Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
1.
Elife ; 132024 May 16.
Article in English | MEDLINE | ID: mdl-38752835

ABSTRACT

Hibernation is a period of metabolic suppression utilized by many small and large mammal species to survive during winter periods. As the underlying cellular and molecular mechanisms remain incompletely understood, our study aimed to determine whether skeletal muscle myosin and its metabolic efficiency undergo alterations during hibernation to optimize energy utilization. We isolated muscle fibers from small hibernators, Ictidomys tridecemlineatus and Eliomys quercinus and larger hibernators, Ursus arctos and Ursus americanus. We then conducted loaded Mant-ATP chase experiments alongside X-ray diffraction to measure resting myosin dynamics and its ATP demand. In parallel, we performed multiple proteomics analyses. Our results showed a preservation of myosin structure in U. arctos and U. americanus during hibernation, whilst in I. tridecemlineatus and E. quercinus, changes in myosin metabolic states during torpor unexpectedly led to higher levels in energy expenditure of type II, fast-twitch muscle fibers at ambient lab temperatures (20 °C). Upon repeating loaded Mant-ATP chase experiments at 8 °C (near the body temperature of torpid animals), we found that myosin ATP consumption in type II muscle fibers was reduced by 77-107% during torpor compared to active periods. Additionally, we observed Myh2 hyper-phosphorylation during torpor in I. tridecemilineatus, which was predicted to stabilize the myosin molecule. This may act as a potential molecular mechanism mitigating myosin-associated increases in skeletal muscle energy expenditure during periods of torpor in response to cold exposure. Altogether, we demonstrate that resting myosin is altered in hibernating mammals, contributing to significant changes to the ATP consumption of skeletal muscle. Additionally, we observe that it is further altered in response to cold exposure and highlight myosin as a potentially contributor to skeletal muscle non-shivering thermogenesis.


Many animals use hibernation as a tactic to survive harsh winters. During this dormant, inactive state, animals reduce or limit body processes, such as heart rate and body temperature, to minimise their energy use. To conserve energy during hibernation, animals can use different approaches. For example, garden dormice undergo periodic states of extremely low core temperatures (down to 4­8oC); whereas Eurasian brown bears see milder temperature drops (down to 23­25oC). An important organ that changes during hibernation is skeletal muscle. Skeletal muscle typically uses large amounts of energy, making up around 50% of body mass. To survive, hibernating animals must change how their skeletal muscle uses energy. Traditionally, active myosin ­ a protein found in muscles that helps muscles to contract ­ was thought to be responsible for most of the energy use by skeletal muscle. But, more recently, resting myosin has also been found to use energy when muscles are relaxed. Lewis et al. studied myosin and skeletal muscle energy use changes during hibernation and whether they could impact the metabolism of hibernating animals. Lewis et al. assessed myosin changes in muscle samples from squirrels, dormice and bears during hibernation and during activity. Experiments showed changes in resting myosin in squirrels and dormice (whose temperature drops to 4­8oC during hibernation) but not in bears. Further analysis revealed that cooling samples from non-hibernating muscle to 4­8oC increased energy use in resting myosin, thereby generating heat. However, no increase in energy use was found after cooling hibernating muscle samples to 4­8oC. This suggest that resting myosin generates heat at cool temperatures ­ a mechanism that is switched off in hibernating animals to allow them to cool their body temperature. These findings reveal key insights into how animals conserve energy during hibernation. In addition, the results show that myosin regulates energy use in skeletal muscles, which indicates myosin may be a potential drug target in metabolic diseases, such as obesity.


Subject(s)
Hibernation , Animals , Hibernation/physiology , Energy Metabolism , Skeletal Muscle Myosins/metabolism , Ursidae/metabolism , Ursidae/physiology , Adenosine Triphosphate/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiology , Muscle Fibers, Skeletal/metabolism , Proteomics
2.
Aging Cell ; 23(6): e14134, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38506610

ABSTRACT

The molecular motor myosin is post-translationally modified in its globular head, its S2 hinge, and its thick filament domain during human skeletal muscle aging. To determine the importance of such modifications, we performed an integrative analysis of transgenic Drosophila melanogaster expressing myosin containing post-translational modification mimic mutations. We determined effects on muscle function, myofibril structure, and myosin biochemistry. Modifications in the homozygous state decreased jump muscle function by a third at 3 weeks of age and reduced indirect flight muscle function to negligible levels in young flies, with severe effects on flight muscle myofibril assembly and/or maintenance. Expression of mimic mutations in the heterozygous state or in a wild-type background yielded significant, but less severe, age-dependent effects upon flight muscle structure and function. Modification of the residue in the globular head disabled ATPase activity and in vitro actin filament motility, whereas the S2 hinge mutation reduced actin-activated ATPase activity by 30%. The rod modification diminished filament formation in vitro. The latter mutation also reduced proteostasis, as demonstrated by enhanced accumulation of polyubiquitinated proteins. Overall, we find that mutation of amino acids at sites that are chemically modified during human skeletal muscle aging can disrupt myosin ATPase, myosin filament formation, and/or proteostasis, providing a mechanistic basis for the observed muscle defects. We conclude that age-specific post-translational modifications present in human skeletal muscle are likely to act in a dominant fashion to affect muscle structure and function and may therefore be implicated in degeneration and dysfunction associated with sarcopenia.


