the development of a novel biocontrol agent against various foodborne pathogens.


Subject(s)
Bacillus coagulans , Bacteriophages , Siphoviridae , Bacteriophages/genetics , Bacillus coagulans/genetics , Endopeptidases/genetics , Siphoviridae/genetics , Genome, Viral
14.
Arch Virol ; 168(6): 157, 2023 May 09.
Article in English | MEDLINE | ID: mdl-37160612

ABSTRACT

Bacteriophage L522, which infects Xanthomonas oryzae pv. oryzae, was isolated from a paddy leaf sample collected in Long An province, Vietnam. The phage shows myovirus morphology based on transmission electron microscopy. It displays a latent period and burst size of approximately 3 h and 63 new virions per infected cell (PFU/infected cell), respectively. The genome of L522 is 44,497 bp in length, with 52% GC content. Of the 63 genes identified, functions were predicted for 26. No virulence or antibiotic-resistance genes were detected. The results of a BLASTn search showed similarity to a previously reported Xanthomonas phage, with 85% average nucleotide sequence identity and 87.15% query coverage. Thus, this L522 is a representative of a new species in the genus Xipdecavirus.


Subject(s)
Bacteriophages , Oryza , Siphoviridae , Xanthomonas , Bacteriophages/genetics , Xanthomonas/genetics
15.
Appl Environ Microbiol ; 89(5): e0042123, 2023 05 31.
Article in English | MEDLINE | ID: mdl-37074184

ABSTRACT

The presence of virulent phages is closely monitored during cheese manufacturing, as these bacterial viruses can significantly slow down the milk fermentation process and lead to low-quality cheeses. From 2001 to 2020, whey samples from cheddar cheese production in a Canadian factory were monitored for the presence of virulent phages capable of infecting proprietary strains of Lactococcus cremoris and Lactococcus lactis used in starter cultures. Phages were successfully isolated from 932 whey samples using standard plaque assays and several industrial Lactococcus strains as hosts. A multiplex PCR assay assigned 97% of these phage isolates to the Skunavirus genus, 2% to the P335 group, and 1% to the Ceduovirus genus. DNA restriction profiles and a multilocus sequence typing (MLST) scheme distinguished at least 241 unique lactococcal phages from these isolates. While most phages were isolated only once, 93 of them (out of 241, 39%) were isolated multiple times. Phage GL7 was isolated 132 times from 2006 to 2020, demonstrating that phages can persist in a cheese factory for long periods of time. Phylogenetic analysis of MLST sequences showed that phages could be clustered based on their bacterial hosts rather than their year of isolation. Host range analysis showed that Skunavirus phages exhibited a very narrow host range, whereas some Ceduovirus and P335 phages had a broader host range. Overall, the host range information was useful in improving the starter culture rotation by identifying phage-unrelated strains and helped mitigating the risk of fermentation failure due to virulent phages. IMPORTANCE Although lactococcal phages have been observed in cheese production settings for almost a century, few longitudinal studies have been performed. This 20-year study describes the close monitoring of dairy lactococcal phages in a cheddar cheese factory. Routine monitoring was conducted by factory staff, and when whey samples were found to inhibit industrial starter cultures under laboratory conditions, they were sent to an academic research laboratory for phage isolation and characterization. This led to a collection of at least 241 unique lactococcal phages, which were characterized through PCR typing and MLST profiling. Phages of the Skunavirus genus were by far the most dominant. Most phages lysed a small subset of the Lactococcus strains. These findings guided the industrial partner in adapting the starter culture schedule by using phage-unrelated strains in starter cultures and removing some strains from the starter rotation. This phage control strategy could be adapted for other large-scale bacterial fermentation processes.


Subject(s)
Bacteriophages , Cheese , Lactococcus lactis , Siphoviridae , Humans , Cheese/microbiology , Multilocus Sequence Typing , Phylogeny , Longitudinal Studies , Canada , Lactococcus lactis/genetics , Siphoviridae/genetics , Multiplex Polymerase Chain Reaction
16.
Folia Microbiol (Praha) ; 68(5): 771-779, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37074624

