Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 17.002
Filter
1.
Sci Data ; 11(1): 536, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796545

ABSTRACT

Spectral imaging has the potential to become a key technique in interventional medicine as it unveils much richer optical information compared to conventional RBG (red, green, and blue)-based imaging. Thus allowing for high-resolution functional tissue analysis in real time. Its higher information density particularly shows promise for the development of powerful perfusion monitoring methods for clinical use. However, even though in vivo validation of such methods is crucial for their clinical translation, the biomedical field suffers from a lack of publicly available datasets for this purpose. Closing this gap, we generated the SPECTRAL Perfusion Arm Clamping dAtaset (SPECTRALPACA). It comprises ten spectral videos (∼20 Hz, approx. 20,000 frames each) systematically recorded of the hands of ten healthy human participants in different functional states. We paired each spectral video with concisely tracked regions of interest, and corresponding diffuse reflectance measurements recorded with a spectrometer. Providing the first openly accessible in human spectral video dataset for perfusion monitoring, our work facilitates the development and validation of new functional imaging methods.


Subject(s)
Skin , Humans , Skin/blood supply , Skin/diagnostic imaging , Video Recording , Hand/blood supply , Arm/blood supply , Arm/diagnostic imaging
2.
Pathologica ; 116(2): 119-133, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38767544

ABSTRACT

The mechanisms underlying the onset and progression of vasculitis remain poorly understood. This condition is characterized by damage to the vascular wall, recruitment of inflammatory cells, and subsequent structural remodeling, which are hallmarks of vasculitis. The histopathological classification of vasculitis relies on the size of the affected vessel and the predominant type of inflammatory cell involved - neutrophils in acute cases, lymphocytes in chronic conditions, and histiocytes in granulomatous forms. Pathological changes progress in every context, and a single vasculitic pattern can be associated with various systemic conditions. Conversely, a single causative agent may lead to multiple distinct clinical and pathological manifestations of vasculitis. Moreover, many cases of vasculitis have no identifiable cause. A foundational understanding of the normal structure of the cutaneous vascular network is crucial. Similarly, identifying the cellular and molecular participants and their roles in forming the "dermal microvascular unit" is propedeutical.This review aims to elucidate the complex mechanisms involved in the initiation and progression of vasculitis, offering a comprehensive overview of its histopathological classification, underlying causes, and the significant role of the cutaneous vascular network and cellular dynamics. By integrating the latest insights from studies on NETosis and the implications of lymphocytic infiltration in autoimmune diseases, we seek to bridge gaps in current knowledge and highlight areas for future research. Our discussion extends to the clinical implications of vasculitis, emphasizing the importance of identifying etiological agents and understanding the diverse histopathological manifestations to improve diagnostic accuracy and treatment outcomes.


Subject(s)
Skin , Vasculitis , Humans , Vasculitis/pathology , Vasculitis/etiology , Skin/pathology , Skin/blood supply , Neutrophils/pathology , Lymphocytes/pathology , Lymphocytes/immunology , Skin Diseases, Vascular/pathology , Skin Diseases, Vascular/immunology , Skin Diseases, Vascular/etiology , Skin Diseases, Vascular/diagnosis
3.
PLoS One ; 19(5): e0303342, 2024.
Article in English | MEDLINE | ID: mdl-38728306

ABSTRACT

This study protocol aims to investigate how localised cooling influences the skin's microvascular, inflammatory, structural, and perceptual tolerance to sustained mechanical loading at the sacrum, evaluating factors such as morphology, physiology, and perceptual responses. The protocol will be tested on individuals of different age, sex, skin tone and clinical status, using a repeated-measure design with three participants cohorts: i) young healthy (n = 35); ii) older healthy (n = 35); iii) spinal cord injured (SCI, n = 35). Participants will complete three testing sessions during which their sacrum will be mechanically loaded (60 mmHg; 45 min) and unloaded (20 min) with a custom-built thermal probe, causing pressure-induced ischemia and post-occlusive reactive hyperaemia. Testing sessions will differ by the probe's temperature, which will be set to either 38°C (no cooling), 24°C (mild cooling), or 16°C (strong cooling). We will measure skin blood flow (via Laser Doppler Flowmetry; 40 Hz); pro- and anti-inflammatory biomarkers in skin sebum (Sebutape); structural skin properties (Optical Coherence Tomography); and ratings of thermal sensation, comfort, and acceptance (Likert Scales); throughout the loading and unloading phases. Changes in post-occlusive reactive hyperaemia will be considered as the primary outcome and data will be analysed for the independent and interactive effects of stimuli's temperature and of participant group on within- and between-subject mean differences (and 95% Confidence Intervals) in peak hyperaemia, by means of a 2-way mixed model ANOVA (or Friedman). Regression models will also be developed to assess the relationship between absolute cooling temperatures and peak hyperaemia. Secondary outcomes will be within- and between-subject mean changes in biomarkers' expression, skin structural and perceptual responses. This analysis will help identifying physiological and perceptual thresholds for the protective effects of cooling from mechanically induced damage underlying the development of pressure ulcers in individuals varying in age and clinical status.