Subject(s)
Aging , Drosophila melanogaster , Muscle, Skeletal , Myofibrils , Protein Processing, Post-Translational , Proteostasis , Animals , Myofibrils/metabolism , Proteostasis/physiology , Drosophila melanogaster/metabolism , Humans , Aging/metabolism , Muscle, Skeletal/metabolism , Skeletal Muscle Myosins/metabolism , Skeletal Muscle Myosins/genetics , Animals, Genetically Modified
3.
J Gen Physiol ; 155(7)2023 07 03.
Article in English | MEDLINE | ID: mdl-37227464

ABSTRACT

It has recently been established that myosin, the molecular motor protein, is able to exist in two conformations in relaxed skeletal muscle. These conformations are known as the super-relaxed (SRX) and disordered-relaxed (DRX) states and are finely balanced to optimize ATP consumption and skeletal muscle metabolism. Indeed, SRX myosins are thought to have a 5- to 10-fold reduction in ATP turnover compared with DRX myosins. Here, we investigated whether chronic physical activity in humans would be associated with changes in the proportions of SRX and DRX skeletal myosins. For that, we isolated muscle fibers from young men of various physical activity levels (sedentary, moderately physically active, endurance-trained, and strength-trained athletes) and ran a loaded Mant-ATP chase protocol. We observed that in moderately physically active individuals, the amount of myosin molecules in the SRX state in type II muscle fibers was significantly greater than in age-matched sedentary individuals. In parallel, we did not find any difference in the proportions of SRX and DRX myosins in myofibers between highly endurance- and strength-trained athletes. We did however observe changes in their ATP turnover time. Altogether, these results indicate that physical activity level and training type can influence the resting skeletal muscle myosin dynamics. Our findings also emphasize that environmental stimuli such as exercise have the potential to rewire the molecular metabolism of human skeletal muscle through myosin.


Subject(s)
Myosins , Skeletal Muscle Myosins , Male , Humans , Skeletal Muscle Myosins/metabolism , Myosins/metabolism , Muscle, Skeletal/metabolism , Muscle Fibers, Skeletal/metabolism , Adenosine Triphosphate/metabolism
4.
FASEB J ; 37(1): e22692, 2023 01.
Article in English | MEDLINE | ID: mdl-36515178

ABSTRACT

The skeletal muscle myosin heavy chain (MyHC) is a fundamental component of the sarcomere structure and muscle contraction. Two of the three adult fast MyHCs, MyHC-IIx and MyHC-IIb, are encoded by Myh1 and Myh4, respectively. However, skeletal muscle disorders have not yet been linked to these genes in humans. MyHC-IIb is barely detectable in human skeletal muscles. Thus, to characterize the molecular function of skeletal muscle MyHCs in humans, investigation of the effect of simultaneous loss of MyHC-IIb and other MyHCs on skeletal muscle in mice is essential. Here, we generated double knockout (dKO) mice with simultaneous loss of adult fast MyHCs by introducing nonsense frameshift mutations into the Myh1 and Myh4 genes. The dKO mice appeared normal after birth and until 2 weeks of age but showed severe skeletal muscle hypoplasia after 2 weeks. In 3-week-old dKO mice, increased expression of other skeletal muscle MyHCs, such as MyHC-I, MyHC-IIa, MyHC-neo, and MyHC-emb, was observed. However, these expressions were not sufficient to compensate for the loss of MyHC-IIb and MyHC-IIx. Moreover, the aberrant sarcomere structure with altered expression of sarcomere components was observed in dKO mice. Our findings imply that the simultaneous loss of MyHC-IIb and MyHC-IIx is substantially detrimental to postnatal skeletal muscle function and will contribute to elucidating the molecular mechanisms of skeletal muscle wasting disorders caused by the loss of skeletal muscle MyHCs.


Subject(s)
Myosin Heavy Chains , Skeletal Muscle Myosins , Animals , Mice , Muscle, Skeletal/metabolism , Myosin Heavy Chains/genetics , Myosin Heavy Chains/metabolism , Protein Isoforms/metabolism , Sarcomeres/metabolism , Skeletal Muscle Myosins/analysis , Skeletal Muscle Myosins/metabolism
5.
Life Sci Alliance ; 6(1)2023 01.
Article in English | MEDLINE | ID: mdl-36288901

ABSTRACT

We report a case in which sub-stoichiometric binding of an actin-binding protein has profound structural and functional consequences, providing an insight into the fundamental properties of actin regulation. Rng2 is an IQGAP contained in contractile rings in the fission yeast Schizosaccharomyces pombe Here, we used high-speed atomic force microscopy and electron microscopy and found that sub-stoichiometric binding of the calponin-homology actin-binding domain of Rng2 (Rng2CHD) induces global structural changes in skeletal muscle actin filaments, including shortening of the filament helical pitch. Sub-stoichiometric binding of Rng2CHD also reduced the affinity between actin filaments and muscle myosin II carrying ADP and strongly inhibited the motility of actin filaments on myosin II in vitro. On skeletal muscle myosin II-coated surfaces, Rng2CHD stopped the actin movements at a binding ratio of 11%. Rng2CHD also inhibited actin movements on myosin II of the amoeba Dictyostelium, but in this case, by detaching actin filaments from myosin II-coated surfaces. Thus, sparsely bound Rng2CHD induces apparently cooperative structural changes in actin filaments and inhibits force generation by actomyosin II.


