Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 466
Filter
1.
Gynecol Endocrinol ; 40(1): 2353733, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38818662

ABSTRACT

BACKGROUND: Polycystic ovarian syndrome (PCOS) is a prevalent metabolic and endocrine condition in females of reproductive age. This work was to discover the underlying role of Dickkopf 1 (DKK1) and its putative regulating mechanism in P COS. METHODS: Mice recieved dehydroepiandrosterone (DHEA) injection to establish the in vivo P COS model.Hematoxylin and eosin (H&E) staining was performed for histological analysis. RT-qP CR and Western blotting were used to detect gene and protein expression. CCK-8 and flow cytometry assays were applied to detect cell viability and apoptosis. Co-immunoprecipitation (Co-IP) and immunoprecipitation (IP) were applied to assess association between DKK1 and SIRT2. RESULTS: In this work, DKK1 is downregulated in P COS rats. It was revealed that DKK1 knockdown induced apoptosis and suppressed proliferation in KGN cells, whereas DKK1 overexpression had exactly the opposite effects. In addition, DKK1 deactivates the T GF-ß1/SMad3 signaling pathway, thereby controlling KGN cell proliferation and apoptosis. Besides, SIRT2 inhibition reversed the impact of DKK1 overexpression on KGN cell proliferation and apoptosis. Furthermore, SIRT2 downregulated DKK1 expression by deacetylating DKK1 in KGN cells. DISCUSSION: Altogether, we concluded that SIRT2-induced deacetylation of DKK1 triggers T GF-ß1/Smad3 hyperactivation, thereby inhibiting proliferation and promoting apoptosis of KGN cells. The above results indicated that DKK1 might function as a latent target for P COS treatment.


Subject(s)
Intercellular Signaling Peptides and Proteins , Polycystic Ovary Syndrome , Signal Transduction , Sirtuin 2 , Smad3 Protein , Transforming Growth Factor beta1 , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/genetics , Female , Animals , Intercellular Signaling Peptides and Proteins/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Smad3 Protein/metabolism , Smad3 Protein/genetics , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/genetics , Mice , Sirtuin 2/metabolism , Sirtuin 2/genetics , Rats , Apoptosis , Acetylation , Cell Proliferation , Disease Models, Animal , Humans
2.
Exp Cell Res ; 439(1): 114068, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38750717

ABSTRACT

Acetylation, a critical regulator of diverse cellular processes, holds significant implications in various cancer contexts. Further understanding of the acetylation patterns of key cancer-driven proteins is crucial for advancing therapeutic strategies in cancer treatment. This study aimed to unravel the acetylation patterns of Engulfment and Cell Motility Protein 1 (ELMO1) and its relevance to the pathogenesis of colorectal cancer (CRC). Immunoprecipitation and mass spectrometry precisely identified lysine residue 505 (K505) as a central acetylation site in ELMO1. P300 emerged as the acetyltransferase for ELMO1 K505 acetylation, while SIRT2 was recognized as the deacetylase. Although K505 acetylation minimally affected ELMO1's localization and stability, it played a crucial role in mediating ELMO1-Dock180 interaction, thereby influencing Rac1 activation. Functionally, ELMO1 K505 acetylation proved to be a pivotal factor in CRC progression, exerting its influence on key cellular processes. Clinical analysis of CRC samples unveiled elevated ELMO1 acetylation in primary tumors, indicating a potential association with CRC pathologies. This work provides insights into ELMO1 acetylation and its significance in advancing potentially therapeutic interventions in CRC treatment.


Subject(s)
Adaptor Proteins, Signal Transducing , Colorectal Neoplasms , rac1 GTP-Binding Protein , Humans , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Colorectal Neoplasms/genetics , Acetylation , rac1 GTP-Binding Protein/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Cell Line, Tumor , Disease Progression , Sirtuin 2/metabolism , Sirtuin 2/genetics , Cell Movement , HCT116 Cells
3.
Protein Sci ; 33(5): e4994, 2024 May.
Article in English | MEDLINE | ID: mdl-38647411

ABSTRACT

Sirtuin 2 (SIRT2) is a class III histone deacetylase that is highly conserved from bacteria to mammals. We prepared and characterized the wild-type (WT) and mutant forms of the histone deacetylase (HDAC) domain of human SIRT2 (hSIRT2) using various biophysical methods and evaluated their deacetylation activity. We found that WT hSIRT2 HDAC (residues 52-357) forms a homodimer in a concentration-dependent manner with a dimer-monomer dissociation constant of 8.3 ± 0.5 µM, which was determined by mass spectrometry. The dimer was disrupted into two monomers by binding to the HDAC inhibitors SirReal1 and SirReal2. We also confirmed dimer formation of hSIRT2 HDAC in living cells using a NanoLuc complementation reporter system. Examination of the relationship between dimer formation and deacetylation activity using several mutants of hSIRT2 HDAC revealed that some non-dimerizing mutants exhibited deacetylation activity for the N-terminal peptide of histone H3, similar to the wild type. The hSIRT2 HDAC mutant Δ292-306, which lacks a SIRT2-specific disordered loop region, was identified to exist as a monomer with slightly reduced deacetylation activity; the X-ray structure of the mutant Δ292-306 was almost identical to that of the WT hSIRT2 HDAC bound to an inhibitor. These results indicate that hSIRT2 HDAC forms a dimer, but this is independent of deacetylation activity. Herein, we discuss insights into the dimer formation of hSIRT2 based on our biophysical experimental results.


