Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.665
Filter
2.
Biomed Phys Eng Express ; 10(4)2024 May 21.
Article in English | MEDLINE | ID: mdl-38718764

ABSTRACT

Evaluation of skin recovery is an important step in the treatment of burns. However, conventional methods only observe the surface of the skin and cannot quantify the injury volume. Optical coherence tomography (OCT) is a non-invasive, non-contact, real-time technique. Swept source OCT uses near infrared light and analyzes the intensity of light echo at different depths to generate images from optical interference signals. To quantify the dynamic recovery of skin burns over time, laser induced skin burns in mice were evaluated using deep learning of Swept source OCT images. A laser-induced mouse skin thermal injury model was established in thirty Kunming mice, and OCT images of normal and burned areas of mouse skin were acquired at day 0, day 1, day 3, day 7, and day 14 after laser irradiation. This resulted in 7000 normal and 1400 burn B-scan images which were divided into training, validation, and test sets at 8:1.5:0.5 ratio for the normal data and 8:1:1 for the burn data. Normal images were manually annotated, and the deep learning U-Net model (verified with PSPNe and HRNet models) was used to segment the skin into three layers: the dermal epidermal layer, subcutaneous fat layer, and muscle layer. For the burn images, the models were trained to segment just the damaged area. Three-dimensional reconstruction technology was then used to reconstruct the damaged tissue and calculate the damaged tissue volume. The average IoU value and f-score of the normal tissue layer U-Net segmentation model were 0.876 and 0.934 respectively. The IoU value of the burn area segmentation model reached 0.907 and f-score value reached 0.951. Compared with manual labeling, the U-Net model was faster with higher accuracy for skin stratification. OCT and U-Net segmentation can provide rapid and accurate analysis of tissue changes and clinical guidance in the treatment of burns.


Subject(s)
Burns , Deep Learning , Image Processing, Computer-Assisted , Lasers , Skin , Tomography, Optical Coherence , Tomography, Optical Coherence/methods , Animals , Burns/diagnostic imaging , Mice , Skin/diagnostic imaging , Image Processing, Computer-Assisted/methods , Algorithms
4.
Comput Biol Med ; 175: 108549, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38704901

ABSTRACT

In this paper, we propose a multi-task learning (MTL) network based on the label-level fusion of metadata and hand-crafted features by unsupervised clustering to generate new clustering labels as an optimization goal. We propose a MTL module (MTLM) that incorporates an attention mechanism to enable the model to learn more integrated, variable information. We propose a dynamic strategy to adjust the loss weights of different tasks, and trade off the contributions of multiple branches. Instead of feature-level fusion, we propose label-level fusion and combine the results of our proposed MTLM with the results of the image classification network to achieve better lesion prediction on multiple dermatological datasets. We verify the effectiveness of the proposed model by quantitative and qualitative measures. The MTL network using multi-modal clues and label-level fusion can yield the significant performance improvement for skin lesion classification.


Subject(s)
Skin , Humans , Skin/diagnostic imaging , Skin/pathology , Image Interpretation, Computer-Assisted/methods , Machine Learning , Skin Neoplasms/diagnostic imaging , Skin Neoplasms/pathology , Neural Networks, Computer , Algorithms , Skin Diseases/diagnostic imaging
5.
Arch Dermatol Res ; 316(6): 275, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796546