Subject(s)
Dictyostelium , Schizosaccharomyces , Actins/metabolism , Actomyosin/metabolism , Dictyostelium/metabolism , Skeletal Muscle Myosins/metabolism , Myosin Type II/metabolism , Actin Cytoskeleton/metabolism , Schizosaccharomyces/metabolism , Microfilament Proteins/metabolism , Cytoskeletal Proteins/metabolism , Adenosine Diphosphate/metabolism
6.
J Biol Chem ; 298(2): 101567, 2022 02.
Article in English | MEDLINE | ID: mdl-35007530

ABSTRACT

Skeletal muscle myosin (SkM) has been shown to possess procoagulant activity; however, the mechanisms of this coagulation-enhancing activity involving plasma coagulation pathways and factors are incompletely understood. Here, we discovered direct interactions between immobilized SkM and coagulation factor XI (FXI) using biolayer interferometry (Kd = 0.2 nM). In contrast, we show that prekallikrein, a FXI homolog, did not bind to SkM, reflecting the specificity of SkM for FXI binding. We also found that the anti-FXI monoclonal antibody, mAb 1A6, which recognizes the Apple (A) 3 domain of FXI, potently inhibited binding of FXI to immobilized SkM, implying that SkM binds FXI A3 domain. In addition, we show that SkM enhanced FXI activation by thrombin in a concentration-dependent manner. We further used recombinant FXI chimeric proteins in which each of the four A domains of the heavy chain (designated A1 through A4) was individually replaced with the corresponding A domain from prekallikrein to investigate SkM-mediated enhancement of thrombin-induced FXI activation. These results indicated that activation of two FXI chimeras with substitutions of either the A3 domains or A4 domains was not enhanced by SkM, whereas substitution of the A2 domain did not reduce the thrombin-induced activation compared with wildtype FXI. These data strongly suggest that functional interaction sites on FXI for SkM involve the A3 and A4 domains. Thus, this study is the first to reveal and support the novel intrinsic blood coagulation pathway concept that the procoagulant mechanisms of SkM include FXI binding and enhancement of FXI activation by thrombin.


Subject(s)
Blood Coagulation , Factor XI , Skeletal Muscle Myosins , Thrombin , Antibodies, Monoclonal/chemistry , Binding Sites , Factor XI/chemistry , Factor XI/genetics , Factor XI/metabolism , Prekallikrein/chemistry , Prekallikrein/metabolism , Protein Domains , Recombinant Fusion Proteins/chemistry , Skeletal Muscle Myosins/metabolism , Thrombin/metabolism
7.
Cell ; 183(2): 335-346.e13, 2020 10 15.
Article in English | MEDLINE | ID: mdl-33035452

ABSTRACT

Muscle spasticity after nervous system injuries and painful low back spasm affect more than 10% of global population. Current medications are of limited efficacy and cause neurological and cardiovascular side effects because they target upstream regulators of muscle contraction. Direct myosin inhibition could provide optimal muscle relaxation; however, targeting skeletal myosin is particularly challenging because of its similarity to the cardiac isoform. We identified a key residue difference between these myosin isoforms, located in the communication center of the functional regions, which allowed us to design a selective inhibitor, MPH-220. Mutagenic analysis and the atomic structure of MPH-220-bound skeletal muscle myosin confirmed the mechanism of specificity. Targeting skeletal muscle myosin by MPH-220 enabled muscle relaxation, in human and model systems, without cardiovascular side effects and improved spastic gait disorders after brain injury in a disease model. MPH-220 provides a potential nervous-system-independent option to treat spasticity and muscle stiffness.


Subject(s)
Muscle, Skeletal/metabolism , Skeletal Muscle Myosins/drug effects , Skeletal Muscle Myosins/genetics , Adult , Animals , Cardiac Myosins/genetics , Cardiac Myosins/metabolism , Cell Line , Drug Delivery Systems , Female , Humans , Male , Mice , Muscle Contraction/physiology , Muscle Fibers, Skeletal/physiology , Muscle Spasticity/genetics , Muscle Spasticity/physiopathology , Muscle, Skeletal/physiology , Myosins/drug effects , Myosins/genetics , Myosins/metabolism , Protein Isoforms , Rats , Rats, Wistar , Skeletal Muscle Myosins/metabolism
8.
Open Biol ; 8(11)2018 11 21.
Article in English | MEDLINE | ID: mdl-30463911