Subject(s)
Protein Multimerization , Sirtuin 2 , Humans , Sirtuin 2/metabolism , Sirtuin 2/chemistry , Sirtuin 2/genetics , Acetylation , HEK293 Cells
4.
Theranostics ; 14(6): 2622-2636, 2024.
Article in English | MEDLINE | ID: mdl-38646657

ABSTRACT

Rationale: In recent years, nicotinamide adenine dinucleotide (NAD+) precursors (Npre) have been widely employed to ameliorate female reproductive problems in both humans and animal models. However, whether and how Npre plays a role in the male reproductive disorder has not been fully clarified. Methods: In the present study, a busulfan-induced non-obstructive azoospermic mouse model was used, and Npre was administered for five weeks following the drug injection, with the objective of reinstating spermatogenesis and fertility. Initially, we assessed the NAD+ level, germ cell types, semen parameters and sperm fertilization capability. Subsequently, testis tissues were examined through RNA sequencing analysis, ELISA, H&E, immunofluorescence, quantitative real-time PCR, and Western blotting techniques. Results: The results indicated that Npre restored normal level of NAD+ in blood and significantly alleviated the deleterious effects of busulfan (BU) on spermatogenesis, thereby partially reestablishing fertilization capacity. Transcriptome analysis, along with recovery of testicular Fe2+, GSH, NADPH, and MDA levels, impaired by BU, and the fact that Fer-1, an inhibitor of ferroptosis, restored spermatogenesis and semen parameters close to CTRL values, supported such possibility. Interestingly, the reduction in SIRT2 protein level by the specific inhibitor AGK2 attenuated the beneficial effects of Npre on spermatogenesis and ferroptosis by affecting PGC-1α and ACLY protein levels, thus suggesting how these compounds might confer spermatogenesis protection. Conclusion: Collectively, these findings indicate that NAD+ protects spermatogenesis against ferroptosis, probably through SIRT2 dependent mechanisms. This underscores the considerable potential of Npre supplementation as a feasible strategy for preserving or restoring spermatogenesis in specific conditions of male infertility and as adjuvant therapy to preserve male fertility in cancer patients receiving sterilizing treatments.


Subject(s)
Busulfan , Ferroptosis , NAD , Sirtuin 2 , Spermatogenesis , Animals , Busulfan/pharmacology , Male , Spermatogenesis/drug effects , Mice , NAD/metabolism , Ferroptosis/drug effects , Sirtuin 2/metabolism , Sirtuin 2/genetics , Disease Models, Animal , Testis/metabolism , Testis/drug effects , Azoospermia/drug therapy , Azoospermia/metabolism , Azoospermia/chemically induced
5.
Gene ; 915: 148428, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38575099

ABSTRACT

To assess and validate the gene expression profile of SIRTs (SIRT1, SIRT2, SIRT3, SIRT4, SIRT5, SIRT6, and SIRT7) in relation to the pathogenesis and prognostic progression of Myelodysplastic neoplasm (MDS). Eighty bone marrow samples of patients with de novo MDS were diagnosed according to WHO 2022 and IPSS-R criteria. Ten bone marrow samples were obtained from elderly healthy volunteers and used as control samples. Gene expression levels of all SIRTs were assessed using RT-qPCR assays. Downregulation of SIRT2 (p = 0.009), SIRT3 (p = 0.048), SIRT4 (p = 0.049), SIRT5 (p = 0.046), SIRT6 (p = 0.043), and SIRT7 (p = 0.047) was identified in MDS patients compared to control individuals. Also, we identified that while SIRT2-7 genes are typically down-regulated in MDS patients compared to normal controls, there are relative expression variations among MDS patient subgroups. Specifically, SIRT4 (p = 0.029) showed increased expression in patients aged 60 or above, and both SIRT2 (p = 0.016) and SIRT3 (p = 0.036) were upregulated in patients with hemoglobin levels below 8 g/dL. SIRT2 (p = 0.045) and SIRT3 (p = 0.033) were highly expressed in patients with chromosomal abnormalities. Different SIRTs exhibited altered expression patterns concerning specific MDS clinical and prognostic characteristics. The downregulation in SIRTs genes (e.g., SIRT2 to SIRT7) expression in Brazilian MDS patients highlights their role in the disease's development. The upregulation of SIRT2 and SIRT3 in severe anemia patients suggests a potential link to manage iron overload-related complications in transfusion-dependent patients. Moreover, the association of SIRT2/SIRT3 with genomic instability and their role in MDS progression signify promising areas for future research and therapeutic targets. These findings underscore the importance of SIRT family in understanding and addressing MDS, offering novel clinical, prognostic, and therapeutic insights for patients with this condition.