Subject(s)
Sacrum , Skin , Humans , Skin/blood supply , Adult , Male , Female , Middle Aged , Young Adult , Inflammation , Spinal Cord Injuries/physiopathology , Cold Temperature , Aged , Microvessels/physiopathology , Weight-Bearing , Skin Temperature
4.
Int J Mol Sci ; 25(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38732209

ABSTRACT

One of the primary complications in generating physiologically representative skin tissue is the inability to integrate vasculature into the system, which has been shown to promote the proliferation of basal keratinocytes and consequent keratinocyte differentiation, and is necessary for mimicking representative barrier function in the skin and physiological transport properties. We created a 3D vascularized human skin equivalent (VHSE) with a dermal and epidermal layer, and compared keratinocyte differentiation (immunomarker staining), epidermal thickness (H&E staining), and barrier function (transepithelial electrical resistance (TEER) and dextran permeability) to a static, organotypic avascular HSE (AHSE). The VHSE had a significantly thicker epidermal layer and increased resistance, both an indication of increased barrier function, compared to the AHSE. The inclusion of keratin in our collagen hydrogel extracellular matrix (ECM) increased keratinocyte differentiation and barrier function, indicated by greater resistance and decreased permeability. Surprisingly, however, endothelial cells grown in a collagen/keratin extracellular environment showed increased cell growth and decreased vascular permeability, indicating a more confluent and tighter vessel compared to those grown in a pure collagen environment. The development of a novel VHSE, which incorporated physiological vasculature and a unique collagen/keratin ECM, improved barrier function, vessel development, and skin structure compared to a static AHSE model.


Subject(s)
Collagen , Hydrogels , Keratinocytes , Keratins , Skin , Humans , Hydrogels/chemistry , Collagen/chemistry , Collagen/metabolism , Keratinocytes/metabolism , Keratinocytes/cytology , Skin/metabolism , Skin/blood supply , Keratins/metabolism , Cell Differentiation , Cell Proliferation , Tissue Engineering/methods , Extracellular Matrix/metabolism , Cells, Cultured
5.
Physiol Rep ; 12(8): e16021, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38639714

ABSTRACT

We assessed the combined effect of superoxide and iNOS inhibition on microvascular function in non-Hispanic Black and non-Hispanic White participants (n = 15 per group). Participants were instrumented with four microdialysis fibers: (1) lactated Ringer's (control), (2) 10 µM tempol (superoxide inhibition), (3) 0.1 mM 1400 W (iNOS inhibition), (4) tempol + 1400 W. Cutaneous vasodilation was induced via local heating and NO-dependent vasodilation was quantified. At control sites, NO-dependent vasodilation was lower in non-Hispanic Black (45 ± 9% NO) relative to non-Hispanic White (79 ± 9% NO; p < 0.01; effect size, d = 3.78) participants. Tempol (62 ± 16% NO), 1400 W (78 ± 12% NO) and tempol +1400 W (80 ± 13% NO) increased NO-dependent vasodilation in non-Hispanic Black participants relative to control sites (all p < 0.01; d = 1.22, 3.05, 3.03, respectively). The effect of 1400 W (p = 0.04, d = 1.11) and tempol +1400 W (p = 0.03, d = 1.22) was greater than tempol in non-Hispanic Black participants. There was no difference between non-Hispanic Black and non-Hispanic White participants at 1400 W or tempol + 1400 W sites. These data suggest iNOS has a greater effect on NO-dependent vasodilation than superoxide in non-Hispanic Black participants.


