Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 215.990
Filter
1.
Mol Biol Rep ; 51(1): 716, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824237

ABSTRACT

BACKGROUND: Post kala-azar dermal leishmaniasis (PKDL) is a consequential dermal manifestation of visceral leishmaniasis (VL), serving as a parasite reservoir. The traditional diagnostic approach, which requires an invasive skin biopsy is associated with inherent risks and necessitates skilled healthcare practitioners in sterile settings. There is a critical need for a rapid, less invasive method for Leishmania detection. The main objective of this study was to evaluate and compare the diagnostic efficacy of PCR and qPCR in detecting PKDL, utilizing both skin and blood samples and to assess the utility of blood samples for molecular diagnosis. METHODS AND RESULTS: 73 individuals exhibiting clinical symptoms of PKDL and who had tested positive for rK39 rapid diagnostic test (RDT) were enrolled in this study. For the diagnosis of PKDL, both PCR and real-time quantitative PCR (qPCR), employing SYBR Green and TaqMan assays, were performed on blood and skin matched samples. qPCR results using both TaqMan and SYBR Green assay, indicated higher parasite loads in the skin compared to blood, as evident by the Ct values. Importantly, when blood samples were used for PKDL diagnosis by qPCR, an encouraging sensitivity of 69.35% (TaqMan assay) and 79.36% (SYBR Green) were obtained, compared to 8.2% with conventional PCR. CONCLUSION: The findings of the study suggest the potential utility of blood for molecular diagnosis by qPCR, offering a less invasive alternative to skin biopsies in field setting for the early detection of parasitaemia in PKDL patients and effective management and control of the disease.


Subject(s)
Leishmaniasis, Cutaneous , Leishmaniasis, Visceral , Real-Time Polymerase Chain Reaction , Humans , Leishmaniasis, Visceral/diagnosis , Leishmaniasis, Visceral/blood , Leishmaniasis, Visceral/parasitology , Leishmaniasis, Cutaneous/diagnosis , Leishmaniasis, Cutaneous/parasitology , Leishmaniasis, Cutaneous/blood , Leishmaniasis, Cutaneous/genetics , Real-Time Polymerase Chain Reaction/methods , Male , Female , Adult , Adolescent , Skin/parasitology , Skin/pathology , Sensitivity and Specificity , Middle Aged , Parasite Load/methods , Molecular Diagnostic Techniques/methods , Young Adult , Child , DNA, Protozoan/genetics , DNA, Protozoan/blood
2.
Arch Dermatol Res ; 316(6): 319, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822889

ABSTRACT

The population of older people is steadily increasing and the majority live at home. Although the home and community are the largest care settings worldwide, most of the evidence on dermatological care relates to secondary and tertiary care. The overall aims were to map the available evidence regarding the epidemiology and burden of the most frequent skin conditions and regarding effects of screening, risk assessment, diagnosis, prevention and treatment of the most frequent skin conditions in older people living in the community. A scoping review was conducted. MEDLINE, Embase and Epistemonikos were systematically searched for clinical practice guidelines, reviews and primary studies, as well as Grey Matters and EASY for grey literature published between January 2010 and March 2023. Records were screened and data of included studies extracted by two reviewers, independently. Results were summarised descriptively. In total, 97 publications were included. The vast majority described prevalence or incidence estimates. Ranges of age groups varied widely and unclear reporting was frequent. Sun-exposure and age-related skin conditions such as actinic keratoses, xerosis cutis, neoplasms and inflammatory diseases were the most frequent dermatoses identified, although melanoma and/or non-melanoma skin cancer were the skin conditions investigated most frequently. Evidence regarding the burden of skin conditions included self-reported skin symptoms and concerns, mortality, burden on the health system, and impact on quality of life. A minority of articles reported effects of screening, risk assessment, diagnosis, prevention and treatment, mainly regarding skin cancer. A high number of skin conditions and diseases affect older people living at home and in the community but evidence about the burden and effective prevention and treatment strategies is weak. Best practices of how to improve dermatological care in older people remain to be determined and there is a particular need for interventional studies to support and to improve skin health at home.