Subject(s)
Mitochondrial Proteins , Myelodysplastic Syndromes , Sirtuin 3 , Sirtuins , Humans , Sirtuins/genetics , Sirtuins/metabolism , Male , Female , Aged , Middle Aged , Myelodysplastic Syndromes/genetics , Prognosis , Sirtuin 3/genetics , Sirtuin 3/metabolism , Sirtuin 2/genetics , Sirtuin 2/metabolism , Adult , Aged, 80 and over , Sirtuin 1/genetics , Sirtuin 1/metabolism , Gene Expression Regulation, Neoplastic , Gene Expression Profiling/methods , Case-Control Studies
6.
EMBO Rep ; 25(5): 2441-2478, 2024 May.
Article in English | MEDLINE | ID: mdl-38649663

ABSTRACT

Ago2 differentially regulates oncogenic and tumor-suppressive miRNAs in cancer cells. This discrepancy suggests a secondary event regulating Ago2/miRNA action in a context-dependent manner. We show here that a positive charge of Ago2 K212, that is preserved by SIR2-mediated Ago2 deacetylation in cancer cells, is responsible for the direct interaction between Ago2 and Caveolin-1 (CAV1). Through this interaction, CAV1 sequesters Ago2 on the plasma membranes and regulates miRNA-mediated translational repression in a compartment-dependent manner. Ago2/CAV1 interaction plays a role in miRNA-mediated mRNA suppression and in miRNA release via extracellular vesicles (EVs) from tumors into the circulation, which can be used as a biomarker of tumor progression. Increased Ago2/CAV1 interaction with tumor progression promotes aggressive cancer behaviors, including metastasis. Ago2/CAV1 interaction acts as a secondary event in miRNA-mediated suppression and increases the complexity of miRNA actions in cancer.


Subject(s)
Argonaute Proteins , Caveolin 1 , MicroRNAs , Neoplasm Metastasis , Argonaute Proteins/metabolism , Argonaute Proteins/genetics , MicroRNAs/metabolism , MicroRNAs/genetics , Caveolin 1/metabolism , Caveolin 1/genetics , Humans , Cell Line, Tumor , Animals , Gene Expression Regulation, Neoplastic , Extracellular Vesicles/metabolism , Mice , Protein Binding , Neoplasms/metabolism , Neoplasms/genetics , Neoplasms/pathology , Sirtuin 2/metabolism , Sirtuin 2/genetics
7.
Proc Natl Acad Sci U S A ; 121(18): e2319833121, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38648480

ABSTRACT

Sirt2 is a nicotinamide adenine dinucleotide (NAD+)-dependent protein lysine deacylase that can remove both acetyl group and long-chain fatty acyl groups from lysine residues of many proteins. It was reported to affect inflammatory bowel disease (IBD) symptoms in a mouse model. However, conflicting roles were reported, with genetic knockout aggravating while pharmacological inhibition alleviating IBD symptoms. These seemingly conflicting reports cause confusion and deter further efforts in developing Sirt2 inhibitors as a potential treatment strategy for IBD. We investigated these conflicting reports and elucidated the role of Sirt2 in the mouse model of IBD. We essentially replicated these conflicting results and confirmed that Sirt2 inhibitors' protective effect is not through off-targets as two very different Sirt2 inhibitors (TM and AGK2) showed similar protection in the IBD mouse model. We believe that the differential effects of inhibitors and knockout are due to the fact that the Sirt2 inhibitors only inhibit some but not all the activities of Sirt2. This hypothesis is confirmed by the observation that a PROTAC degrader of Sirt2 did not protect mice in the IBD model, similar to Sirt2 knockout. Our study provides an interesting example where genetic knockout and pharmacological inhibition do not align and emphasizes the importance of developing substrate-dependent inhibitors. Importantly, we showed that the effect of Sirt2 inhibition in IBD is through regulating the gut epithelium barrier by inhibiting Arf6-mediated endocytosis of E-cadherin, a protein important for the intestinal epithelial integrity. This mechanistic understanding further supports Sirt2 as a promising therapeutic target for treating IBD.


Subject(s)
Colitis , Intestinal Mucosa , Sirtuin 2 , Animals , Humans , Mice , Cadherins/metabolism , Cadherins/genetics , Colitis/chemically induced , Colitis/drug therapy , Colitis/prevention & control , Disease Models, Animal , Furans , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/pathology , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Intestinal Mucosa/pathology , Mice, Inbred C57BL , Mice, Knockout , Quinolines , Sirtuin 2/metabolism , Sirtuin 2/antagonists & inhibitors , Sirtuin 2/genetics
8.
J Biol Chem ; 300(5): 107273, 2024 May.
Article in English | MEDLINE | ID: mdl-38588806