Subject(s)
Cyclic N-Oxides , Imines , Nitric Oxide , Spin Labels , Vasodilation , Humans , Young Adult , Nitric Oxide/pharmacology , Regional Blood Flow , Skin/blood supply , Superoxides , Vasodilation/physiology , Black or African American , White
6.
J Dermatol Sci ; 114(2): 71-78, 2024 May.
Article in English | MEDLINE | ID: mdl-38644095

ABSTRACT

BACKGROUND: Photoacoustic microscopy is expected to have clinical applications as a noninvasive and three-dimensional (3D) method of observing intradermal structures. OBJECTIVE: Investigate the applicability of a photoacoustic microscope equipped with two types of pulsed lasers that can simultaneously recognize hemoglobin and melanin. METHODS: 16 skin lesions including erythema, pigmented lesions, vitiligo and purpura, were analyzed to visualize 3D structure of melanin granule distribution and dermal blood vessels. 13 cases of livedo racemosa in cutaneous polyarteritis nodosa (cPN) were further analyzed to visualize the 3D structure of dermal blood vessels in detail. Vascular structure was also analyzed in the biopsy specimens obtained from tender indurated erythema of cPN by CD34 immunostaining. RESULTS: Hemoglobin-recognition signal clearly visualized the 3D structure of dermal blood vessels and melanin-recognition signal was consistently reduced in vitiligo. In livedo racemosa, the hemoglobin-recognition signal revealed a relatively thick and large reticular structure in the deeper layers that became denser and finer toward the upper layers. The numerical analysis revealed that the number of dermal blood vessels was 1.29-fold higher (p<0.05) in the deeper region of the lesion than that of normal skin. The CD34 immunohistochemical analysis in tender indurated erythema revealed an increased number of dermal vessels compared with normal skin in 88.9% (8/9) of the cases, suggesting that vascular network remodeling had occurred in cPN. CONCLUSION: The photoacoustic system has an advantage in noninvasively detecting dermal blood vessel structures that are difficult to recognize by two-dimensional histopathology specimen examination and is worth evaluating in various skin diseases.


Subject(s)
Imaging, Three-Dimensional , Melanins , Photoacoustic Techniques , Polyarteritis Nodosa , Skin , Humans , Photoacoustic Techniques/methods , Male , Middle Aged , Female , Melanins/analysis , Adult , Imaging, Three-Dimensional/methods , Polyarteritis Nodosa/diagnostic imaging , Polyarteritis Nodosa/pathology , Polyarteritis Nodosa/diagnosis , Skin/pathology , Skin/diagnostic imaging , Skin/blood supply , Aged , Blood Vessels/diagnostic imaging , Blood Vessels/pathology , Hemoglobins/analysis , Biopsy , Young Adult , Microscopy/methods , Livedo Reticularis/pathology , Livedo Reticularis/diagnostic imaging , Antigens, CD34/analysis , Antigens, CD34/metabolism
7.
Exp Physiol ; 109(6): 892-898, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38642069

ABSTRACT

Skin blood flow is commonly determined by laser Doppler flowmetry (LDF). It has been suggested that pathophysiological conditions can be assessed by analysis of specific frequency domains of the LDF signals. We tested whether physiological stimuli that activate myogenic and neurogenic mechanisms would affect relevant portions of the laser Doppler spectrum. LDF sensors were placed on the right forearm of 14 healthy volunteers for myogenic (six females) and 13 for neurogenic challenge (five females). Myogenic responses were tested by positioning the arm ∼50° above/below heart level. Neurogenic responses were tested by immersing the left hand into an ice slurry with and without topical application of local anaesthetic. Short-time Fourier analyses were computed over the range of 0.06 to 0.15 Hz for myogenic and 0.02 to 0.06 Hz for neurogenic. No significant differences in spectral density were observed (P = 0.40) in the myogenic range with arm above (7 ± 54 × 10-4 dB) and below heart (7 ± 14 × 10-4 dB). Neurogenic spectral density showed no significant increase from baseline to cold pressor test (0.0017 ± 0.0013 and 0.0038 ± 0.0039 dB; P = 0.087, effect size 0.47). After application of anaesthetic, neurogenic spectral density was unchanged between the baseline and cold pressor test (0.0014 ± 0.0025 and 0.0006 ± 0.0005 dB; P = 0.173). These results suggest that changes in the myogenic and neurogenic spectral density of LDF signals did not fully reflect the skin vascular function activated by pressure manipulation and sympathetic stimulation. Therefore, LDF myogenic and neurogenic spectral density data should be interpreted with caution.