Subject(s)
Skin Diseases , Humans , Aged , Skin Diseases/epidemiology , Skin Diseases/diagnosis , Skin Diseases/therapy , Quality of Life , Independent Living/statistics & numerical data , Prevalence , Aged, 80 and over , Skin/pathology , Incidence , Skin Neoplasms/epidemiology , Skin Neoplasms/diagnosis , Skin Neoplasms/therapy
3.
Arch Dermatol Res ; 316(6): 316, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822884

ABSTRACT

In the present study, we have formulated a methotrexate (MTX)-loaded microemulsion topical gel employing quality-by-design optimization. The optimized lipid-based microemulsion was incorporated into a 2% carbopol gel. The prepared formulation was characterized for micromeritics, surface charge, surface morphology, conductivity studies, rheology studies, texture analysis/spreadability, drug entrapment, and drug loading studies. The formulation was further evaluated for drug release and release kinetics, cytotoxicity assays, drug permeation and drug retention studies, and dermatokinetics. The developed nanosystem was not only rheologically acceptable but also offered substantial drug entrapment and loading. From drug release studies, it was observed that the nanogel showed higher drug release at pH 5.0 compared to plain MTX, plain gel, and plain microemulsion. The developed system with improved dermatokinetics, nanometric size, higher drug loading, and enhanced efficacy towards A314 squamous epithelial cells offers a huge promise in the topical delivery of methotrexate.


Subject(s)
Drug Liberation , Emulsions , Gels , Methotrexate , Skin Absorption , Methotrexate/administration & dosage , Methotrexate/chemistry , Methotrexate/pharmacokinetics , Humans , Skin Absorption/drug effects , Rheology , Lipids/chemistry , Administration, Cutaneous , Skin/metabolism , Skin/drug effects , Administration, Topical , Drug Delivery Systems/methods , Animals , Particle Size , Drug Carriers/chemistry , Nanogels/chemistry
4.
Arch Dermatol Res ; 316(6): 326, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822910

ABSTRACT

Skin aging is one of the visible characteristics of the aging process in humans. In recent years, different biological clocks have been generated based on protein or epigenetic markers, but few have focused on biological age in the skin. Arrest the aging process or even being able to restore an organism from an older to a younger stage is one of the main challenges in the last 20 years in biomedical research. We have implemented several machine learning models, including regression and classification algorithms, in order to create an epigenetic molecular clock based on miRNA expression profiles of healthy subjects to predict biological age-related to skin. Our best models are capable of classifying skin samples according to age groups (18-28; 29-39; 40-50; 51-60 or 61-83 years old) with an accuracy of 80% or predict age with a mean absolute error of 10.89 years using the expression levels of 1856 unique miRNAs. Our results suggest that this kind of epigenetic clocks arises as a promising tool with several applications in the pharmaco-cosmetic industry.


Subject(s)
Epigenesis, Genetic , Machine Learning , MicroRNAs , Skin Aging , Skin , Humans , MicroRNAs/genetics , Middle Aged , Aged , Adult , Skin Aging/genetics , Aged, 80 and over , Skin/metabolism , Skin/pathology , Female , Young Adult , Male , Adolescent , Gene Expression Profiling , Biological Clocks/genetics
6.
Food Res Int ; 188: 114496, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823843

ABSTRACT

Agro-industrial co-products, such as fish gelatin, stand out for their capacity in forming biopolymeric films, being biocompatible and non-toxic; however, its hydrophilicity poses a challenge. Essential oils, rich in bioactives, attract research interest aiming to enhance the protective barrier of films and enable their application in packaging. This study produced films based on cross-linked Nile tilapia skin gelatin, incorporating garlic essential oil. Gelatin obtained through partial collagen hydrolysis from the fish skin and cross-linked with gallic acid had hydroxyproline content of 10.02 g 100 g-1 and gel strength of 287 g, which were consistent with other studies. Oil extraction used supercritical CO2 as a solvent and ethanol as a cosolvent, following a factorial experimental design, evaluating the extraction temperature (40 °C and 70 °C) and cosolvent ratio (1:1 and 1:3), with three central points. Extraction was successful, with higher yields on a dry basis at 70 °C (88.35 %), using a 1:1 cosolvent ratio. Films incorporated with oil exhibited lower water vapor permeability (WVP) than those with only cross-linked gelatin (1.59 (g m-1 s-1 Pa-1) 1011). The film with the most suitable tensile strength (19.07 MPa), elongation (120.91 %), and WVP (1.09 (g m-1 s-1 Pa-1) 1011) properties contained garlic oil extracted at the central point (55 °C and 1:2). Thermal analysis indicated increased melting temperatures in films with added oil, suggesting low thermal degradation. These results suggest that garlic oil addition can improve the properties of fish gelatin-based films, making them promising for biodegradable packaging.