ABSTRACT

PURPOSE: A skin lesion refers to an area of the skin that exhibits anomalous growth or distinctive visual characteristics compared to the surrounding skin. Benign skin lesions are noncancerous and generally pose no threat. These irregular skin growths can vary in appearance. On the other hand, malignant skin lesions correspond to skin cancer, which happens to be the most prevalent form of cancer in the United States. Skin cancer involves the unusual proliferation of skin cells anywhere on the body. The conventional method for detecting skin cancer is relatively more painful. METHODS: This work involves the automated prediction of skin cancer and its types using two stage Convolutional Neural Network (CNN). The first stage of CNN extracts low level features and second stage extracts high level features. Feature selection is done using these two CNN and ABCD (Asymmetry, Border irregularity, Colour variation, and Diameter) technique. The features extracted from the two CNNs are fused with ABCD features and fed into classifiers for the final prediction. The classifiers employed in this work include ensemble learning methods such as gradient boosting and XG boost, as well as machine learning classifiers like decision trees and logistic regression. This methodology is evaluated using the International Skin Imaging Collaboration (ISIC) 2018 and 2019 dataset. RESULTS: As a result, the first stage CNN which is used for creation of new dataset achieved an accuracy of 97.92%. Second stage CNN which is used for feature selection achieved an accuracy of 98.86%. Classification results are obtained for both with and without fusion of features. CONCLUSION: Therefore, two stage prediction model achieved better results with feature fusion.


Subject(s)
Melanoma , Neural Networks, Computer , Skin Neoplasms , Humans , Melanoma/diagnosis , Melanoma/pathology , Skin Neoplasms/diagnosis , Skin Neoplasms/pathology , Skin/pathology , Skin/diagnostic imaging , Machine Learning , Deep Learning , Image Interpretation, Computer-Assisted/methods , Melanoma, Cutaneous Malignant , Dermoscopy/methods
6.
Article in English | MEDLINE | ID: mdl-38705507

ABSTRACT

BACKGROUND: Skin-picking disorder (SPD) is conceptualized as an obsessive-compulsive and related disorder (OCRD). Patients with SPD excessively manipulate their skin, which leads to skin lesions, psychological distress, and functional impairment. The neuroanatomical facets of this disorder are still poorly understood. METHODS: A total of 220 participants (123 patients with a primary diagnosis of SPD and 97 healthy controls; mean age = 30 years, 80% female) were recruited for a voxel-based morphometry (VBM) study. VBM data were compared between patients and controls, and between three SPD subgroups, each characterized by a distinct age of symptom onset (before puberty, during puberty, adulthood). RESULTS: Relative to the healthy comparison group, patients with SPD had significantly less grey matter volume (GMV) in regions of interest (ROIs: insula, orbitofrontal cortex, pallidum, cerebellum, supramarginal gyrus) and in the frontal pole and occipital regions (whole-brain findings). Early onset of symptoms (before puberty) was associated with elevated levels of focused skin-picking, in addition to less GMV in specific ROIs (insula, orbitofrontal cortex) as well as in paracingulate/ superior temporal regions (whole-brain findings). CONCLUSIONS: SPD-related reductions in GMV were identified in brain regions involved in interoception, emotion regulation, and motor control. This partially aligns with findings for OCD. The detection of different age-of-onset groups based on clinical as well as morphometric data points to the heterogeneity of the disorder and warrants further investigation.


Subject(s)
Brain , Gray Matter , Magnetic Resonance Imaging , Neuroimaging , Obsessive-Compulsive Disorder , Humans , Female , Male , Adult , Magnetic Resonance Imaging/methods , Obsessive-Compulsive Disorder/diagnostic imaging , Obsessive-Compulsive Disorder/pathology , Neuroimaging/methods , Gray Matter/diagnostic imaging , Gray Matter/pathology , Brain/diagnostic imaging , Brain/pathology , Skin/diagnostic imaging , Skin/pathology , Young Adult
7.
BMC Med Inform Decis Mak ; 24(1): 124, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750526