ABSTRACT

The stability of ribosomal DNA (rDNA) is maintained through transcriptional silencing by the NAD+-dependent histone deacetylase Sir2 in Saccharomyces cerevisiae. Alongside proteostasis, rDNA stability is a crucial factor regulating the replicative lifespan of S. cerevisiae. The unfolded protein response (UPR) is induced by misfolding of proteins or an imbalance of membrane lipid composition and is responsible for degrading misfolded proteins and restoring endoplasmic reticulum (ER) membrane homeostasis. Recent investigations have suggested that the UPR can extend the replicative lifespan of yeast by enhancing protein quality control mechanisms, but the relationship between the UPR and rDNA stability remains unknown. In this study, we found that the deletion of ARV1, which encodes an ER protein of unknown molecular function, activates the UPR by inducing lipid bilayer stress. In arv1Δ cells, the UPR and the cell wall integrity pathway are activated independently of each other, and the high osmolarity glycerol (HOG) pathway is activated in a manner dependent on Ire1, which mediates the UPR. Activated Hog1 translocates the stress response transcription factor Msn2 to the nucleus, where it promotes the expression of nicotinamidase Pnc1, a well-known Sir2 activator. Following Sir2 activation, rDNA silencing and rDNA stability are promoted. Furthermore, the loss of other ER proteins, such as Pmt1 or Bst1, and ER stress induced by tunicamycin or inositol depletion also enhance rDNA stability in a Hog1-dependent manner. Collectively, these findings suggest that the induction of the UPR enhances rDNA stability in S. cerevisiae by promoting the Msn2-Pnc1-Sir2 pathway in a Hog1-dependent manner.


Subject(s)
DNA, Ribosomal , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Unfolded Protein Response , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , DNA, Ribosomal/metabolism , DNA, Ribosomal/genetics , Lipid Bilayers/metabolism , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Mitogen-Activated Protein Kinases/metabolism , Mitogen-Activated Protein Kinases/genetics , Nicotinamidase/metabolism , Nicotinamidase/genetics , Sirtuin 2/metabolism , Sirtuin 2/genetics , Silent Information Regulator Proteins, Saccharomyces cerevisiae/metabolism , Silent Information Regulator Proteins, Saccharomyces cerevisiae/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Endoplasmic Reticulum/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Membrane Glycoproteins
9.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167129, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38513990

ABSTRACT

Bone cancer pain (BCP) is refractory to currently used analgesics. Recently, sirtuin 2 (SIRT2) was reported to play a vital role in neuropathic pain but its role in BCP remains unknown. It was hypothesized that spinal SIRT2 attenuates BCP by deacetylating FoxO3a and suppressing oxidative stress. The mouse model of BCP established by injecting tumor cells into the intramedullary space of the femur demonstrated that spinal SIRT2 and FoxO3a were downregulated in BCP development. Intrathecal administration of LV-SIRT2 reduced pain hypersensitivity (mechanical and thermal nociception) in BCP mice. Spinal SIRT2 overexpression upregulated FoxO3a and antioxidant genes (SOD2 and catalase) and inhibited FoxO3a acetylation, phosphorylation, and ubiquitination. Moreover, intrathecal administration of SIRT2 shRNA induced pain hypersensitivity in normal mice. Spinal SIRT2 knockdown downregulated FoxO3a and antioxidant genes and increased FoxO3a acetylation, phosphorylation, and ubiquitination. In summary, spinal SIRT2 increases FoxO3a expression in BCP mice and inhibits oxidative stress by deacetylating FoxO3a and further reducing FoxO3a phosphorylation, ubiquitination, and degradation, leading to BCP relief.


Subject(s)
Bone Neoplasms , Cancer Pain , Neuralgia , Animals , Mice , Antioxidants , Bone Neoplasms/complications , Bone Neoplasms/genetics , Cancer Pain/genetics , Cancer Pain/metabolism , Sirtuin 2/genetics
10.
Nucleic Acids Res ; 52(9): 5107-5120, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38554113

ABSTRACT

Sirtuin 2 (SIRT2) regulates the maintenance of genome integrity by targeting pathways of DNA damage response and homologous recombination repair. However, whether and how SIRT2 promotes base excision repair (BER) remain to be determined. Here, we found that independent of its catalytic activity SIRT2 interacted with the critical glycosylase OGG1 to promote OGG1 recruitment to its own promoter upon oxidative stress, thereby enhancing OGG1 promoter activity and increasing BER efficiency. Further studies revealed that SIRT2 was phosphorylated on S46 and S53 by ATM/ATR upon oxidative stress, and SIRT2 phosphorylation enhanced the SIRT2-OGG1 interaction and mediated the stimulatory effect of SIRT2 on OGG1 promoter activity. We also characterized 37 cancer-derived SIRT2 mutants and found that 5 exhibited the loss of the stimulatory effects on OGG1 transcription. Together, our data reveal that SIRT2 acts as a tumor suppressor by promoting OGG1 transcription and increasing BER efficiency in an ATM/ATR-dependent manner.