Subject(s)
Food Packaging , Garlic , Gelatin , Oils, Volatile , Permeability , Gelatin/chemistry , Oils, Volatile/chemistry , Animals , Garlic/chemistry , Food Packaging/methods , Tensile Strength , Steam , Sulfides/chemistry , Hydrophobic and Hydrophilic Interactions , Skin/chemistry
7.
Front Immunol ; 15: 1395945, 2024.
Article in English | MEDLINE | ID: mdl-38799435

ABSTRACT

Acute cellular rejection remains a significant obstacle affecting successful outcomes of organ transplantation including vascularized composite tissue allografts (VCA). Donor antigen presenting cells (APCs), particularly dendritic cells (DCs), orchestrate early alloimmune responses by activating recipient effector T cells. Employing a targeted approach, we investigated the impact of donor-derived conventional DCs (cDCs) and APCs on the immunogenicity of skin and skin-containing VCA grafts, using mouse models of skin and hind limb transplantation. By post-transplantation day 6, skin grafts demonstrated severe rejections, characterized by predominance of recipient CD4 T cells. In contrast, hind limb grafts showed moderate rejection, primarily infiltrated by CD8 T cells. Notably, the skin component exhibited heightened immunogenicity when compared to the entire VCA, evidenced by increased frequencies of pan (CD11b-CD11c+), mature (CD11b-CD11c+MHCII+) and active (CD11b-CD11c+CD40+) DCs and cDC2 subset (CD11b+CD11c+ MHCII+) in the lymphoid tissues and the blood of skin transplant recipients. While donor depletion of cDC and APC reduced frequencies, maturation and activation of DCs in all analyzed tissues of skin transplant recipients, reduction in DC activities was only observed in the spleen of hind limb recipients. Donor cDC and APC depletion did not impact all lymphocyte compartments but significantly affected CD8 T cells and activated CD4 T in lymph nodes of skin recipients. Moreover, both donor APC and cDC depletion attenuated the Th17 immune response, evident by significantly reduced Th17 (CD4+IL-17+) cells in the spleen of skin recipients and reduced levels of IL-17E and lymphotoxin-α in the serum samples of both skin and hind limb recipients. In conclusion, our findings underscore the highly immunogenic nature of skin component in VCA. The depletion of donor APCs and cDCs mitigates the immunogenicity of skin grafts while exerting minimal impact on VCA.


Subject(s)
Dendritic Cells , Graft Rejection , Hindlimb , Skin Transplantation , Animals , Dendritic Cells/immunology , Mice , Hindlimb/immunology , Hindlimb/transplantation , Graft Rejection/immunology , Graft Rejection/prevention & control , Mice, Inbred C57BL , Mice, Inbred BALB C , Composite Tissue Allografts/immunology , Vascularized Composite Allotransplantation/methods , CD8-Positive T-Lymphocytes/immunology , Male , Tissue Donors , Skin/immunology
8.
Front Immunol ; 15: 1407782, 2024.
Article in English | MEDLINE | ID: mdl-38799436

ABSTRACT

Introduction: The new topical formula is urgent needed to meet clinical needs for majority mild patients with psoriasis. Deucravacitinib exerts outstanding anti-psoriatic capacity as an oral TYK2 inhibitor; however, single therapy is insufficient to target the complicated psoriatic skin, including excessive reactive oxygen species (ROS) and persistent inflammation. To address this need, engineered smart nano-therapeutics hold potential for the topical delivery of deucravacitinib. Methods: hydrophobic Deucravacitinib was loaded into polyethylene glycol block-polypropylene sulphide (PEG-b-PPS) for transdermal delivery in the treatment of psoriasis. The oxidative stress model of HaCaT psoriasis was established by TNF-α and IL-17A in vitro. JC-1 assay, DCFH-DA staining and mtDNA copy number were utilized to assess mitochondrial function. 0.75% Carbopol®934 was incorporated into SPMs to produce hydrogels and Rhb was labeled to monitor penetration by Immunofluorescence. In vivo, we established IMQ-induced psoriatic model to evaluate therapeutic effect of Car@Deu@PEPS. Results: Deu@PEPS exerted anti-psoriatic effects by restoring mitochondrial DNA copy number and mitochondrial membrane potential in HaCaT. In vivo, Car@Deu@PEPS supramolecular micelle hydrogels had longer retention time in the dermis in the IMQ-induced ROS microenvironment. Topical application of Car@Deu@PEPS significantly restored the normal epidermal architecture of psoriatic skin with abrogation of splenomegaly in the IMQ-induced psoriatic dermatitis model. Car@Deu@PEPS inhibited STAT3 signaling cascade with a corresponding decrease in the levels of the differentiation and proliferative markers Keratin 17 and Cyclin D1, respectively. Meanwhile, Car@Deu@PEPS alleviated IMQ-induced ROS generation and subsequent NLRP3 inflammasome-mediated pyroptosis. Conclusion: Deu@PEPS exerts prominent anti-inflammatory and anti-oxidative effects, which may offers a more patient-acceptable therapy with fewer adverse effects compared with oral deucravacitinib.