Subject(s)
Laser-Doppler Flowmetry , Regional Blood Flow , Skin , Sympathetic Nervous System , Humans , Female , Skin/blood supply , Male , Adult , Laser-Doppler Flowmetry/methods , Regional Blood Flow/physiology , Sympathetic Nervous System/physiology , Young Adult , Forearm/blood supply , Cold Temperature , Pressure , Anesthetics, Local/pharmacology , Anesthetics, Local/administration & dosage , Blood Pressure/physiology
8.
Biol Open ; 13(5)2024 May 15.
Article in English | MEDLINE | ID: mdl-38639409

ABSTRACT

Blood vessels serve as intermediate conduits for the extension of sympathetic axons towards target tissues, while also acting as crucial targets for their homeostatic processes encompassing the regulation of temperature, blood pressure, and oxygen availability. How sympathetic axons innervate not only blood vessels but also a wide array of target tissues is not clear. Here we show that in embryonic skin, after the establishment of co-branching between sensory nerves and blood vessels, sympathetic axons invade the skin alongside these sensory nerves and extend their branches towards these blood vessels covered by vascular smooth muscle cells (VSMCs). Our mosaic labeling technique for sympathetic axons shows that collateral branching predominantly mediates the innervation of VSMC-covered blood vessels by sympathetic axons. The expression of nerve growth factor (NGF), previously known to induce collateral axon branching in culture, can be detected in the vascular smooth muscle cell (VSMC)-covered blood vessels, as well as sensory nerves. Indeed, VSMC-specific Ngf knockout leads to a significant decrease of collateral branching of sympathetic axons innervating VSMC-covered blood vessels. These data suggest that VSMC-derived NGF serves as an inductive signal for collateral branching of sympathetic axons innervating blood vessels in the embryonic skin.


Subject(s)
Muscle, Smooth, Vascular , Nerve Growth Factor , Skin , Animals , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/innervation , Nerve Growth Factor/metabolism , Mice , Skin/innervation , Skin/blood supply , Skin/metabolism , Myocytes, Smooth Muscle/metabolism , Axons/metabolism , Axons/physiology , Blood Vessels/embryology , Blood Vessels/innervation , Blood Vessels/metabolism , Sympathetic Nervous System/embryology , Sympathetic Nervous System/physiology , Sympathetic Nervous System/metabolism , Mice, Knockout
9.
Eur J Pharmacol ; 974: 176621, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38679118

ABSTRACT

BACKGROUND AND AIM: Necrosis of random-pattern flaps restricts their application in clinical practice. Puerarin has come into focus due to its promising therapeutic effects in ischemic diseases. Here, we employed Puerarin and investigated its role and potential mechanisms in flap survival. EXPERIMENTAL PROCEDURE: The effect of Puerarin on the viability of human umbilical vein endothelial cells (HUVECs) was assessed by CCK-8, EdU staining, migration, and scratch assays. Survival area measurement and laser Doppler blood flow (LDBF) were utilized to assess the viability of ischemic injury flaps. Levels of molecules related to oxidative stress, pyroptosis, autophagy, transcription factor EB (TFEB), and the AMPK-TRPML1-Calcineurin signaling pathway were detected using western blotting, immunofluorescence, dihydroethidium (DHE) staining, RT-qPCR and Elisa. KEY RESULTS: The findings demonstrated that Puerarin enhanced the survivability of ischemic flaps. Autophagy, oxidative stress, and pyroptosis were implicated in the ability of Puerarin in improving flap survival. Increased autophagic flux and augmented tolerance to oxidative stress contribute to Puerarin's suppression of pyroptosis. Additionally, Puerarin modulated the activity of TFEB through the AMPK-TRPML1-Calcineurin signaling pathway, thereby enhancing autophagic flux. CONCLUSIONS AND IMPLICATIONS: Puerarin promoted flap survival from ischemic injury through upregulation of TFEB-mediated autophagy and inhibition of oxidative stress. Our findings offered valuable support for the clinical application of Puerarin in the treatment of ischemic diseases, including random-pattern flaps.