Subject(s)
Ataxia Telangiectasia Mutated Proteins , DNA Glycosylases , DNA Repair , Sirtuin 2 , Ataxia Telangiectasia Mutated Proteins/metabolism , Ataxia Telangiectasia Mutated Proteins/genetics , Humans , Sirtuin 2/metabolism , Sirtuin 2/genetics , DNA Glycosylases/metabolism , DNA Glycosylases/genetics , Phosphorylation , Promoter Regions, Genetic , Oxidative Stress , Transcriptional Activation , HEK293 Cells , DNA Damage , Transcription, Genetic , Cell Line, Tumor , Excision Repair
11.
J Cell Mol Med ; 28(6): e18129, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38426936

ABSTRACT

ATP citrate lyase (ACLY), as a key enzyme in lipid metabolism, plays an important role in energy metabolism and lipid biosynthesis of a variety of tumours. Many studies have shown that ACLY is highly expressed in various tumours, and its pharmacological or gene inhibition significantly inhibits tumour growth and progression. However, the roles of ACLY in oesophageal squamous cell carcinoma (ESCC) remain unclear. Here, our data showed that ACLY inhibitor significantly attenuated cell proliferation, migration, invasion and lipid synthesis in different ESCC cell lines, whereas the proliferation, migration, invasion and lipid synthesis of ESCC cells were enhanced after ACLY overexpression. Furthermore, ACLY inhibitor dramatically suppressed tumour growth and lipid metabolism in ESCC cells xenografted tumour model, whereas ACLY overexpression displayed the opposite effect. Mechanistically, ACLY protein harboured acetylated modification and interacted with SIRT2 protein in ESCC cells. The SIRT2 inhibitor AGK2 significantly increased the acetylation level of ACLY protein and inhibited the proliferation and migration of ESCC cells, while overexpression of ACLY partially reversed the inhibitory effect of AGK2 on ESCC cells. Overall, these results suggest that targeting the SIRT2/ACLY signalling axis may be a potential therapeutic strategy for ESCC patients.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Esophageal Squamous Cell Carcinoma/genetics , ATP Citrate (pro-S)-Lyase , Sirtuin 2/genetics , Sirtuin 2/metabolism , Cell Proliferation , Esophageal Neoplasms/metabolism , Lipids , Cell Line, Tumor , Gene Expression Regulation, Neoplastic
12.
Gene ; 907: 148276, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38360128

ABSTRACT

Cold is a common stressor that threatens colonic health by affecting internal homeostasis. From the literature, Silent information regulator 2 (SIRT2) may have important roles during cold stress, but this conjecture requires investigation. To address this knowledge gap, we investigated the effects of SIRT2 on colonic injury in chronically cold-exposure mice. In a previous study, we showed that SIRT2 regulated p65 activation after cold exposure. In the current study, mice were exposed to 4 °C for 3 h/day for 3 weeks to simulate a chronic cold exposure environment. Chronic cold exposure shortened colon length, disrupted tight junctions in colonic epithelial tissue, and disordered colonic flora. Chronic cold exposure also increased p65 acetylation levels, promoted nuclear factor (NF)-κB activation, and increased the expression of its downstream pro-inflammatory factors, while SIRT2 knockdown aggravated the consequences of tissue structure disruption and increased inflammatory factors brought about by chronic cold exposure to some extent, but could alleviate the downregulation of colonic tight junction-related proteins to some extent. We also observed direct SIRT2 regulatory effects toward p65, and in Caco-2 cells treated with lipopolysaccharide (LPS), SIRT2 knockdown increased p65 acetylation levels and pro-inflammatory factor expression, while SIRT2 overexpression reversed these phenomena. Therefore, SIRT2 deletion exacerbated chronic cold exposure-induced colonic injury and p65 activation in mice. Mechanistically, p65 modification by SIRT2 via deacetylation may affect NF-κB signaling. These findings suggest that SIRT2 is a key target of colonic health maintenance under chronic cold exposure conditions.


Subject(s)
Colon , NF-kappa B , Sirtuin 2 , Animals , Humans , Mice , Caco-2 Cells , Lipopolysaccharides/pharmacology , NF-kappa B/metabolism , Signal Transduction , Sirtuin 2/genetics , Transcription Factor RelA/metabolism , Colon/injuries , Colon/pathology , Cold Temperature/adverse effects
13.
Immun Inflamm Dis ; 12(2): e1160, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38415949