Subject(s)
Micelles , Mitochondria , Oxidative Stress , Psoriasis , Reactive Oxygen Species , Reactive Oxygen Species/metabolism , Psoriasis/drug therapy , Psoriasis/metabolism , Humans , Oxidative Stress/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Animals , Mice , Skin/metabolism , Skin/drug effects , Skin/pathology , Polymers/chemistry , HaCaT Cells , Administration, Cutaneous , Male
9.
ACS Appl Mater Interfaces ; 16(21): 27952-27960, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38808703

ABSTRACT

Capable of directly capturing various physiological signals from human skin, skin-interfaced bioelectronics has emerged as a promising option for human health monitoring. However, the accuracy and reliability of the measured signals can be greatly affected by body movements or skin deformations (e.g., stretching, wrinkling, and compression). This study presents an ultraconformal, motion artifact-free, and multifunctional skin bioelectronic sensing platform fabricated by a simple and user-friendly laser patterning approach for sensing high-quality human physiological data. The highly conductive membrane based on the room-temperature coalesced Ag/Cu@Cu core-shell nanoparticles in a mixed solution of polymers can partially dissolve and locally deform in the presence of water to form conformal contact with the skin. The resulting sensors to capture improved electrophysiological signals upon various skin deformations and other biophysical signals provide an effective means to monitor health conditions and create human-machine interfaces. The highly conductive and stretchable membrane can also be used as interconnects to connect commercial off-the-shelf chips to allow extended functionalities, and the proof-of-concept demonstration is highlighted in an integrated pulse oximeter. The easy-to-remove feature of the resulting device with water further allows the device to be applied on delicate skin, such as the infant and elderly.


Subject(s)
Wearable Electronic Devices , Humans , Skin/chemistry , Monitoring, Physiologic/instrumentation , Monitoring, Physiologic/methods , Silver/chemistry , Copper/chemistry , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Artifacts , Metal Nanoparticles/chemistry , Motion , Electric Conductivity
10.
Chemosphere ; 358: 142218, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38704047

ABSTRACT

Human skin is the first line of photoprotection against UV radiation. However, despite having its defence mechanisms, the photoprotection that the skin exerts is not enough. To protect human skin, the inclusion of UV filters in the cosmetic industry has grown significantly as a photoprotection strategy. Octylmethoxycinnamate, also designated by octinoxate, or 2-ethylhexyl-4-methoxycinnamate (CAS number: 5466-77-3) is one of the most widely used UV-B filter in the cosmetic industry. The toxic effects of OMC have alarmed the public, but there is still no consensus in the scientific community about its use. This article aims to provide an overview of the UV filters' photoprotection, emphasizing the OMC and the possible negative effects it may have on the public health. Moreover, the current legislation will be addressed. In summary, the recommendations should be rethought to assess their risk-benefit, since the existing literature warns us to endocrine-disrupting effects of OMC. Further studies should be focus on the toxicity of OMC alone, in mixture and should consider its degradation products, to improve the knowledge of its risk assessment as EDC.


Subject(s)
Cinnamates , Endocrine Disruptors , Sunscreening Agents , Ultraviolet Rays , Cinnamates/chemistry , Cinnamates/toxicity , Humans , Sunscreening Agents/toxicity , Endocrine Disruptors/toxicity , Risk Assessment , Skin/drug effects , Skin/radiation effects , Cosmetics/toxicity
11.
Lasers Med Sci ; 39(1): 141, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801600

ABSTRACT

PURPOSE: Conventional approaches for enhancing wound healing may not always yield satisfactory results. Instead, we test the effectiveness of a newly developed photodynamic therapy (PDT) that uses methylene blue (MB) loaded with polyethylene glycol (PEG) (MB-PEG) hydrogel to accelerate wound healing process in mice. METHODS: A dorsal skin incision with 6 mm punch which topically subjected to MB-PEG hydrogel and a low-level laser light of red light to assess the regeneration process of wounded skin. A total of 63 adult male CD1 mice divided into normal group (no treatment) and other wound groups received different treatments of laser (650 ± 5 nm and power intensity of 180 mW/cm2), MB-PEG, or PDT (MB-PEG followed by laser). The wound healing parameters were investigated by histological examination of the skin and measuring of proinflammatory cytokines at the early stage (48 h) and a late one on day 21. RESULTS: at 48 h, the score of tissue granulation, inflammation, and angiogenesis process were markedly improved in wounded groups that received MB + PEG combined with laser compared to the group treated with laser alone. On day 21, a significant improvement of the inflammation was detected in the group treated with MB + PEG plus laser compared to the other groups. At 48 h, the upregulated serum levels of tumor necrosis factor (TNF)-α and interleukin (IL)-1ß in the wound group were significantly (P < 0.001) reduced in the group treated with MB + PEG combined with laser. CONCLUSION: MB-PEG based hydrogel improves and accelerates wound closure in the context of laser compared to either single treatment.