Subject(s)
Autophagy , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Human Umbilical Vein Endothelial Cells , Ischemia , Isoflavones , Pyroptosis , Reactive Oxygen Species , Isoflavones/pharmacology , Isoflavones/therapeutic use , Autophagy/drug effects , Humans , Pyroptosis/drug effects , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Ischemia/drug therapy , Ischemia/metabolism , Reactive Oxygen Species/metabolism , Animals , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Male , Oxidative Stress/drug effects , Surgical Flaps/blood supply , Mice , Signal Transduction/drug effects , Skin/drug effects , Skin/metabolism , Skin/blood supply , Skin/pathology
10.
J Biophotonics ; 17(5): e202400002, 2024 May.
Article in English | MEDLINE | ID: mdl-38596828

ABSTRACT

This article provides a comprehensive analysis of modern techniques used in the assessment of cutaneous flaps in reconstructive surgery. It emphasizes the importance of preoperative planning and intra- and perioperative assessment of flap perfusion to ensure successful outcomes. Despite technological advancements, direct clinical assessment remains the gold standard. We categorized assessment techniques into non-invasive and invasive modalities, discussing their strengths and weaknesses. Non-invasive methods, such as acoustic Doppler sonography, near-infrared spectroscopy, hyperspectral imaging thermal imaging, and remote-photoplethysmography, offer accessibility and safety but may sacrifice specificity. Invasive techniques, including contrast-enhanced ultrasound, computed tomography angiography, near-infrared fluorescence angiography with indocyanine green, and implantable Doppler probe, provide high accuracy but introduce additional risks. We emphasize the need for a tailored decision-making process based on specific clinical scenarios, patient characteristics, procedural requirements, and surgeon expertise. It also discusses potential future advancements in flap assessment, including the integration of artificial intelligence and emerging technologies.


Subject(s)
Plastic Surgery Procedures , Skin , Humans , Skin/diagnostic imaging , Skin/blood supply , Surgical Flaps/blood supply
11.
Autoimmun Rev ; 23(5): 103540, 2024 May.
Article in English | MEDLINE | ID: mdl-38604463

ABSTRACT

OBJECTIVE: Microvascular dysfunction is an early event in the pathogenesis of systemic sclerosis (SSc). The objective of this scoping review is to update the current information and the level of knowledge about the mechanisms of microvascular dysfunction in pre-SSc, very early diagnosis of SSc (VEDOSS) and early SSc. METHODS: A PubMed® database search allowed us to include original data from full-length articles in English in which the main topic was microvascular dysfunction in pre-SSC, VEDOSS or early SSc. Data was extracted using a customized form. RESULTS: In the present review 437 articles were identified, and 42 studies included, reporting data from a total of 1069 patients with pre-SSc, VEDOSS or early-SSc. Distinct mechanisms of microvascular injury were identified comprising, angiogenesis and vasculogenesis, cell surface proteins and adhesion, molecules expression, cytokines profile, inflammatory and oxidation pathways, and skin perfusion determinants. Most of the studies were conducted in early SSc, with a reduced number in pre-disease stages, in which the prompt recognition of specific mechanisms and biomarkers may allow targeted treatment to prevent disease progression. CONCLUSIONS: Although different molecular expression patterns and signaling pathways related to microvascular dysfunction in pre-SSc, VEDOSS, and early SSc were identified, additional prospective longitudinal studies and combined work with functional evaluation of peripheral skin perfusion are needed.


Subject(s)
Microcirculation , Scleroderma, Systemic , Humans , Scleroderma, Systemic/physiopathology , Early Diagnosis , Skin/blood supply , Skin/immunology , Skin/pathology , Disease Progression , Biomarkers , Neovascularization, Pathologic
12.
Ann Anat ; 254: 152262, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38582236