ABSTRACT

Cardiac ventricular myosin (ßmys) translates actin by transducing ATP free energy into mechanical work during muscle contraction. Unitary ßmys translation of actin is the step-size. In vitro and in vivo ßmys regulates contractile force and velocity autonomously by remixing three different step-sizes with adaptive stepping frequencies. Cardiac and skeletal actin isoforms have a specific 1 : 4 stoichiometry in normal adult human ventriculum. Human adults with inheritable hypertrophic cardiomyopathy (HCM) upregulate skeletal actin in ventriculum probably compensating the diseased muscle's inability to meet demand by adjusting ßmys force-velocity characteristics. ßmys force-velocity characteristics were compared for skeletal versus cardiac actin substrates using ensemble in vitro motility and single myosin assays. Two competing myosin strain-sensitive mechanisms regulate step-size choices dividing single ßmys mechanics into low- and high-force regimes. The actin isoforms alter myosin strain-sensitive regulation such that onset of the high-force regime, where a short step-size is a large or major contributor, is offset to higher loads probably by the unique cardiac essential light chain (ELC) N-terminus/cardiac actin contact at Glu6/Ser358. It modifies ßmys force-velocity by stabilizing the ELC N-terminus/cardiac actin association. Uneven onset of the high-force regime for skeletal versus cardiac actin modulates force-velocity characteristics as skeletal/cardiac actin fractional content increases in diseased muscle.


Subject(s)
Actins/chemistry , Cardiac Myosins/chemistry , Skeletal Muscle Myosins/chemistry , Actins/metabolism , Animals , Cardiac Myosins/metabolism , Protein Isoforms/chemistry , Protein Isoforms/metabolism , Rabbits , Skeletal Muscle Myosins/metabolism
9.
Acta Physiol (Oxf) ; 223(3): e13056, 2018 07.
Article in English | MEDLINE | ID: mdl-29438584

ABSTRACT

AIMS: We assessed focal adhesion kinase (FAK) response to concentric (CON) vs eccentric (ECC) resistance training (RT) at two vastus lateralis (VL) sites, and the relationships between FAK, muscle protein synthesis (MPS) and morphological remodelling. METHODS: Six young males trained both legs unilaterally 3 times/week for 8 weeks; one leg performed CON RT, the contralateral performed ECC RT. Muscle biopsies were collected after training from VL mid-belly (MID) and distal (distal) sites at 0, 4, 8 weeks. Focal adhesion kinase content and activation were evaluated by immunoblotting. MPS was assessed by deuterium oxide tracer; morphological adaptations were evaluated by ultrasound and DXA. RESULTS: pY397-FAK 8 weeks levels were ~4-fold greater after ECC at the distal site compared to CON (P < .05); pY397FAK to total FAK ratio was greater in ECC vs CON at 4 (~2.2-fold, P < .05) and 8 weeks (~9-fold, P < .001) at the distal site. Meta-vinculin was found transiently increased at 4 weeks at the distal site only after ECC RT. ECC presented greater fascicle length (Lf) increases (10.5% vs 4%), whereas CON showed greater in pennation angle (PA) changes (12.3% vs 2.1%). MPS did not differ between exercise types or muscle sites at all time points. distal pY397-FAK and pY397-FAK/FAK values correlated to changes in Lf at 8 weeks (r = .76, P < .01 and r = .66, P < .05 respectively). CONCLUSION: Focal adhesion kinase phosphorylation was greater at 8 weeks after ECC RT and was muscle region-specific. FAK activity correlated to contraction-dependent architectural remodelling, suggesting a potential role of FAK in orienting muscle structural changes in response to distinct mechanical stimuli.


Subject(s)
Focal Adhesion Protein-Tyrosine Kinases/metabolism , Muscle Proteins/biosynthesis , Quadriceps Muscle/enzymology , Resistance Training , Adolescent , Adult , Humans , Male , Skeletal Muscle Myosins/metabolism , Vinculin/metabolism , Young Adult
10.
Proc Natl Acad Sci U S A ; 113(46): 13009-13014, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27799519

ABSTRACT

We identify a target for treating obesity and type 2 diabetes, the consumption of calories by an increase in the metabolic rate of resting skeletal muscle. The metabolic rate of skeletal muscle can be increased by shifting myosin heads from the super-relaxed state (SRX), with a low ATPase activity, to a disordered relaxed state (DRX), with a higher ATPase activity. The shift of myosin heads was detected by a change in fluorescent intensity of a probe attached to the myosin regulatory light chain in skinned skeletal fibers, allowing us to perform a high-throughput screen of 2,128 compounds. The screen identified one compound, which destabilized the super-relaxed state, piperine (the main alkaloid component of black pepper). Destabilization of the SRX by piperine was confirmed by single-nucleotide turnover measurements. The effect was only observed in fast twitch skeletal fibers and not in slow twitch fibers or cardiac tissues. Piperine increased ATPase activity of skinned relaxed fibers by 66 ± 15%. The Kd was ∼2 µM. Piperine had little effect on the mechanics of either fully active or resting muscle fibers. Previous work has shown that piperine can mitigate both obesity and type 2 diabetes in rodent models of these conditions. We propose that the increase in resting muscle metabolism contributes to these positive effects. The results described here show that up-regulation of resting muscle metabolism could treat obesity and type 2 diabetes and that piperine would provide a useful lead compound for the development of these therapies.