Subject(s)
Methylene Blue , Photochemotherapy , Polyethylene Glycols , Skin , Wound Healing , Animals , Wound Healing/drug effects , Wound Healing/radiation effects , Mice , Photochemotherapy/methods , Methylene Blue/pharmacology , Male , Skin/radiation effects , Skin/drug effects , Skin/injuries , Hydrogels , Photosensitizing Agents/administration & dosage , Photosensitizing Agents/pharmacology , Cytokines/metabolism
12.
Nature ; 629(8014): 1047-1054, 2024 May.
Article in English | MEDLINE | ID: mdl-38778108

ABSTRACT

Wireless modules that provide telecommunications and power-harvesting capabilities enabled by radio-frequency (RF) electronics are vital components of skin-interfaced stretchable electronics1-7. However, recent studies on stretchable RF components have demonstrated that substantial changes in electrical properties, such as a shift in the antenna resonance frequency, occur even under relatively low elastic strains8-15. Such changes lead directly to greatly reduced wireless signal strength or power-transfer efficiency in stretchable systems, particularly in physically dynamic environments such as the surface of the skin. Here we present strain-invariant stretchable RF electronics capable of completely maintaining the original RF properties under various elastic strains using a 'dielectro-elastic' material as the substrate. Dielectro-elastic materials have physically tunable dielectric properties that effectively avert frequency shifts arising in interfacing RF electronics. Compared with conventional stretchable substrate materials, our material has superior electrical, mechanical and thermal properties that are suitable for high-performance stretchable RF electronics. In this paper, we describe the materials, fabrication and design strategies that serve as the foundation for enabling the strain-invariant behaviour of key RF components based on experimental and computational studies. Finally, we present a set of skin-interfaced wireless healthcare monitors based on strain-invariant stretchable RF electronics with a wireless operational distance of up to 30 m under strain.


Subject(s)
Elasticity , Electronics , Equipment Design , Radio Waves , Skin , Stress, Mechanical , Wearable Electronic Devices , Wireless Technology , Humans , Electronics/instrumentation , Wireless Technology/instrumentation , Monitoring, Physiologic/instrumentation
13.
Nature ; 629(8013): 810-818, 2024 May.
Article in English | MEDLINE | ID: mdl-38778234

ABSTRACT

Accurate and continuous monitoring of cerebral blood flow is valuable for clinical neurocritical care and fundamental neurovascular research. Transcranial Doppler (TCD) ultrasonography is a widely used non-invasive method for evaluating cerebral blood flow1, but the conventional rigid design severely limits the measurement accuracy of the complex three-dimensional (3D) vascular networks and the practicality for prolonged recording2. Here we report a conformal ultrasound patch for hands-free volumetric imaging and continuous monitoring of cerebral blood flow. The 2 MHz ultrasound waves reduce the attenuation and phase aberration caused by the skull, and the copper mesh shielding layer provides conformal contact to the skin while improving the signal-to-noise ratio by 5 dB. Ultrafast ultrasound imaging based on diverging waves can accurately render the circle of Willis in 3D and minimize human errors during examinations. Focused ultrasound waves allow the recording of blood flow spectra at selected locations continuously. The high accuracy of the conformal ultrasound patch was confirmed in comparison with a conventional TCD probe on 36 participants, showing a mean difference and standard deviation of difference as -1.51 ± 4.34 cm s-1, -0.84 ± 3.06 cm s-1 and -0.50 ± 2.55 cm s-1 for peak systolic velocity, mean flow velocity, and end diastolic velocity, respectively. The measurement success rate was 70.6%, compared with 75.3% for a conventional TCD probe. Furthermore, we demonstrate continuous blood flow spectra during different interventions and identify cascades of intracranial B waves during drowsiness within 4 h of recording.