ABSTRACT

BACKGROUND: The perforator flap has garnered significant interest since its inception due to its advantage of not needing a vascular network at the deep fascial level. Perforator flaps are commonly utilized in different flap transplant surgeries, and the thigh flap is presently the most widely used perforator flap. Is it possible for the calf to replace the thigh as a more suitable site for harvesting materials? Currently, there is a lack of relevant anatomical research. This study aims to address this question from an anatomical and imaging perspective. METHODS: This study used cadavers to observe the branches and courses of perforators on the calf and the distribution of skin branches using microdissection techniques, digital X-ray photography, and micro-computed tomography techniques. RESULTS: The perforators had three main branches: the vertical cutaneous branch, the oblique cutaneous branch, and the superficial fascial branch. The superficial fascial branch traveled in the superficial fascia and connected with the nearby perforators. The vertical and oblique cutaneous branches entered the subdermal layer and connected with each other to create the subdermal vascular network. CONCLUSIONS: We observed an intact calf cutaneous branch chain between the cutaneous nerve and the perforator of the infrapopliteal main artery at the superficial vein site. Utilizing this anatomical structure, the calfskin branch has the potential to serve as a substitute for thigh skin flap transplantation and may be applied to perforator flap transplantation in more locations.


Subject(s)
Cadaver , Leg , Perforator Flap , Humans , Perforator Flap/blood supply , Leg/blood supply , Leg/anatomy & histology , Male , Skin/blood supply , Skin/anatomy & histology , Female , Aged , X-Ray Microtomography
13.
Lasers Med Sci ; 39(1): 109, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649643

ABSTRACT

Necrosis is common in skin flap surgeries. Photobiomodulation, a noninvasive and effective technique, holds the potential to enhance microcirculation and neovascularization. As such, it has emerged as a viable approach for mitigating the occurrence of skin flap necrosis. The aim of this systematic review was to examine the scientific literature considering the use of photobiomodulation to increase skin-flap viability. The preferred reporting items for systematic reviews and meta-analyses (PRISMA), was used to conducted systematic literature search in the databases PubMed, SCOPUS, Elsevier and, Scielo on June 2023. Included studies investigated skin-flap necrosis employing PBMT irradiation as a treatment and, at least one quantitative measure of skin-flap necrosis in any animal model. Twenty-five studies were selected from 54 original articles that addressed PBMT with low-level laser (LLL) or light-emitting diode (LED) in agreement with the qualifying requirements. Laser parameters varied markedly across studies. In the selected studies, the low-level laser in the visible red spectrum was the most frequently utilized PBMT, although the LED PBMT showed a similar improvement in skin-flap necrosis. Ninety percent of the studies assessing the outcomes of the effects of PBMT reported smaller areas of necrosis in skin flap. Studies have consistently demonstrated the ability of PBMT to improve skin flap viability in animal models. Evidence suggests that PBMT, through enhancing angiogenesis, vascular density, mast cells, and VEGF, is an effective therapy for decrease necrotic tissue in skin flap surgery.


Subject(s)
Low-Level Light Therapy , Necrosis , Surgical Flaps , Animals , Low-Level Light Therapy/methods , Skin/radiation effects , Skin/blood supply , Surgical Flaps/blood supply
14.
Physiol Res ; 73(1): 47-56, 2024 03 11.
Article in English | MEDLINE | ID: mdl-38466004

ABSTRACT

Caffeine is the most widely consumed psychoactive substance worldwide, affecting numerous tissues and organs, with notable impacts on the central nervous system, heart, and blood vessels. The effect of caffeine on vascular smooth muscle cells is an initial transient contraction followed by significant vasodilatation. In this study we investigate the use of diffuse reflectance spectroscopy (DRS) for monitoring of vascular changes in human skin induced by caffeine consumption. DRS spectra were recorded on volar sides of the forearms of eight healthy volunteers at time intervals of 0, 30, 60, 120, and 180 min after consumption of caffeine, while one subject served as a negative control. Analytical diffusion approximation solutions for diffuse reflectance from three-layer structures were used to assess skin composition (e.g. dermal blood volume fraction and oxygen saturation) by fitting these solutions to experimental data. The results demonstrate that cutaneous vasodynamics induced by caffeine consumption can be monitored by DRS, while changes in the control subject not consuming caffeine were insignificant.