ABSTRACT

BACKGROUND: Spatial molecular profiling depends on accurate cell segmentation. Identification and quantitation of individual cells in dense tissues, e.g. highly inflamed tissue caused by viral infection or immune reaction, remains a challenge. METHODS: We first assess the performance of 18 deep learning-based cell segmentation models, either pre-trained or trained by us using two public image sets, on a set of immunofluorescence images stained with immune cell surface markers in skin tissue obtained during human herpes simplex virus (HSV) infection. We then further train eight of these models using up to 10,000+ training instances from the current image set. Finally, we seek to improve performance by tuning parameters of the most successful method from the previous step. RESULTS: The best model before fine-tuning achieves a mean Average Precision (mAP) of 0.516. Prediction performance improves substantially after training. The best model is the cyto model from Cellpose. After training, it achieves an mAP of 0.694; with further parameter tuning, the mAP reaches 0.711. CONCLUSION: Selecting the best model among the existing approaches and further training the model with images of interest produce the most gain in prediction performance. The performance of the resulting model compares favorably to human performance. The imperfection of the final model performance can be attributed to the moderate signal-to-noise ratio in the imageset.


Subject(s)
Deep Learning , Humans , Image Processing, Computer-Assisted/methods , Herpes Simplex , Skin/diagnostic imaging , Biomarkers
8.
Phys Med Biol ; 69(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38759672

ABSTRACT

Objective.This study aimed to develop a new approach to predict radiation dermatitis (RD) by using the skin dose distribution in the actual area of RD occurrence to determine the predictive dose by grade.Approach.Twenty-three patients with head and neck cancer treated with volumetric modulated arc therapy were prospectively and retrospectively enrolled. A framework was developed to segment the RD occurrence area in skin photography by matching the skin surface image obtained using a 3D camera with the skin dose distribution. RD predictive doses were generated using the dose-toxicity surface histogram (DTH) calculated from the skin dose distribution within the segmented RD regions classified by severity. We then evaluated whether the developed DTH-based framework could visually predict RD grades and their occurrence areas and shapes according to severity.Main results.The developed framework successfully generated the DTH for three different RD severities: faint erythema (grade 1), dry desquamation (grade 2), and moist desquamation (grade 3); 48 DTHs were obtained from 23 patients: 23, 22, and 3 DTHs for grades 1, 2, and 3, respectively. The RD predictive doses determined using DTHs were 28.9 Gy, 38.1 Gy, and 54.3 Gy for grades 1, 2, and 3, respectively. The estimated RD occurrence area visualized by the DTH-based RD predictive dose showed acceptable agreement for all grades compared with the actual RD region in the patient. The predicted RD grade was accurate, except in two patients.Significance. The developed DTH-based framework can classify and determine RD predictive doses according to severity and visually predict the occurrence area and shape of different RD severities. The proposed approach can be used to predict the severity and shape of potential RD in patients and thus aid physicians in decision making.


Subject(s)
Radiodermatitis , Humans , Radiodermatitis/etiology , Male , Female , Middle Aged , Radiotherapy, Intensity-Modulated/adverse effects , Head and Neck Neoplasms/radiotherapy , Aged , Radiotherapy Dosage , Severity of Illness Index , Radiation Dosage , Skin/radiation effects , Skin/diagnostic imaging , Skin/pathology
9.
Comput Biol Med ; 176: 108594, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38761501

ABSTRACT

Skin cancer is one of the common types of cancer. It spreads quickly and is not easy to detect in the early stages, posing a major threat to human health. In recent years, deep learning methods have attracted widespread attention for skin cancer detection in dermoscopic images. However, training a practical classifier becomes highly challenging due to inter-class similarity and intra-class variation in skin lesion images. To address these problems, we propose a multi-scale fusion structure that combines shallow and deep features for more accurate classification. Simultaneously, we implement three approaches to the problem of class imbalance: class weighting, label smoothing, and resampling. In addition, the HAM10000_RE dataset strips out hair features to demonstrate the role of hair features in the classification process. We demonstrate that the region of interest is the most critical classification feature for the HAM10000_SE dataset, which segments lesion regions. We evaluated the effectiveness of our model using the HAM10000 and ISIC2019 dataset. The results showed that this method performed well in dermoscopic classification tasks, with ACC and AUC of 94.0% and 99.3%, on the HAM10000 dataset and ACC of 89.8% for the ISIC2019 dataset. The overall performance of our model is excellent in comparison to state-of-the-art models.