Subject(s)
Blood Flow Velocity , Brain , Cerebrovascular Circulation , Ultrasonography , Humans , Blood Flow Velocity/physiology , Brain/blood supply , Brain/diagnostic imaging , Brain/physiology , Cerebrovascular Circulation/physiology , Imaging, Three-Dimensional/instrumentation , Imaging, Three-Dimensional/methods , Medical Errors , Signal-To-Noise Ratio , Skin , Skull , Sleepiness/physiology , Ultrasonography/instrumentation , Ultrasonography/methods , Adult
14.
Front Immunol ; 15: 1406438, 2024.
Article in English | MEDLINE | ID: mdl-38817611

ABSTRACT

Introduction: Atopic dermatitis (AD) is a chronic inflammatory skin disorder characterised by itching, erythema, and epidermal barrier dysfunction. The pathogenesis of AD is complex and multifactorial; however,mast cell (MC) activation has been reported to be one of the crucial mechanisms in the pathogenesis of AD. The MC receptor Mas related G protein-coupled receptor-X2 (MRGPRX2) has been identified as a prominent alternative receptor to the IgE receptor in causing MC activation and the subsequent release of inflammatory mediators. The current study aimed to evaluate the therapeutic effect of a novel small molecule MRGPRX2 antagonist GE1111 in AD using in vitro and in vivo approaches. Methods: We developed an in vitro cell culture disease model by using LAD-2 MC, HaCaT keratinocytes and RAW 264.7 macrophage cell lines. We challenged keratinocytes and macrophage cells with CST-14 treated MC supernatant in the presence and absence of GE1111 and measured the expression of tight junction protein claudin 1, inflammatory cytokines and macrophage phagocytosis activity through immunohistochemistry, western blotting, RT-qPCR and fluorescence imaging techniques. In addition to this, we developed a DFNB-induced AD model in mice and evaluated the protective effect and underlying mechanism of GE1111. Results and Discussion: Our in vitro findings demonstrated a potential therapeutic effect of GE1111, which inhibits the expression of TSLP, IL-13, MCP-1, TNF-a, and IL-1ß in MC and keratinocytes. In addition to this, GE1111 was able to preserve the expression of claudin 1 in keratinocytes and the phagocytotic activity of macrophage cells. The in vivo results demonstrated that GE1111 treatment significantly reduced phenotypic changes associated with AD (skin thickening, scaling, erythema and epidermal thickness). Furthermore, immunohistochemical analysis demonstrated that GE1111 treatment preserved the expression of the tight junction protein Involucrin and reduced the expression of the inflammatory mediator periostin in the mouse model of AD. These findings were supported by gene and protein expression analysis, where GE1111 treatment reduced the expression of TSLP, IL-13, and IL-1ß, as well as downstream signalling pathways of MRGPRX2 in AD skin lesions. In conclusion, our findings provide compelling in vitro and in vivo evidence supporting the contribution of MRGPRX2-MC interaction with keratinocytes and macrophages in the pathogenesis of AD.


Subject(s)
Cytokines , Dermatitis, Atopic , Disease Models, Animal , Keratinocytes , Receptors, G-Protein-Coupled , Receptors, Neuropeptide , Skin , Animals , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/immunology , Mice , Cytokines/metabolism , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, G-Protein-Coupled/metabolism , Humans , Receptors, Neuropeptide/antagonists & inhibitors , Receptors, Neuropeptide/metabolism , Skin/pathology , Skin/drug effects , Skin/metabolism , Skin/immunology , Keratinocytes/drug effects , Keratinocytes/metabolism , HaCaT Cells , Macrophages/immunology , Macrophages/metabolism , Macrophages/drug effects , Mast Cells/drug effects , Mast Cells/immunology , Mast Cells/metabolism , Nerve Tissue Proteins/antagonists & inhibitors , Nerve Tissue Proteins/metabolism , RAW 264.7 Cells , Inflammation Mediators/metabolism
15.
PLoS One ; 19(5): e0303480, 2024.
Article in English | MEDLINE | ID: mdl-38820441

ABSTRACT

Due to the dramatic reduction of sea cucumber Isostichopus badionotus populations in the Yucatan Peninsula by overfishing and poaching, aquaculture has been encouraged as an alternative to commercial catching and restoring wild populations. However, the scarcity of broodstock, the emergence of a new disease in the auricularia larvae stage, and the development of skin ulceration syndrome (SUS) in the culture have limited aquaculture development. This study presents the changes in the intestine and skin microbiota observed in early and advanced stages of SUS disease in cultured juvenile I. badionotus obtained during an outbreak in experimental culture through 16S rRNA gene sequencing and histological evidence. Our results showed inflammation in the intestines of juveniles at both stages of SUS. However, more severe tissue damage and the presence of bacterial clusters were detected only in the advanced stages of SUS. Differences in the composition and structure of the intestinal and skin bacterial community from early and advanced stages of SUS were detected, with more evident changes in the intestinal microbial communities. These findings suggest that SUS was not induced by a single pathogenic bacterium. Nevertheless, a decrease in the abundance of Vibrio and an increase in Halarcobacter (syn. Arcobacter) was observed, suggesting that these two bacterial groups could be keystone genera involved in SUS disease.