ABSTRACT

INTRODUCTION: Regulatory T cells (Tregs) play an important role in inflammatory bowel diseases (IBDs) through modulating intestinal inflammation. However, the factors affecting Treg function and plasticity during IBD progression are not thoroughly disclosed. The current study aims to reveal new molecular mechanisms affecting Treg plasticity. METHODS: A mouse strain, in which tdTomato and enhanced green fluorescent protein were under the control of the Foxp3 promoter and Il17a promoter, was established and subjected to colitis induction with dextran sulfate sodium. The existence of Tregs and IL-17-expressing Tregs (i.e., Treg/T helper 17 [Th17] cells) were observed and sorted from the spleen, mesenteric lymph nodes, and lamina propria by flow cytometry, followed by measuring Sirtuin2 (Sirt2) expression using quantitative reverse transcription polymerase chain reaction and Immunoblotting. Lentivirus-induced Sirt2 silencing was applied to determine the impact of Sirt2 on Treg polarization to Treg/Th17 cells and even Th17 cells. The effect of Sirt2 on Stat3 was analyzed by flow cytometry and immunoblotting. RESULTS: Sirt2 was highly expressed in lamina propria Tregs and it moderately suppressed Foxp3 expression as well as the immunosuppressive function of Tregs. Surprisingly, lentivirus-mediated Sirt2 silencing promoted the generation of Treg/Th17 cells out of Tregs. Sirt2 silencing also enhanced the generation of Th17 cells out of Tregs under the Th17 induction condition. Furthermore, Sirt2 inhibited Th17 induction by suppressing the protein level of the signal transducer and activator of transcription 3. CONCLUSION: Sirt2 suppresses Treg function but also inhibits Treg polarization toward Treg/Th17 cells and Th17 cells. The ultimate effect of Sirt2 on colitis might depend on the balance among Tregs, Treg/Th17 cells, and Th17 cells.


Subject(s)
Colitis , Red Fluorescent Protein , STAT3 Transcription Factor , Animals , Mice , STAT3 Transcription Factor/genetics , T-Lymphocytes, Regulatory , Th17 Cells , Sirtuin 2/genetics , Colitis/chemically induced , Colitis/genetics , Disease Models, Animal , Forkhead Transcription Factors/genetics
14.
BMC Med Genomics ; 17(1): 6, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38167011

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is a progressive neurodegenerative disease that can cause dementia. We aim to screen out the hub genes involved in AD based on microarray datasets. METHODS: Gene expression profiles GSE5281 and GSE28146 were retrieved from Gene Expression Omnibus database to acquire differentially expressed genes (DEGs). Gene Ontology and pathway enrichment were conducted using DAVID online tool. The STRING database and Cytoscape tools were employed to analyze protein-protein interactions and identify hub genes. The predictive value of hub genes was assessed by principal component analysis and receiver operating characteristic curves. AD mice model was constructed, and histology was then observed by hematoxylin-eosin staining. Gene expression levels were finally determined by real-time quantitative PCR. RESULTS: We obtained 197 overlapping DEGs from GSE5281 and GSE28146 datasets. After constructing protein-protein interaction network, three highly interconnected clusters were identified and 6 hub genes (RBL1, BUB1, HDAC7, KAT5, SIRT2, and ITGB1) were selected. The hub genes could be used as basis to predict AD. Histological abnormalities of brain were observed, suggesting successful AD model was constructed. Compared with the control group, the mRNA expression levels of RBL1, BUB1, HDAC7, KAT5 and SIRT2 were significantly increased, while the mRNA expression level of ITGB1 was significantly decreased in AD groups. CONCLUSION: RBL1, BUB1, HDAC7, KAT5, SIRT2 and ITGB1 are promising gene signatures for diagnosis and therapy of AD.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Animals , Mice , Sirtuin 2/genetics , Gene Expression Profiling , Alzheimer Disease/diagnosis , Alzheimer Disease/genetics , Protein Interaction Maps/genetics , Computational Biology , RNA, Messenger , Gene Regulatory Networks
15.
Front Biosci (Landmark Ed) ; 29(1): 27, 2024 01 18.
Article in English | MEDLINE | ID: mdl-38287804

ABSTRACT

BACKGROUND: The pentose phosphate pathway (PPP) is a critical metabolic pathway that generates NADPH and ribose-5-phosphate for nucleotide biosynthesis and redox homeostasis. In this study, we investigated a potential regulatory role for Krüppel-like factor 8 (KLF8) in the control of PPP in lung adenocarcinoma (LUAD) cells. METHODS: Based on a comprehensive set of experimental approaches, including cell culture, molecular techniques, and functional assays, we revealed a novel mechanism by which KLF8 promotes the activation of glucose-6-phosphate dehydrogenase (G6PD), a component enzyme in the PPP. RESULTS: Our findings demonstrate that KLF8 inhibits the acetylation of G6PD, leading to its increased enzymatic activity. Additionally, we observed that KLF8 activates the transcription of SIRT2, which has been implicated in regulating G6PD acetylation. These results highlight the interplay between KLF8, G6PD, and protein acetylation in the regulation of PPP in LUAD. CONCLUSIONS: Understanding the intricate molecular mechanisms underlying the metabolic reprogramming driven by KLF8 in lung cancer provides valuable insights into potential therapeutic strategies targeting the PPP. This study emphasizes the significance of KLF8 as a key modulator of metabolic pathways and indicates the potential of targeting the KLF8-G6PD axis for lung cancer treatment.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Humans , Pentose Phosphate Pathway/physiology , Sirtuin 2/genetics , Sirtuin 2/metabolism , Adenocarcinoma of Lung/genetics , Lung Neoplasms/genetics , Lung/metabolism , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism
16.
Neuro Oncol ; 26(1): 55-67, 2024 01 05.
Article in English | MEDLINE | ID: mdl-37625115