Subject(s)
Dermoscopy , Skin Neoplasms , Humans , Skin Neoplasms/diagnostic imaging , Skin Neoplasms/pathology , Skin Neoplasms/classification , Dermoscopy/methods , Deep Learning , Image Interpretation, Computer-Assisted/methods , Skin/diagnostic imaging , Skin/pathology , Databases, Factual , Algorithms
10.
Sci Data ; 11(1): 536, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796545

ABSTRACT

Spectral imaging has the potential to become a key technique in interventional medicine as it unveils much richer optical information compared to conventional RBG (red, green, and blue)-based imaging. Thus allowing for high-resolution functional tissue analysis in real time. Its higher information density particularly shows promise for the development of powerful perfusion monitoring methods for clinical use. However, even though in vivo validation of such methods is crucial for their clinical translation, the biomedical field suffers from a lack of publicly available datasets for this purpose. Closing this gap, we generated the SPECTRAL Perfusion Arm Clamping dAtaset (SPECTRALPACA). It comprises ten spectral videos (∼20 Hz, approx. 20,000 frames each) systematically recorded of the hands of ten healthy human participants in different functional states. We paired each spectral video with concisely tracked regions of interest, and corresponding diffuse reflectance measurements recorded with a spectrometer. Providing the first openly accessible in human spectral video dataset for perfusion monitoring, our work facilitates the development and validation of new functional imaging methods.


Subject(s)
Skin , Humans , Skin/blood supply , Skin/diagnostic imaging , Video Recording , Hand/blood supply , Arm/blood supply , Arm/diagnostic imaging
11.
Arch Dermatol Res ; 316(6): 210, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38787399

ABSTRACT

Basal Cell Carcinoma (BCC) is the most prevalent skin cancer and continues to witness a surge in incidence rates. The categorization of BCC subtypes into low or high risk, guided by recurrence and invasiveness metrics, underscores the need for precise differentiation. While the punch biopsy remains the gold standard for diagnosis, its invasiveness prompts a need for non-invasive alternatives. Ultrasound (US) has emerged as a noteworthy candidate, gaining momentum in its potential to offer a less intrusive diagnostic approach. We conducted a systematic review regarding features of the high-risk subtypes of BCC on US. A thorough literature search of PubMed Medline, Embase, and CINAHL databases was conducted according to PRISMA guidelines and a total of nine studies meeting our inclusion criteria were included in this review. Evidence is still nascent but US features such as lesional shape, depth, hyperechoic spots, and color doppler may be helpful in differentiating high-risk BCC subtypes. However, further prospective studies with standardized interventions and outcome measures are required.


Subject(s)
Carcinoma, Basal Cell , Skin Neoplasms , Carcinoma, Basal Cell/diagnostic imaging , Carcinoma, Basal Cell/pathology , Carcinoma, Basal Cell/diagnosis , Carcinoma, Basal Cell/epidemiology , Humans , Skin Neoplasms/diagnostic imaging , Skin Neoplasms/pathology , Skin Neoplasms/diagnosis , Skin/diagnostic imaging , Skin/pathology , Ultrasonography, Doppler, Color/methods , Ultrasonography/methods , Biopsy
12.
Ultrasound Med Biol ; 50(7): 1045-1057, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38702285