Subject(s)
Microbiota , Sea Cucumbers , Skin , Animals , Skin/microbiology , Skin/pathology , Sea Cucumbers/microbiology , Aquaculture , RNA, Ribosomal, 16S/genetics , Skin Ulcer/microbiology , Skin Ulcer/epidemiology , Skin Ulcer/pathology , Disease Outbreaks , Gastrointestinal Microbiome
16.
Front Immunol ; 15: 1367602, 2024.
Article in English | MEDLINE | ID: mdl-38774875

ABSTRACT

Background: There is a significant imbalance of mitochondrial activity and oxidative stress (OS) status in patients with atopic dermatitis (AD). This study aims to screen skin and peripheral mitochondria-related biomarkers, providing insights into the underlying mechanisms of mitochondrial dysfunction in AD. Methods: Public data were obtained from MitoCarta 3.0 and GEO database. We screened mitochondria-related differentially expressed genes (MitoDEGs) using R language and then performed GO and KEGG pathway analysis on MitoDEGs. PPI and machine learning algorithms were also used to select hub MitoDEGs. Meanwhile, the expression of hub MitoDEGs in clinical samples were verified. Using ROC curve analysis, the diagnostic performance of risk model constructed from these hub MitoDEGs was evaluated in the training and validation sets. Further computer-aided algorithm analyses included gene set enrichment analysis (GSEA), immune infiltration and mitochondrial metabolism, centered on these hub MitoDEGs. We also used real-time PCR and Spearman method to evaluate the relationship between plasma circulating cell-free mitochondrial DNA (ccf-mtDNA) levels and disease severity in AD patients. Results: MitoDEGs in AD were significantly enriched in pathways involved in mitochondrial respiration, mitochondrial metabolism, and mitochondrial membrane transport. Four hub genes (BAX, IDH3A, MRPS6, and GPT2) were selected to take part in the creation of a novel mitochondrial-based risk model for AD prediction. The risk score demonstrated excellent diagnostic performance in both the training cohort (AUC = 1.000) and the validation cohort (AUC = 0.810). Four hub MitoDEGs were also clearly associated with the innate immune cells' infiltration and the molecular modifications of mitochondrial hypermetabolism in AD. We further discovered that AD patients had considerably greater plasma ccf-mtDNA levels than controls (U = 92.0, p< 0.001). Besides, there was a significant relationship between the up-regulation of plasma mtDNA and the severity of AD symptoms. Conclusions: The study highlights BAX, IDH3A, MRPS6 and GPT2 as crucial MitoDEGs and demonstrates their efficiency in identifying AD. Moderate to severe AD is associated with increased markers of mitochondrial damage and cellular stress (ccf=mtDNA). Our study provides data support for the variation in mitochondria-related functional characteristics of AD patients.


Subject(s)
Biomarkers , Computational Biology , Dermatitis, Atopic , Machine Learning , Mitochondria , Skin , Humans , Dermatitis, Atopic/genetics , Dermatitis, Atopic/blood , Dermatitis, Atopic/diagnosis , Dermatitis, Atopic/immunology , Biomarkers/blood , Mitochondria/metabolism , Mitochondria/genetics , Computational Biology/methods , Skin/metabolism , Skin/immunology , Male , DNA, Mitochondrial/genetics , Female , Gene Expression Profiling
17.
Biol Pharm Bull ; 47(5): 997-999, 2024.
Article in English | MEDLINE | ID: mdl-38777759

ABSTRACT

Patch tests are often used in safety evaluations to identify the substance causing skin irritation, but the same substance can sometimes give positive or negative results depending on the test conditions. Here, we investigated differences in the skin penetration of two test compounds under different application conditions. We studied the effects of the anionic surfactant sodium dodecyl sulfate (SDS) and the nonionic surfactant polysorbate 80 (PS) on skin penetration of the preservatives methylisothiazolinone (MT) and methylchloroisothiazolinone (MCT), which are used in cosmetics such as shampoos. The skin permeation of MT was enhanced by SDS but was unchanged by PS. Skin impedance decreased in the presence of SDS whereas PS had the same effect as the control aqueous solution, suggesting that SDS reduction of the barrier function of skin affects the permeation of MT, a hydrophilic drug. Application of a mixture of MCT and MT in the presence of SDS did not affect the skin permeation of MCT whereas the permeation of MT was enhanced by SDS, indicating that the skin permeation of MCT is less affected by SDS than is MT. Thus, attention should be paid to the possible effect of co-solutes, especially hydrophilic drugs.