Subject(s)
Alkaloids/pharmacology , Basal Metabolism/drug effects , Benzodioxoles/pharmacology , Diabetes Mellitus, Type 2/metabolism , Muscle Fibers, Fast-Twitch/drug effects , Obesity/metabolism , Piperidines/pharmacology , Polyunsaturated Alkamides/pharmacology , Adenosine Triphosphatases/metabolism , Alkaloids/therapeutic use , Animals , Benzodioxoles/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , High-Throughput Screening Assays , Muscle Fibers, Fast-Twitch/metabolism , Obesity/drug therapy , Piperidines/therapeutic use , Polyunsaturated Alkamides/therapeutic use , Rabbits , Skeletal Muscle Myosins/metabolism , Up-Regulation
11.
PLoS One ; 11(10): e0164566, 2016.
Article in English | MEDLINE | ID: mdl-27736981

ABSTRACT

As transforming growth factor (TGF)-ß inducible early gene-1 is highly expressed in skeletal muscle, the effect of TIEG1 gene deletion on the passive mechanical properties of slow and fast twitch muscle fibers was analyzed. Twenty five muscle fibers were harvested from soleus (Sol) and extensor digitorum longus (EDL) muscles from TIEG1-/- (N = 5) and control (N = 5) mice. Mechanical tests were performed on fibers and the dynamic and static stresses were measured. A viscoelastic Hill model of 3rd order was used to fit the experimental relaxation test data. In parallel, immunohistochemical analyses were performed on three serial transverse sections to detect the myosin isoforms within the slow and fast muscles. The percentage and the mean cross sectional area of each fiber type were calculated. These tests revealed a significant increase in the mechanical stress properties for the TIEG1-/- Sol fibers while a significant decrease appeared for the TIEG1-/- EDL fibers. Hill model tracked the shape of the experimental relaxation curve for both genotypes and both fiber types. Immunohistochemical results showed hypertrophy of all fiber types for TIEG1-/- muscles with an increase in the percentage of glycolytic fibers (IIX, and IIB) and a decrease of oxidative fibers (I, and IIA). This study has provided new insights into the role of TIEG1, known as KLF10, in the functional (SoltypeI: more resistant, EDLtypeIIB: less resistant) and morphological (glycolytic hypertrophy) properties of fast and slow twitch skeletal muscles. Further investigation at the cellular level will better reveal the role of the TIEG1 gene in skeletal muscle tissue.


Subject(s)
DNA-Binding Proteins/genetics , Gene Deletion , Muscle Fibers, Fast-Twitch/pathology , Muscle Fibers, Slow-Twitch/pathology , Muscle, Skeletal/physiopathology , Skeletal Muscle Myosins/metabolism , Transcription Factors/genetics , Animals , Biomechanical Phenomena , Female , Hypertrophy , Mice , Models, Biological , Muscle, Skeletal/pathology , Stress, Mechanical
12.
J Gen Physiol ; 147(4): 309-22, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27022191

ABSTRACT

Myosin-binding protein C (MyBPC) in the muscle sarcomere interacts with several contractile and structural proteins. Mutations in the cardiac isoform (MyBPC-3) in humans, or animal knockout, are associated with cardiomyopathy. Function of the fast skeletal isoform (MyBPC-2) in living muscles is less understood. This question was addressed using zebrafish models, combining gene expression data with functional analysis of contractility and small-angle x-ray diffraction measurements of filament structure. Fast skeletal MyBPC-2B, the major isoform, was knocked down by >50% using morpholino antisense nucleotides. These morphants exhibited a skeletal myopathy with elevated apoptosis and up-regulation of factors associated with muscle protein degradation. Morphant muscles had shorter sarcomeres with a broader length distribution, shorter actin filaments, and a wider interfilament spacing compared with controls, suggesting that fast skeletal MyBPC has a role in sarcomere assembly. Active force was reduced more than expected from the decrease in muscle size, suggesting that MyBPC-2 is required for optimal force generation at the cross-bridge level. The maximal shortening velocity was significantly increased in the MyBPC-2 morphants, but when related to the sarcomere length, the difference was smaller, reflecting that the decrease in MyBPC-2B content and the resulting myopathy were accompanied by only a minor influence on filament shortening kinetics. In the controls, equatorial patterns from small-angle x-ray scattering revealed that comparatively few cross-bridges are attached (as evaluated by the intensity ratio of the 11 and 10 equatorial reflections) during active contraction. X-ray scattering data from relaxed and contracting morphants were not significantly different from those in controls. However, the increase in the 11:10 intensity ratio in rigor was lower compared with that in controls, possibly reflecting effects of MyBPC on the cross-bridge interactions. In conclusion, lack of MyBPC-2 results in a severe skeletal myopathy with structural changes and muscle weakness.