ABSTRACT

BACKGROUND: Functional inactivation of ATRX characterizes large subgroups of malignant gliomas in adults and children. ATRX deficiency in glioma induces widespread chromatin remodeling, driving transcriptional shifts and oncogenic phenotypes. Effective strategies to therapeutically target these broad epigenomic sequelae remain undeveloped. METHODS: We utilized integrated multiomics and the Broad Institute Connectivity Map (CMAP) to identify drug candidates that could potentially revert ATRX-deficient transcriptional changes. We then employed disease-relevant experimental models to evaluate functional phenotypes, coupling these studies with epigenomic profiling to elucidate molecular mechanism(s). RESULTS: CMAP analysis and transcriptional/epigenomic profiling implicated the Class III HDAC Sirtuin2 (SIRT2) as a central mediator of ATRX-deficient cellular phenotypes and a driver of unfavorable prognosis in ATRX-deficient glioma. SIRT2 inhibitors reverted Atrx-deficient transcriptional signatures in murine neuroepithelial progenitor cells (mNPCs), impaired cell migration in Atrx/ATRX-deficient mNPCs and human glioma stem cells (GSCs), and increased expression of senescence markers in glioma models. Moreover, SIRT2 inhibition impaired growth and increased senescence in ATRX-deficient GSCs in vivo. These effects were accompanied by genome-wide shifts in enhancer-associated H3K27ac and H4K16ac marks, with the latter in particular demonstrating compelling transcriptional links to SIRT2-dependent phenotypic reversals. Motif analysis of these data identified the transcription factor KLF16 as a mediator of phenotype reversal in Atrx-deficient cells upon SIRT2 inhibition. CONCLUSIONS: Our findings indicate that SIRT2 inhibition selectively targets ATRX-deficient gliomas for senescence through global chromatin remodeling, while demonstrating more broadly a viable approach to combat complex epigenetic rewiring in cancer.


Subject(s)
Chromatin , Glioma , Adult , Child , Humans , Animals , Mice , Sirtuin 2/genetics , Sirtuin 2/metabolism , Glioma/pathology , X-linked Nuclear Protein/genetics , Kruppel-Like Transcription Factors/genetics
17.
Free Radic Biol Med ; 213: 208-221, 2024 03.
Article in English | MEDLINE | ID: mdl-38142952

ABSTRACT

Our study investigated the possible molecular mechanism of glucocorticoid in steroid-induced osteonecrosis of the femoral head (SINFH) through regulating serum alpha-2-macroglobulin and SIRT2-mediated BMP2 deacetylation. Essential genes involved in glucocorticoid-induced SINFH were screened by transcriptome sequencing and analyzed by bioinformatics, followed by identifying downstream regulatory targets. Rat bone marrow mesenchymal stem cells were isolated and treated with methylprednisolone (MP) for in vitro cell experiments. Besides, a glucocorticoid-induced rat ONFH was established using the treatment of MP and LPS. ChIP-PCR detected the enrichment of SIRT2 in the promoter region of BMP2, and the deacetylation modification of SIRT2 on BMP2 was determined. Bioinformatics analysis revealed that glucocorticoids may induce ONFH through the SIRT2/BMP2 axis. In vitro cell experiments showed that glucocorticoids up-regulated SIRT2 expression in BMSCs by inducing oxidative stress, thereby promoting cell apoptosis. The up-regulation of SIRT2 expression may be due to the decreased ability of α2 macroglobulin to inhibit oxidative stress, and the addition of NOX protein inhibitor DPI could significantly inhibit SIRT2 expression. SIRT2 could promote histone deacetylation of the BMP2 promoter and inhibit its expression. In vitro cell experiments further indicated that knocking down SIRT2 could protect BMSC from oxidative stress and cell apoptosis induced by glucocorticoids by promoting BMP2 expression. In addition, animal experiments conducted also demonstrated that the knockdown of SIRT2 could improve glucocorticoid-induced ONFH through up-regulating BMP2 expression. Glucocorticoids could induce oxidative stress by down-regulating serum α2M to promote SIRT2-mediated BMP2 deacetylation, leading to ONFH.


Subject(s)
Femur Head Necrosis , Pregnancy-Associated alpha 2-Macroglobulins , Female , Pregnancy , Rats , Animals , Glucocorticoids/pharmacology , Femur Head/metabolism , Sirtuin 2/genetics , Femur Head Necrosis/chemically induced , Femur Head Necrosis/genetics , Femur Head Necrosis/metabolism , Steroids , Transcription Factors , Osteogenesis
18.
Chem Biol Interact ; 390: 110854, 2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38161044