ABSTRACT

OBJECTIVE: This study aimed to realise 3-D super-resolution ultrasound imaging transcutaneously with a row-column array which has far fewer independent electronic channels and a wider field of view than typical fully addressed 2-D matrix arrays. The in vivo image quality of the row-column array is generally poor, particularly when imaging non-invasively. This study aimed to develop a suite of image formation and post-processing methods to improve image quality and demonstrate the feasibility of ultrasound localisation microscopy using a row-column array, transcutaneously on a rabbit model and in a human. METHODS: To achieve this, a processing pipeline was developed which included a new type of rolling window image reconstruction, which integrated a row-column array specific coherence-based beamforming technique with acoustic sub-aperture processing. This and other processing steps reduced the 'secondary' lobe artefacts, and noise and increased the effective frame rate, thereby enabling ultrasound localisation images to be produced. RESULTS: Using an in vitro cross tube, it was found that the procedure reduced the percentage of 'false' locations from ∼26% to ∼15% compared to orthogonal plane wave compounding. Additionally, it was found that the noise could be reduced by ∼7 dB and the effective frame rate was increased to over 4000 fps. In vivo, ultrasound localisation microscopy was used to produce images non-invasively of a rabbit kidney and a human thyroid. CONCLUSION: It has been demonstrated that the proposed methods using a row-column array can produce large field of view super-resolution microvascular images in vivo and in a human non-invasively.


Subject(s)
Imaging, Three-Dimensional , Ultrasonography , Rabbits , Animals , Humans , Ultrasonography/methods , Imaging, Three-Dimensional/methods , Equipment Design , Phantoms, Imaging , Skin/diagnostic imaging , Feasibility Studies
13.
Methods Mol Biol ; 2801: 177-187, 2024.
Article in English | MEDLINE | ID: mdl-38578421

ABSTRACT

In this chapter, we provide detailed instructions to perform quantitative reflectance imaging in a mouse model of a rare epidermal disorder caused by hyperactive connexin 26 hemichannels. Reflectance imaging is a versatile and powerful tool in dermatology, offering noninvasive, high-resolution insights into skin pathology, which is essential for both clinical practice and research. This approach offers several advantages and applications. Unlike traditional biopsy, reflectance imaging is noninvasive, allowing for real-time, in vivo examination of the skin. This is particularly valuable for monitoring chronic conditions or assessing the efficacy of treatments over time, enabling the detailed examination of skin morphology. This is crucial for identifying features of skin diseases such as cancers, inflammatory conditions, and infections. In therapeutic applications, reflectance imaging can be used to monitor the response of skin lesions to treatments. It can help in identifying the most representative area of a lesion for biopsy, thereby increasing the diagnostic accuracy. Reflectance imaging can also be used to diagnose and monitor inflammatory skin diseases, like psoriasis and eczema, by visualizing changes in skin structure and cellular infiltration. As the technology becomes more accessible, it has potential in telemedicine, allowing for remote diagnosis and monitoring of skin conditions. In academic settings, reflectance imaging can be a powerful research tool, enabling the study of skin pathology and the effects of novel treatments, including the development of monoclonal antibodies for therapeutic applications.


Subject(s)
Skin Diseases , Skin , Mice , Animals , Skin/diagnostic imaging , Skin Diseases/diagnosis , Skin Diseases/pathology , Epidermis/pathology
14.
Skin Res Technol ; 30(4): e13679, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38616503

ABSTRACT

BACKGROUND: Injectable filler, a nonsurgical beauty method, has gained popularity in rejuvenating sagging skin. In this study, polydioxanone (PDO) was utilized as the main component of the ULTRACOL200 filler that helps stimulate collagenesis and provide skin radiant effects. The study aimed to evaluate and compare the effectiveness of ULTRACOL200 with other commercialized products in visually improving dermatological problems. METHODS: Herein, 31 participants aged between 20 and 59 years were enrolled in the study. 1 mL of the testing product, as well as the quantity for the compared groups was injected into each participants face side individually. Subsequently, skin texture and sunken volume of skin were measured using ANTERA 3D CS imaging technology at three periods: before the application, 4 weeks after the initial application, and 4 weeks after the 2nd application of ULTRACOL200. RESULTS: The final results of skin texture and wrinkle volume evaluation consistently demonstrated significant enhancement. Consequently, subjective questionnaires were provided to the participants to evaluate the efficacy of the testing product, illustrating satisfactory responses after the twice applications. CONCLUSION: The investigation has contributed substantially to the comprehension of a PDO-based filler (ULTRACOL200) for skin enhancement and provided profound insight for future clinical trials.