ABSTRACT

Salmonella enterica serovar Kentucky is one of the food-borne zoonotic pathogens which is isolated in high frequency from poultry meat in the recent decades and is known for its multidrug resistance. The current study was aimed to isolate and characterize a bacteriophage against S. enterica serovar Kentucky isolate, 5925, which showed resistance to at least seven antibiotics and to study its efficiency to decontaminate S. Kentucky from chicken skin. The bacteriophage against S. enterica serovar Kentucky was isolated and was named vB_SenS_Ib_psk2 representing the place, source, and host. Electron microscopy revealed that the phage possesses isometric head and contractile tail, indicative of Siphoviridae family. Molecular detection of major capsid protein E gene yielded 511 bp, and NCBI blast analysis revealed that the phage belonged to the genus chivirus. The optimum temperature and pH for phage survival and multiplication were found to be - 20 to 42 °C and 6-10, respectively. One-step growth curve experiment of vB_SenS_Ib_psk2 revealed a latent period of 20 min and burst size of 253 phages/bacterial cell. The host susceptibility studies revealed that 83% of MDR isolates of S. enterica were susceptible to vB_SenS_Ib_psk2. Artificial spiking studies on chicken skin revealed that high multiplicity of infection (MOI) of phages of 106 pfu/mL is required for significant reduction (p ≤ 0.01) of bacterial concentration (0.14 ± 0.04) after 24-h incubation at 8 °C compared to group 1 (2.55 ± 0.89 cfu/mL).


Subject(s)
Bacteriophages , Salmonella enterica , Siphoviridae , Bacteriophages/genetics , Serogroup , Kentucky , Anti-Bacterial Agents , Siphoviridae/genetics
17.
Microb Pathog ; 179: 106099, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37060965

ABSTRACT

Bacteriophages have been used in phage therapy for the treatment of bacterial infections. They are biological agents that used for management of diseases caused by resistant bacteria. As compared to antibiotics, phages can kill bacteria specifically. It requires more awareness about phage-host interactions by exploring new phages. Escherichia coli (E. coli) is a conditional pathogen and cause infections like pneumonia and diarrhea in hospitalized patients. In the current research work, a virus IME178, a novel strain, was extracted from the sewage of hospital against the clinical E. coli of multidrug resistant nature. Genomic characterization and transmission electron microscopy have exhibited relation of phage to the Tequintavirus genus, Demerecviridae family. The Phage IME178's double-stranded DNA genome was 108588 bp long, with a GC content of 39%. The phage genome transcribes 155 open reading frames, 72 are hypothetical proteins, 81 have putative functions assigned to them, and two are unknown to any database. A total number of 19 tRNA genes were found in the genome of this phage. There were no genes associated with virulence or drug resistance in the phage genome. According to a comparative genomic analysis, the genomic sequence of phage IME178 is 91% identical to E. coli phage phiLLS (NC 047822.1). The phage's host range and one-step growth curve were also estimated. As per genomic and bioinformatics analysis findings, Phage IME178, a propitious biological agent that infects E. coli and have the potential to use in phage therapies.


Subject(s)
Bacteriophages , Siphoviridae , Humans , Bacteriophages/genetics , Escherichia coli/genetics , Genome, Viral , Genomics
18.
Virus Genes ; 59(3): 464-472, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37004601

ABSTRACT

There is a growing interest in phages as potential biotechnological tools in human health owing to the antibacterial activity of these viruses. In this study, we characterized a new member (named PhiV_005_BRA/2016) of the recently identified phage species Phietavirus Henu 2. PhiV_005_BRA/2016 was detected through metagenomic analysis of stool samples of individuals with acute gastroenteritis. PhiV_005_BRA/2016 contains double-stranded linear DNA (dsDNA), it has a genome of 43,513 base pairs (bp), with a high identity score (99%) with phage of the genus Phietavirus, species of Phietavirus Henu 2. Life style prediction indicated that PhiV_005_BRA/2016 is a lysogenic phage whose the main host is methicillin-resistant Staphylococcus aureus (MRSA). Indeed, we found PhiV_005_BRA/2016 partially integrated in the genome of distinct MRSA strains. Our findings highlights the importance of large-scale screening of bacteriophages to better understand the emergence of multi-drug resistant bacterial.