Subject(s)
Caffeine , Skin , Humans , Skin/blood supply , Spectrum Analysis/methods
16.
Breast ; 75: 103704, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38460441

ABSTRACT

The pathophysiological mechanism behind complications associated with postmastectomy radiotherapy (PMRT) and subsequent implant-based breast reconstruction are not completely understood. The aim of this study was to examine if there is a relationship between PMRT and microvascular perfusion and saturation in the skin after mastectomy and assess if there is impaired responsiveness to a topically applied vasodilator (Methyl nicotinate - MN). Skin microvascular perfusion and oxygenation >2 years after PMRT were measured using white light diffuse reflectance spectroscopy (DRS) and laser Doppler flowmetry (LDF) in the irradiated chest wall of 31 women with the contralateral breast as a control. In the non-irradiated breast, the perfusion after application of MN (median 0.84, 25th-75th centile 0.59-1.02 % RBC × mm/s) was higher compared to the irradiated chest wall (median 0.51, 25th-75th centile 0.21-0.68 % RBC × mm/s, p < 0.001). The same phenomenon was noted for saturation (median 91 %, 25th-75th centile 89-94 % compared to 89 % 25th-75th centile 77-93 %, p = 0.001). Eight of the women (26%) had a ≥10 % difference in skin oxygenation between the non-irradiated breast and the irradiated chest wall. These results indicate that late microvascular changes caused by radiotherapy of the chest wall significantly affect skin perfusion and oxygenation.


Subject(s)
Breast Neoplasms , Mastectomy , Oxygen Saturation , Skin , Humans , Female , Breast Neoplasms/radiotherapy , Breast Neoplasms/surgery , Middle Aged , Skin/blood supply , Skin/radiation effects , Oxygen Saturation/radiation effects , Aged , Laser-Doppler Flowmetry , Thoracic Wall/radiation effects , Adult , Microcirculation/radiation effects , Vasodilator Agents/administration & dosage , Radiotherapy, Adjuvant/adverse effects
17.
Cell Transplant ; 33: 9636897241228922, 2024.
Article in English | MEDLINE | ID: mdl-38334047

ABSTRACT

To overcome the difficulty of vascular regeneration in exposed tendon wounds, we combined human placenta-derived mesenchymal stem cells (hPMSCs) with an artificial dermal scaffold and assessed their role in promoting vascular regeneration and wound healing in vivo. hPMSCs were isolated from the human placenta and characterized based on their morphology, phenotypic profiles, and pluripotency. New Zealand rabbits were used to establish an exposed tendon wound model, and hPMSCs and artificial dermal scaffolds were transplanted into the wounds. The results of gross wound observations and pathological sections showed that hPMSCs combined with artificial dermal scaffold transplantation increased the vascularization area of the wound, promoted wound healing, and increased the survival rate of autologous skin transplantation. Following artificial dermal scaffold transplantation, hPMSCs accelerated the vascularization of the dermal scaffold, and the number of fibroblasts, collagen fibers, and neovascularization in the dermal scaffold after 1 week were much higher than those in the control group. Immunohistochemical staining further confirmed that the expression of the vascular endothelial cell marker, CD31, was significantly higher in the combined transplantation group than in the dermal scaffold transplantation group. Our findings demonstrated that hPMSCs seeded onto artificial dermal scaffold could facilitate vascularization of the dermal scaffold and improve tendon-exposed wound healing.


Subject(s)
Mesenchymal Stem Cells , Tissue Scaffolds , Humans , Rabbits , Animals , Wound Healing , Skin/blood supply , Tendons
18.
Microvasc Res ; 153: 104666, 2024 May.
Article in English | MEDLINE | ID: mdl-38301938

ABSTRACT

OBJECTIVES: Laser Doppler Flowmetry (LDF) is a non-invasive technique for the assessment of tissue blood flow, but increased reproducibility would facilitate longitudinal studies. The aim of the study was to assess the interday reproducibility of Laser Doppler Flowmetry (LDF) at rest, at elevated local temperatures, and with the use of the vasodilator Methyl Nicotinate (MN) in six interconnected protocols for the measurement of the blood supply to the microvascular bed of the gingiva. METHODS: Ten healthy volunteers were included. Interweek LDF measurements with custom-made acrylic splints were performed. Six protocols were applied in separate regions of interest (ROI): 1; basal LDF, 2; LDF with thermoprobe 42 °C, 3; LDF with thermoprobe 45 °C, 4; LDF with thermoprobe 42 °C and MN, 5; LDF with thermoprobe 45 °C and MN and 6; LDF with MN. RESULTS: Intra-individual reproducibility was assessed by the within-subject coefficient of variation (wCV) and the intraclass correlation coefficient (ICC). Basal LDF measurements demonstrated high reproducibility with wCV 11.1 in 2 min and 10.3 in 5 min. ICC was 0.9 and 0.92. wCV after heat and MN was 4.9-10.3 and ICC 0.82-0.93. The topically applied MN yielded increased blood flow. CONCLUSION: This is the first study evaluating the reproducibility of basal LDF compared to single or multiple vasodilatory stimuli in gingiva. Multiple collector fibers probe and stabilizing acrylic splints are recommended. Vasodilatory stimulation showed a tendency toward higher reproducibility. Furthermore, MN yields vasodilation in gingiva.