Subject(s)
Muscular Diseases/genetics , Sarcomeres/metabolism , Skeletal Muscle Myosins/metabolism , Actins/metabolism , Animals , Apoptosis , Gene Deletion , Muscular Diseases/metabolism , Sarcomeres/pathology , Skeletal Muscle Myosins/genetics , Zebrafish
13.
Biophys J ; 110(3): 661-668, 2016 Feb 02.
Article in English | MEDLINE | ID: mdl-26840730

ABSTRACT

The mechanisms that limit the speed at which striated muscles relax are poorly understood. This work presents, to our knowledge, novel simulations that show that the time course of relaxation is accelerated by interfilamentary movement resulting from series compliance; force drops faster when myosin heads move relative to actin during relaxation. This insight was obtained by using cross-bridge distribution techniques to simulate the mechanical behavior of half-sarcomeres that were connected in series with springs of varying stiffness. (The springs mimic the combined effects of half-sarcomere heterogeneity and muscle's series elastic component.) Half-sarcomeres that shortened by >∼10 nm when they were activated subsequently relaxed with a biphasic profile; force initially declined slowly and approximately linearly before collapsing with a fast exponential time course. Stretches imposed during the linear phase quickened relaxation, while shortening movements prolonged the time course. These predictions are consistent with data from experiments performed by many other groups using single muscle fibers and isolated myofibrils. When half-sarcomeres were linked to stiff springs (so that they did not shorten appreciably during the simulations), force relaxed with a slow exponential time course and did not show biphasic behavior. Together, these results suggest that fast relaxation of striated muscle is an emergent property that reflects multiscale interactions within the muscle architecture. The nonlinear behavior during relaxation reflects perturbations to the dynamic coupling of regulated binding sites and cycling myosin heads that are induced by interfilamentary movement.


Subject(s)
Actins/metabolism , Muscle Relaxation , Skeletal Muscle Myosins/metabolism , Acceleration , Actins/chemistry , Animals , Elasticity , Humans , Models, Theoretical , Sarcomeres/metabolism , Skeletal Muscle Myosins/chemistry
14.
J Biol Chem ; 291(4): 1763-1773, 2016 Jan 22.
Article in English | MEDLINE | ID: mdl-26586917

ABSTRACT

The interface between relay and converter domain of muscle myosin is critical for optimal myosin performance. Using Drosophila melanogaster indirect flight muscle S1, we performed a kinetic analysis of the effect of mutations in the converter and relay domain. Introduction of a mutation (R759E) in the converter domain inhibits the steady-state ATPase of myosin S1, whereas an additional mutation in the relay domain (N509K) is able to restore the ATPase toward wild-type values. The R759E S1 construct showed little effect on most steps of the actomyosin ATPase cycle. The exception was a 25-30% reduction in the rate constant of the hydrolysis step, the step coupled to the cross-bridge recovery stroke that involves a change in conformation at the relay/converter domain interface. Significantly, the double mutant restored the hydrolysis step to values similar to the wild-type myosin. Modeling the relay/converter interface suggests a possible interaction between converter residue 759 and relay residue 509 in the actin-detached conformation, which is lost in R759E but is restored in N509K/R759E. This detailed kinetic analysis of Drosophila myosin carrying the R759E mutation shows that the interface between the relay loop and converter domain is important for fine-tuning myosin kinetics, in particular ATP binding and hydrolysis.


Subject(s)
Adenosine Triphosphate/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Skeletal Muscle Myosins/metabolism , Actins/metabolism , Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Adenosine Triphosphate/chemistry , Animals , Drosophila Proteins/chemistry , Drosophila Proteins/genetics , Drosophila melanogaster/chemistry , Drosophila melanogaster/genetics , Hydrolysis , Kinetics , Mutation, Missense , Protein Structure, Tertiary , Skeletal Muscle Myosins/chemistry , Skeletal Muscle Myosins/genetics
15.
Appl Physiol Nutr Metab ; 40(12): 1294-301, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26579948

ABSTRACT

This study evaluated the effects of dietary ß-hydroxy-ß-methylbutyrate (HMB) combined with ß-alanine (ß-Ala) in sedentary, aged male rats. It has been suggested that dietary HMB or ß-Ala supplementation may mitigate age-related declines in muscle strength and fatigue resistance. A total of 20 aged Sprague-Dawley rats were studied. At age 20 months, 10 rats were administered a control, purified diet and 10 rats were administered a purified diet supplemented with both HMB and ß-Ala (HMB+ß-Ala) for 8 weeks (approximately equivalent to 3 and 2.4 g per day human dose). We measured medial gastrocnemius (MG) size, force, fatigability, and myosin composition. We also evaluated an array of protein markers related to muscle mitochondria, protein synthesis and breakdown, and autophagy. HMB+ß-Ala had no significant effects on body weight, MG mass, force or fatigability, myosin composition, or muscle quality. Compared with control rats, those fed HMB+ß-Ala exhibited a reduced (41%, P = 0.039) expression of muscle RING-finger protein 1 (MURF1), a common marker of protein degradation. Muscle from rats fed HMB+ß-Ala also exhibited a 45% reduction (P = 0.023) in p70s6K phosphorylation following fatiguing stimulation. These data suggest that HMB+ß-Ala at the dose studied may reduce muscle protein breakdown by reducing MURF1 expression, but has minimal effects on muscle function in this model of uncomplicated aging. They do not, however, rule out potential benefits of HMB+ß-Ala co-supplementation at other doses or durations of supplementation in combination with exercise or in situations where extreme muscle protein breakdown and loss of mass occur (e.g., bedrest, cachexia, failure-to-thrive).