Subject(s)
Bacteriophages , Gastroenteritis , Methicillin-Resistant Staphylococcus aureus , Siphoviridae , Staphylococcal Infections , Humans , Virome , Staphylococcal Infections/microbiology
19.
Viruses ; 15(3)2023 03 06.
Article in English | MEDLINE | ID: mdl-36992396

ABSTRACT

Canine diarrhea is a common intestinal illness that is usually caused by viruses, bacteria, and parasites, and canine diarrhea may induce morbidity and mortality of domestic dogs if treated improperly. Recently, viral metagenomics was applied to investigate the signatures of the enteric virome in mammals. In this research, the characteristics of the gut virome in healthy dogs and dogs with diarrhea were analyzed and compared using viral metagenomics. The alpha diversity analysis indicated that the richness and diversity of the gut virome in the dogs with diarrhea were much higher than the healthy dogs, while the beta diversity analysis revealed that the gut virome of the two groups was quite different. At the family level, the predominant viruses in the canine gut virome were certified to be Microviridae, Parvoviridae, Siphoviridae, Inoviridae, Podoviridae, Myoviridae, and others. At the genus level, the predominant viruses in the canine gut virome were certified to be Protoparvovirus, Inovirus, Chlamydiamicrovirus, Lambdavirus, Dependoparvovirus, Lightbulbvirus, Kostyavirus, Punavirus, Lederbergvirus, Fibrovirus, Peduovirus, and others. However, the viral communities between the two groups differed significantly. The unique viral taxa identified in the healthy dogs group were Chlamydiamicrovirus and Lightbulbvirus, while the unique viral taxa identified in the dogs with diarrhea group were Inovirus, Protoparvovirus, Lambdavirus, Dependoparvovirus, Kostyavirus, Punavirus, and other viruses. Phylogenetic analysis based on the near-complete genome sequences showed that the CPV strains collected in this study together with other CPV Chinese isolates clustered into a separate branch, while the identified CAV-2 strain D5-8081 and AAV-5 strain AAV-D5 were both the first near-complete genome sequences in China. Moreover, the predicted bacterial hosts of phages were certified to be Campylobacter, Escherichia, Salmonella, Pseudomonas, Acinetobacter, Moraxella, Mediterraneibacter, and other commensal microbiota. In conclusion, the enteric virome of the healthy dogs group and the dogs with diarrhea group was investigated and compared using viral metagenomics, and the viral communities might influence canine health and disease by interacting with the commensal gut microbiome.


Subject(s)
Microviridae , Podoviridae , Siphoviridae , Viruses , Wolves , Animals , Dogs , Metagenomics , Phylogeny , Diarrhea/veterinary , Myoviridae , Bacteria
20.
Microbiol Res ; 271: 127369, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36996644

ABSTRACT

The study of bacteriophages is experiencing a resurgence with the increasing development of antimicrobial resistance in Staphylococcus aureus. Nonetheless, the genetic features of highly efficient lytic S. aureus phage remain to be explored. In this study, two lytic S. aureus phages, SapYZU11 and SapYZU15, were isolated from sewage samples from Yangzhou, China. The phage morphology, one-step growth, host spectrum and lytic activity of these phages were examined, and their whole-genome sequences were analysed and compared with 280 published genomes of staphylococcal phages. The structural organisation and genetic contents of SapYZU11 and SapYZU15 were investigated. The Podoviridae phage SapYZU11 and Herelleviridae phage SapYZU15 effectively lysed all of the 53 S. aureus strains isolated from various sources. However, SapYZU15 exhibited a shorter latent period, larger burst size and stronger bactericidal ability with an anti-bacterial rate of approximately 99.9999% for 24 h. Phylogenetic analysis revealed that Herelleviridae phages formed the most ancestral clades and the S. aureus Podoviridae phages were clustered in the staphylococcal Siphoviridae phage clade. Moreover, phages in different morphology families contain distinct types of genes associated with host cell lysis, DNA packaging and lysogeny. Notably, SapYZU15 harboured 13 DNA metabolism-related genes, 5 lysin genes, 1 holin gene and 1 DNA packaging gene. The data suggest that S. aureus Podoviridae and Siphoviridae phages originated from staphylococcal Herelleviridae phages, and the module exchange of S. aureus phages occurred in the same morphology family. Moreover, the extraordinary lytic capacity of SapYZU15 was likely due to the presence of specific genes associated with DNA replication, DNA packaging and the lytic cycle.


Subject(s)
Bacteriophages , Siphoviridae , Staphylococcal Infections , Humans , Staphylococcus aureus/genetics , Sewage , Phylogeny , Staphylococcal Infections/microbiology , Staphylococcus Phages/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...