ABSTRACT

This study aimed to explore effects of microRNA (miR)-143 on the proliferation, apoptosis, and cytokine secretion in astrocytes after spinal cord injury (SCI). After gain- and loss-of-function assays and transforming growth factor (TGF)-ß stimulation in astrocytes, the cell viability, proliferation, and apoptosis were examined. The expression of miR-143, SIRT2, and PLAUR and levels of astrocyte-related glial fibrillary acidic protein (GFAP), Vimentin, chondroitin sulfate proteoglycan (CSPG), and connective tissue growth factor (CTGF) were also measured. The binding relationship between miR-143 and SIRT2 was assessed, as well as the correlation of PLAUR with SIRT2. In established SCI rat models, the locomotion function and astrocyte hyperplasia were detected. The TGF-ß stimulation decreased miR-143 but increased SIRT2 expression in astrocytes. Mechanistically, miR-143 negatively targeted SIRT2 and SIRT2 down-regulation inhibited the H3K27 deacetylation of PLAUR promoter to increase PLAUR expression. miR-143 up-regulation inhibited TGF-ß stimulated-proliferation, promoted cell apoptosis, and reduced GFAP, Vimentin, CSPG, and CTGF expression in astrocytes, which was counterweighed by SIRT2 overexpression. SIRT2 silencing reduced the proliferation and GFAP, Vimentin, CSPG, and CTGF expression while augmenting the apoptosis in TGF-ß stimulated astrocytes, which was abrogated by PLAUR silencing. The injection of miR-143 agomir improved the locomotion function and reduced the astrocyte hyperplasia in SCI rats, which was reversed by silencing PLAUR. miR-143 targeted SIRT2 to affect PLAUR expression via the regulation of histone acetylation, which repressed the astrocyte activation in vivo and in vitro to improve the locomotion function in SCI rats.


Subject(s)
MicroRNAs , Spinal Cord Injuries , Animals , Rats , Acetylation , Astrocytes , Histones/metabolism , Hyperplasia/metabolism , MicroRNAs/metabolism , Sirtuin 2/genetics , Sirtuin 2/metabolism , Spinal Cord/metabolism , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/pathology , Transforming Growth Factor beta/metabolism , Vimentin/genetics , Vimentin/metabolism
19.
Cell Mol Biol (Noisy-le-grand) ; 69(12): 268-274, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38063126

ABSTRACT

Remifentanil (Remi)-induced hyperalgesia is a serious but common postoperative clinical problem. Sirtuin 2 (SIRT2) is essential in the pathogenetic mechanisms of several neurological disorders. However, whether SIRT2 contributes to the modulation of Remi-induced postsurgical hyperalgesia (POH) is unknown. Here, we investigated the regulatory potential of SIRT2 in Remi-stimulated POH. A rat Remi-stimulated POH model was built by infusing Remi in the surgical incision. Mechanical allodynia and thermal hyperalgesia were separately assessed by paw withdrawal mechanical threshold (PWMT) and paw withdrawal thermal latency (PWTL) measurements. SIRT2 and binding adaptor molecule 1 (Iba1) protein expressions and localization in spinal cord samples were detected by western blot and immunofluorescence. The results revealed SIRT2 downregulation in the spinal cord of rats with Remi-stimulated POH. Intrathecal administration of the overexpression plasmid harboring SIRT2 remarkably relieved mechanical allodynia, along with thermal hyperalgesia in the model animals. Iba1 amounts were increased upon intraoperative incision or Remi infusion, and this effect was more pronounced upon combining both treatments. Furthermore, SIRT2 overexpression suppressed microglia activation in the spinal cord of model animals, and starkly relieved incision- and/or Remi-associated pronociceptive processes as well as spinal microglia activation. SIRT2 elevation relieved Remi-associated POH, likely by suppressing spinal microglia activation. Thus, SIRT2 could be a potent target for treating neuropathic pain.


Subject(s)
Hyperalgesia , Sirtuin 2 , Rats , Animals , Remifentanil/adverse effects , Hyperalgesia/drug therapy , Hyperalgesia/chemically induced , Sirtuin 2/genetics , Microglia/metabolism , Rats, Sprague-Dawley , Pain, Postoperative/drug therapy , Pain, Postoperative/chemically induced , Pain, Postoperative/metabolism , Spinal Cord/metabolism , Postoperative Complications
20.
mSystems ; 8(6): e0051023, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-37916830

ABSTRACT

IMPORTANCE: This study expands the growing understanding that protein acetylation is a highly regulated molecular toggle of protein function in both host anti-viral defense and viral replication. We describe a pro-viral role for the human enzyme SIRT2, showing that its deacetylase activity supports HCMV replication. By integrating quantitative proteomics, flow cytometry cell cycle assays, microscopy, and functional virology assays, we investigate the temporality of SIRT2 functions and substrates. We identify a pro-viral role for the SIRT2 deacetylase activity via regulation of CDK2 K6 acetylation and the G1-S cell cycle transition. These findings highlight a link between viral infection, protein acetylation, and cell cycle progression.


Subject(s)
Cytomegalovirus Infections , Cytomegalovirus , Humans , Cell Cycle/genetics , Cell Division , Cytomegalovirus/genetics , Cytomegalovirus Infections/genetics , Sirtuin 2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...