Subject(s)
Aging , Dietary Supplements , Muscle Contraction/drug effects , Muscle Strength/drug effects , Muscle, Skeletal/drug effects , Sarcopenia/prevention & control , Sedentary Behavior , Valerates/pharmacology , beta-Alanine/pharmacology , Age Factors , Animals , Autophagy , Biomarkers/metabolism , Disease Models, Animal , Male , Muscle Fatigue , Muscle Proteins/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscle, Skeletal/physiopathology , Phosphorylation , Proteolysis , Rats, Sprague-Dawley , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Sarcopenia/etiology , Sarcopenia/metabolism , Sarcopenia/pathology , Sarcopenia/physiopathology , Skeletal Muscle Myosins/metabolism , Time Factors , Tripartite Motif Proteins , Ubiquitin-Protein Ligases/metabolism
16.
PLoS One ; 10(7): e0134303, 2015.
Article in English | MEDLINE | ID: mdl-26222548

ABSTRACT

A recent study demonstrated a positive effect of apple polyphenol (APP) intake on muscle endurance of young-adult animals. While an enhancement of lipid metabolism may be responsible, in part, for the improvement, the contributing mechanisms still need clarification. Here we show that an 8-week intake of 5% (w/w) APP in the diet, up-regulates two features related to fiber type: the ratio of myosin heavy chain (MyHC) type IIx/IIb and myoglobin protein expression in plantaris muscle of 9-week-old male Fischer F344 rats compared to pair-fed controls (P < 0.05). Results were demonstrated by our SDS-PAGE system specialized for MyHC isoform separation and western blotting of whole muscles. Animal-growth profiles (food intake, body-weight gain, and internal-organ weights) did not differ between the control and 5% APP-fed animals (n = 9/group). Findings may account for the increase in fatigue resistance of lower hind limb muscles, as evidenced by a slower decline in the maximum isometric planter-flexion torque generated by a 100-s train of electrical stimulation of the tibial nerve. Additionally, the fatigue resistance was lower after 8 weeks of a 0.5% APP diet than after 5% APP, supporting an APP-dose dependency of the shift in fiber-type composition. Therefore, the present study highlights a promising contribution of dietary APP intake to increasing endurance based on fiber-type composition in rat muscle. Results may help in developing a novel strategy for application in animal sciences, and human sports and age-related health sciences.


Subject(s)
Malus , Muscle Fibers, Skeletal/physiology , Physical Endurance/physiology , Phytochemicals/administration & dosage , Polyphenols/administration & dosage , Animals , Electric Stimulation , Humans , Isometric Contraction/physiology , Male , Muscle, Skeletal/physiology , Myoglobin/metabolism , Myosin Heavy Chains/metabolism , Protein Isoforms/physiology , Rats , Rats, Inbred F344 , Skeletal Muscle Myosins/metabolism
17.
Eur Biophys J ; 44(4): 207-18, 2015 May.
Article in English | MEDLINE | ID: mdl-25775934

ABSTRACT

The unconventional myosin 16 (Myo16), which may have a role in regulation of cell cycle and cell proliferation, can be found in both the nucleus and the cytoplasm. It has a unique, eight ankyrin repeat containing pre-motor domain, the so-called ankyrin domain (My16Ank). Ankyrin repeats are present in several other proteins, e.g., in the regulatory subunit (MYPT1) of the myosin phosphatase holoenzyme, which binds to the protein phosphatase-1 catalytic subunit (PP1c). My16Ank shows sequence similarity to MYPT1. In this work, the interactions of recombinant and isolated My16Ank were examined in vitro. To test the effects of My16Ank on myosin motor function, we used skeletal muscle myosin or nonmuscle myosin 2B. The results showed that My16Ank bound to skeletal muscle myosin (K D ≈ 2.4 µM) and the actin-activated ATPase activity of heavy meromyosin (HMM) was increased in the presence of My16Ank, suggesting that the ankyrin domain can modulate myosin motor activity. My16Ank showed no direct interaction with either globular or filamentous actin. We found, using a surface plasmon resonance-based binding technique, that My16Ank bound to PP1cα (K D ≈ 540 nM) and also to PP1cδ (K D ≈ 600 nM) and decreased its phosphatase activity towards the phosphorylated myosin regulatory light chain. Our results suggest that one function of the ankyrin domain is probably to regulate the function of Myo16. It may influence the motor activity, and in complex with the PP1c isoforms, it can play an important role in the targeted dephosphorylation of certain, as yet unidentified, intracellular proteins.