Subject(s)
Nasolabial Fold , Skin Transplantation , Humans , Young Adult , Adult , Middle Aged , Skin/diagnostic imaging , Imaging, Three-Dimensional , Technology
15.
Sci Rep ; 14(1): 9336, 2024 04 23.
Article in English | MEDLINE | ID: mdl-38653997

ABSTRACT

Skin cancer is the most prevalent kind of cancer in people. It is estimated that more than 1 million people get skin cancer every year in the world. The effectiveness of the disease's therapy is significantly impacted by early identification of this illness. Preprocessing is the initial detecting stage in enhancing the quality of skin images by removing undesired background noise and objects. This study aims is to compile preprocessing techniques for skin cancer imaging that are currently accessible. Researchers looking into automated skin cancer diagnosis might use this article as an excellent place to start. The fully convolutional encoder-decoder network and Sparrow search algorithm (FCEDN-SpaSA) are proposed in this study for the segmentation of dermoscopic images. The individual wolf method and the ensemble ghosting technique are integrated to generate a neighbour-based search strategy in SpaSA for stressing the correct balance between navigation and exploitation. The classification procedure is accomplished by using an adaptive CNN technique to discriminate between normal skin and malignant skin lesions suggestive of disease. Our method provides classification accuracies comparable to commonly used incremental learning techniques while using less energy, storage space, memory access, and training time (only network updates with new training samples, no network sharing). In a simulation, the segmentation performance of the proposed technique on the ISBI 2017, ISIC 2018, and PH2 datasets reached accuracies of 95.28%, 95.89%, 92.70%, and 98.78%, respectively, on the same dataset and assessed the classification performance. It is accurate 91.67% of the time. The efficiency of the suggested strategy is demonstrated through comparisons with cutting-edge methodologies.


Subject(s)
Algorithms , Dermoscopy , Neural Networks, Computer , Skin Neoplasms , Humans , Skin Neoplasms/diagnosis , Skin Neoplasms/diagnostic imaging , Skin Neoplasms/classification , Skin Neoplasms/pathology , Dermoscopy/methods , Image Processing, Computer-Assisted/methods , Image Interpretation, Computer-Assisted/methods , Skin/pathology , Skin/diagnostic imaging
16.
Exp Dermatol ; 33(4): e15076, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38610095

ABSTRACT

Nonmelanoma skin cancers remain the most widely diagnosed types of cancers globally. Thus, for optimal patient management, it has become imperative that we focus our efforts on the detection and monitoring of cutaneous field carcinogenesis. The concept of field cancerization (or field carcinogenesis), introduced by Slaughter in 1953 in the context of oral cancer, suggests that invasive cancer may emerge from a molecularly and genetically altered field affecting a substantial area of underlying tissue including the skin. A carcinogenic field alteration, present in precancerous tissue over a relatively large area, is not easily detected by routine visualization. Conventional dermoscopy and microscopy imaging are often limited in assessing the entire carcinogenic landscape. Recent efforts have suggested the use of noninvasive mesoscopic (between microscopic and macroscopic) optical imaging methods that can detect chronic inflammatory features to identify pre-cancerous and cancerous angiogenic changes in tissue microenvironments. This concise review covers major types of mesoscopic optical imaging modalities capable of assessing pro-inflammatory cues by quantifying blood haemoglobin parameters and hemodynamics. Importantly, these imaging modalities demonstrate the ability to detect angiogenesis and inflammation associated with actinically damaged skin. Representative experimental preclinical and human clinical studies using these imaging methods provide biological and clinical relevance to cutaneous field carcinogenesis in altered tissue microenvironments in the apparently normal epidermis and dermis. Overall, mesoscopic optical imaging modalities assessing chronic inflammatory hyperemia can enhance the understanding of cutaneous field carcinogenesis, offer a window of intervention and monitoring for actinic keratoses and nonmelanoma skin cancers and maximise currently available treatment options.