Subject(s)
Polysorbates , Skin Absorption , Skin , Sodium Dodecyl Sulfate , Surface-Active Agents , Thiazoles , Thiazoles/pharmacokinetics , Surface-Active Agents/pharmacology , Skin Absorption/drug effects , Polysorbates/pharmacology , Skin/metabolism , Skin/drug effects , Animals , Preservatives, Pharmaceutical , Swine , Cosmetics/pharmacokinetics , Electric Impedance , Permeability/drug effects
18.
Adv Exp Med Biol ; 1447: 45-57, 2024.
Article in English | MEDLINE | ID: mdl-38724783

ABSTRACT

Atopic dermatitis (AD) is a chronic inflammatory skin condition with heterogeneous presentations and prevalence across different skin tones. In this chapter, AD is explored through the lens of racial and ethnic diversity, emphasizing the special considerations among patients with skin of color (SOC). Specific ethnic groups may exhibit unique AD phenotypes, and these differences pose unique diagnostic and management challenges, especially given the disproportionate impact of AD in African American and Asian populations due to environmental exposures and social factors (i.e., decreased access to healthcare resources). Addressing these social disparities, increasing representation in medical education and the clinical space, as well as ongoing research can help better serve this patient population.


Subject(s)
Dermatitis, Atopic , Skin Pigmentation , Dermatitis, Atopic/ethnology , Humans , Black or African American , Skin/pathology , Healthcare Disparities , Prevalence
19.
Adv Exp Med Biol ; 1447: 21-35, 2024.
Article in English | MEDLINE | ID: mdl-38724781

ABSTRACT

The pathophysiology of atopic dermatitis is complex and multifactorial, involving elements of barrier dysfunction, alterations in cell-mediated immune responses, IgE-mediated hypersensitivity, and environmental factors. Loss-of-function mutations in filaggrin have been implicated in severe atopic dermatitis due to a potential increase in trans-epidermal water loss, pH alterations, and dehydration. Other genetic changes have also been identified, which may alter the skin's barrier function, resulting in an atopic dermatitis phenotype. The imbalance of Th2 to Th1 cytokines observed in atopic dermatitis can create alterations in the cell-mediated immune responses and can promote IgE-mediated hypersensitivity, both of which appear to play a role in the development of atopic dermatitis. One must additionally take into consideration the role of the environment on the causation of atopic dermatitis and the impact of chemicals such as airborne formaldehyde, harsh detergents, fragrances, and preservatives. Use of harsh alkaline detergents in skin care products may also unfavorably alter the skin's pH causing downstream changes in enzyme activity and triggering inflammation. Environmental pollutants can trigger responses from both the innate and adaptive immune pathways. This chapter will discuss the multifaceted etiology of atopic dermatitis, which will help us to elucidate potential therapeutic targets. We will also review existing treatment options and their interaction with the complex inflammatory and molecular triggers of atopic dermatitis.


Subject(s)
Dermatitis, Atopic , Filaggrin Proteins , Dermatitis, Atopic/immunology , Dermatitis, Atopic/genetics , Dermatitis, Atopic/physiopathology , Humans , Skin/pathology , Skin/immunology , Animals , Cytokines/metabolism , Immunoglobulin E/immunology , Environmental Exposure/adverse effects
20.
Adv Exp Med Biol ; 1447: 37-44, 2024.
Article in English | MEDLINE | ID: mdl-38724782

ABSTRACT

Atopic dermatitis, commonly known as eczema, is a chronic inflammatory dermatosis that can affect individuals from infancy to adulthood. Also referred to as "the itch that rashes," atopic dermatitis is classically associated with significant pruritus that is accompanied by characteristic cutaneous and other clinical findings. The diagnosis of atopic dermatitis can be challenging due to the wide range of clinical presentations based on patient factors such as age, skin type, ethnicity, and other comorbid conditions. This chapter reviews the classical findings as well as the less common manifestations of atopic dermatitis.


Subject(s)
Dermatitis, Atopic , Dermatitis, Atopic/diagnosis , Dermatitis, Atopic/pathology , Humans , Pruritus/etiology , Pruritus/diagnosis , Skin/pathology , Infant
SELECTION OF CITATIONS
SEARCH DETAIL
...