Subject(s)
Ankyrin Repeat , Protein Phosphatase 1/metabolism , Skeletal Muscle Myosins/chemistry , Actins/metabolism , Animals , Protein Binding , Rats , Skeletal Muscle Myosins/metabolism
18.
Am J Physiol Cell Physiol ; 308(6): C473-84, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-25567808

ABSTRACT

Skeletal muscle contractile performance is governed by the properties of its constituent fibers, which are, in turn, determined by the molecular interactions of the myofilament proteins. To define the molecular determinants of contractile function in humans, we measured myofilament mechanics during maximal Ca(2+)-activated and passive isometric conditions in single muscle fibers with homogenous (I and IIA) and mixed (I/IIA and IIA/X) myosin heavy chain (MHC) isoforms from healthy, young adult male (n = 5) and female (n = 7) volunteers. Fibers containing only MHC II isoforms (IIA and IIA/X) produced higher maximal Ca(2+)-activated forces over the range of cross-sectional areas (CSAs) examined than MHC I fibers, resulting in higher (24-42%) specific forces. The number and/or stiffness of the strongly bound myosin-actin cross bridges increased in the higher force-producing MHC II isoforms and, in all isoforms, better predicted force than CSA. In men and women, cross-bridge kinetics, in terms of myosin attachment time and rate of myosin force production, were independent of CSA, although women had faster (7-15%) kinetics. The relative proportion of cross bridges and/or their stiffness was reduced as fiber size increased, causing a decline in specific force. Results from our examination of molecular mechanisms across the range of physiological CSAs explain the variation in specific force among the different fiber types in human skeletal muscle, which may have relevance to understanding how various physiological and pathophysiological conditions modulate single-fiber and whole muscle contractility.


Subject(s)
Muscle Contraction , Muscle Fibers, Skeletal/metabolism , Muscle Strength , Myosins/metabolism , Quadriceps Muscle/metabolism , Actins/metabolism , Adult , Female , Humans , Kinetics , Male , Myofibrils/metabolism , Myosin Type I/metabolism , Protein Isoforms , Quadriceps Muscle/cytology , Sex Factors , Signal Transduction , Skeletal Muscle Myosins/metabolism , Young Adult
19.
Anim Sci J ; 86(4): 459-67, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25410124

ABSTRACT

In skeletal muscle cells, myofibrillar proteins are highly organized into sarcomeres in which thick filaments interdigitate with thin filaments to generate contractile force. The size of thick filaments, which consist mainly of myosin molecules, is strictly controlled. However, little is known about the mechanisms by which myosin molecules assemble into thick filaments. Here, we assessed the ability of each domain of myosin heavy chain (Myh) to form thick filaments. We showed that exogenously expressed subfragment 2 (S2) + light meromyosin (LMM) of Myh was efficiently incorporated into thick filaments in muscle cells, although neither solely expressed S2 nor LMM targeted to thick filaments properly. In nonmuscle COS7 cells, S2+LMM formed more enlarged filaments/speckles than LMM. These results suggest that Myh filament formation is induced by S2 accompanying LMM. We further examined the effects of Myh C-terminus on thick filament assembly. C-terminal deletion mutants were incorporated not into entire thick filaments but rather into restricted regions of thick filaments. Our findings suggest that the elongation of myosin filaments to form thick filaments is regulated by S2 as well as C-terminus of LMM.


Subject(s)
Cytoskeleton/metabolism , Cytoskeleton/physiology , Muscle, Skeletal/cytology , Myosin Subfragments/metabolism , Skeletal Muscle Myosins/metabolism , Animals , Cells, Cultured , Mice , Mutant Proteins/metabolism , Myosin Subfragments/genetics , Myosin Subfragments/physiology , Sarcomeres
20.
Meat Sci ; 102: 15-21, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25524822

ABSTRACT

This study investigated the effects of resveratrol (0, 300, 600 mg/kg) on meat quality, muscle fiber characteristics and antioxidative capacity of finishing pigs. The results showed that resveratrol not only increased m. longissimus dorsi (LM) pH(24 h), a*, crude protein and myoglobin content but also decreased L*(24 h), shear force, drip loss, glycolytic potential, as well as backfat depth, LM lactate dehydrogenase activity and mRNA level. Meanwhile, LM total antioxidative capacity, glutathione peroxidase activity and its mRNA level were increased by resveratrol, while malonaldehyde content was decreased. In addition, resveratrol increased myosin heavy chain (MyHC)IIa mRNA level and decreased MyHCIIb mRNA level, along with decreased myofiber cross-sectional area. In conclusion, these results suggest that resveratrol is an effective feed additive to improve pork quality, and the underlying mechanism may be partly due to the changed muscle fiber characteristics and antioxidative capacity induced by resveratrol.


Subject(s)
Antioxidants/administration & dosage , Diet/veterinary , Food Quality , Lipid Peroxidation , Meat , Muscle Fibers, Skeletal/metabolism , Stilbenes/administration & dosage , Animals , Chemical Phenomena , China , Crosses, Genetic , Gene Expression Regulation, Developmental , Glycolysis , Male , Mechanical Phenomena , Muscle Fibers, Skeletal/chemistry , Myosin Heavy Chains/genetics , Myosin Heavy Chains/metabolism , Orchiectomy/veterinary , Resveratrol , Shear Strength , Skeletal Muscle Myosins/genetics , Skeletal Muscle Myosins/metabolism , Sus scrofa
SELECTION OF CITATIONS
SEARCH DETAIL
...