Subject(s)
Cues , Skin Neoplasms , Humans , Skin Neoplasms/diagnostic imaging , Carcinogenesis , Skin/diagnostic imaging , Carcinogens , Inflammation/diagnostic imaging , Tumor Microenvironment
17.
J Biomed Opt ; 29(4): 046003, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38650893

ABSTRACT

Significance: Current methods for wound healing assessment rely on visual inspection, which gives qualitative information. Optical methods allow for quantitative non-invasive measurements of optical properties relevant to wound healing. Aim: Spatial frequency domain imaging (SFDI) measures the absorption and reduced scattering coefficients of tissue. Typically, SFDI assumes homogeneous tissue; however, layered structures are present in skin. We evaluate a multi-frequency approach to process SFDI data that estimates depth-specific scattering over differing penetration depths. Approach: Multi-layer phantoms were manufactured to mimic wound healing scattering contrast in depth. An SFDI device imaged these phantoms and data were processed according to our multi-frequency approach. The depth sensitive data were then compared with a two-layer scattering model based on light fluence. Results: The measured scattering from the phantoms changed with spatial frequency as our two-layer model predicted. The performance of two δ-P1 models solutions for SFDI was consistently better than the standard diffusion approximation. Conclusions: We presented an approach to process SFDI data that returns depth-resolved scattering contrast. This method allows for the implementation of layered optical models that more accurately represent physiologic parameters in thin tissue structures as in wound healing.


Subject(s)
Phantoms, Imaging , Scattering, Radiation , Skin , Skin/diagnostic imaging , Skin/chemistry , Humans , Models, Biological , Light , Wound Healing/physiology , Optical Imaging/methods , Image Processing, Computer-Assisted/methods
18.
J Dermatol Sci ; 114(2): 71-78, 2024 May.
Article in English | MEDLINE | ID: mdl-38644095

ABSTRACT

BACKGROUND: Photoacoustic microscopy is expected to have clinical applications as a noninvasive and three-dimensional (3D) method of observing intradermal structures. OBJECTIVE: Investigate the applicability of a photoacoustic microscope equipped with two types of pulsed lasers that can simultaneously recognize hemoglobin and melanin. METHODS: 16 skin lesions including erythema, pigmented lesions, vitiligo and purpura, were analyzed to visualize 3D structure of melanin granule distribution and dermal blood vessels. 13 cases of livedo racemosa in cutaneous polyarteritis nodosa (cPN) were further analyzed to visualize the 3D structure of dermal blood vessels in detail. Vascular structure was also analyzed in the biopsy specimens obtained from tender indurated erythema of cPN by CD34 immunostaining. RESULTS: Hemoglobin-recognition signal clearly visualized the 3D structure of dermal blood vessels and melanin-recognition signal was consistently reduced in vitiligo. In livedo racemosa, the hemoglobin-recognition signal revealed a relatively thick and large reticular structure in the deeper layers that became denser and finer toward the upper layers. The numerical analysis revealed that the number of dermal blood vessels was 1.29-fold higher (p<0.05) in the deeper region of the lesion than that of normal skin. The CD34 immunohistochemical analysis in tender indurated erythema revealed an increased number of dermal vessels compared with normal skin in 88.9% (8/9) of the cases, suggesting that vascular network remodeling had occurred in cPN. CONCLUSION: The photoacoustic system has an advantage in noninvasively detecting dermal blood vessel structures that are difficult to recognize by two-dimensional histopathology specimen examination and is worth evaluating in various skin diseases.