Subject(s)
Gingiva , Skin , Humans , Microcirculation , Laser-Doppler Flowmetry/methods , Reproducibility of Results , Skin/blood supply , Regional Blood Flow
19.
IEEE Trans Biomed Eng ; 71(6): 1937-1949, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38241110

ABSTRACT

Camera-based photoplethysmographic imaging enabled the segmentation of living-skin tissues in a video, but it has inherent limitations to be used in real-life applications such as video health monitoring and face anti-spoofing. Inspired by the use of polarization for improving vital signs monitoring (i.e. specular reflection removal), we observed that skin tissues have an attractive property of wavelength-dependent depolarization due to its multi-layer structure containing different absorbing chromophores, i.e. polarized light photons with longer wavelengths (R) have deeper skin penetrability and thus experience thorougher depolarization than those with shorter wavelengths (G and B). Thus we proposed a novel dual-polarization setup and an elegant algorithm (named "MSD") that exploits the nature of multispectral depolarization of skin tissues to detect living-skin pixels, which only requires two images sampled at the parallel and cross polarizations to estimate the characteristic chromaticity changes (R/G) caused by tissue depolarization. Our proposal was verified in both the laboratory and hospital settings (ICU and NICU) focused on anti-spoofing and patient skin segmentation. The clinical experiments in ICU also indicate the potential of MSD for skin perfusion analysis, which may lead to a new diagnostic imaging approach in the future.


Subject(s)
Algorithms , Photoplethysmography , Skin , Humans , Skin/diagnostic imaging , Skin/blood supply , Photoplethysmography/methods , Signal Processing, Computer-Assisted , Image Processing, Computer-Assisted/methods , Skin Physiological Phenomena
20.
IEEE Trans Med Imaging ; 43(6): 2074-2085, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38241120

ABSTRACT

Ultra-wideband raster-scan optoacoustic mesoscopy (RSOM) is a novel modality that has demonstrated unprecedented ability to visualize epidermal and dermal structures in-vivo. However, an automatic and quantitative analysis of three-dimensional RSOM datasets remains unexplored. In this work we present our framework: Deep Learning RSOM Analysis Pipeline (DeepRAP), to analyze and quantify morphological skin features recorded by RSOM and extract imaging biomarkers for disease characterization. DeepRAP uses a multi-network segmentation strategy based on convolutional neural networks with transfer learning. This strategy enabled the automatic recognition of skin layers and subsequent segmentation of dermal microvasculature with an accuracy equivalent to human assessment. DeepRAP was validated against manual segmentation on 25 psoriasis patients under treatment and our biomarker extraction was shown to characterize disease severity and progression well with a strong correlation to physician evaluation and histology. In a unique validation experiment, we applied DeepRAP in a time series sequence of occlusion-induced hyperemia from 10 healthy volunteers. We observe how the biomarkers decrease and recover during the occlusion and release process, demonstrating accurate performance and reproducibility of DeepRAP. Furthermore, we analyzed a cohort of 75 volunteers and defined a relationship between aging and microvascular features in-vivo. More precisely, this study revealed that fine microvascular features in the dermal layer have the strongest correlation to age. The ability of our newly developed framework to enable the rapid study of human skin morphology and microvasculature in-vivo promises to replace biopsy studies, increasing the translational potential of RSOM.


Subject(s)
Biomarkers , Photoacoustic Techniques , Psoriasis , Skin , Humans , Psoriasis/diagnostic imaging , Photoacoustic Techniques/methods , Skin/diagnostic imaging , Skin/blood supply , Deep Learning , Machine Learning , Adult , Skin Aging/physiology , Female , Middle Aged , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...