Subject(s)
Imaging, Three-Dimensional , Melanins , Photoacoustic Techniques , Polyarteritis Nodosa , Skin , Humans , Photoacoustic Techniques/methods , Male , Middle Aged , Female , Melanins/analysis , Adult , Imaging, Three-Dimensional/methods , Polyarteritis Nodosa/diagnostic imaging , Polyarteritis Nodosa/pathology , Polyarteritis Nodosa/diagnosis , Skin/pathology , Skin/diagnostic imaging , Skin/blood supply , Aged , Blood Vessels/diagnostic imaging , Blood Vessels/pathology , Hemoglobins/analysis , Biopsy , Young Adult , Microscopy/methods , Livedo Reticularis/pathology , Livedo Reticularis/diagnostic imaging , Antigens, CD34/analysis , Antigens, CD34/metabolism
19.
J Biophotonics ; 17(5): e202400002, 2024 May.
Article in English | MEDLINE | ID: mdl-38596828

ABSTRACT

This article provides a comprehensive analysis of modern techniques used in the assessment of cutaneous flaps in reconstructive surgery. It emphasizes the importance of preoperative planning and intra- and perioperative assessment of flap perfusion to ensure successful outcomes. Despite technological advancements, direct clinical assessment remains the gold standard. We categorized assessment techniques into non-invasive and invasive modalities, discussing their strengths and weaknesses. Non-invasive methods, such as acoustic Doppler sonography, near-infrared spectroscopy, hyperspectral imaging thermal imaging, and remote-photoplethysmography, offer accessibility and safety but may sacrifice specificity. Invasive techniques, including contrast-enhanced ultrasound, computed tomography angiography, near-infrared fluorescence angiography with indocyanine green, and implantable Doppler probe, provide high accuracy but introduce additional risks. We emphasize the need for a tailored decision-making process based on specific clinical scenarios, patient characteristics, procedural requirements, and surgeon expertise. It also discusses potential future advancements in flap assessment, including the integration of artificial intelligence and emerging technologies.


Subject(s)
Plastic Surgery Procedures , Skin , Humans , Skin/diagnostic imaging , Skin/blood supply , Surgical Flaps/blood supply
20.
Skin Res Technol ; 30(4): e13704, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38627927

ABSTRACT

BACKGROUND/PURPOSE: Because atopic dermatitis (AD) is a chronic inflammatory skin condition that causes structural changes, there is a growing need for noninvasive research methods to evaluate this condition. Hyperspectral imaging (HSI) captures skin structure features by exploiting light wavelength variations in penetration depth. In this study, parameter-based transfer learning was deployed to classify the severity of AD using HSI. Therefore, we aimed to obtain an optimal combination of classification results from the four models after constructing different source- and target-domain datasets. METHODS: We designated psoriasis, skin cancer, eczema, and AD datasets as the source datasets, and the set of images acquired via hyperspectral camera as the target dataset for wavelength-specific AD classification. We compared the severity classification performances of 96 combinations of sources, models, and targets. RESULTS: The highest classification performance of 83% was achieved when ResNet50 was trained on the augmented psoriasis dataset as the source, with the resulting parameters used to train the model on the target Near-infrared radiation (NIR) dataset. The second highest classification accuracy of 81% was achieved when ResNet50 was trained on the unaugmented psoriasis dataset as the source, with the resulting parameters used to train the model on the target R dataset. ResNet50 demonstrated potential as a generalized model for both the source and target data, also confirming that the psoriasis dataset is an effective training resource. CONCLUSION: The present study not only demonstrates the feasibility of the severity classification of AD based on hyperspectral images, but also showcases combinations and research scalability for domain exploration.


Subject(s)
Dermatitis, Atopic , Psoriasis , Humans , Dermatitis, Atopic/diagnostic imaging , Hyperspectral Imaging , Skin/diagnostic imaging , Psoriasis/diagnostic imaging , Machine Learning
SELECTION OF CITATIONS
SEARCH DETAIL
...