Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 390
Filter
1.
Skin Res Technol ; 30(5): e13717, 2024 May.
Article in English | MEDLINE | ID: mdl-38716757

ABSTRACT

BACKGROUND: Emerging observational studies showed an association between dyslipidemia and aging. However, it remains unclear whether this association is causal, particularly in the case of Asians, which are aging more rapidly than other continents. Given the visible manifestations of aging often include changes in facial appearance, the objective of this study is to assess the causal relationship between dyslipidemia and facial aging in East Asian populations. METHODS: SNPs related to dyslipidemia in East Asian people such as Total cholesterol (TC), High-density-lipoprotein cholesterol (HDL), Low-density-lipoprotein cholesterol (LDL), and Triglyceride (TG) along with outcomes data on facial aging, were extracted from public genome-wide association studies (GWAS). A two-sample Mendelian randomization (MR) analysis was then performed using publicly available GWAS data to investigate the potential causal relationship. The effect estimates were primarily calculated using the fixed-effects inverse variance weighted (IVW) method. RESULTS: Totally, 88 SNPs related to HDL among 70657 East Asian participants in GWAS. Based on the primary causal effects model using MR analyses with the IVW method, high HDL level was demonstrated as significantly related to the risk of facial aging (OR, 1.060; 95% CI, 1.005-1.119, p = 0.034), while high TC level (OR, 0.995; 95% CI, 0.920-1.076, p = 0.903), high LDL level (OR, 0.980, 95% CI, 0.924-1.041, p = 0.515), as well as high TG level (OR, 0.999, 95% CI, 0.932-1.071, p = 0.974), showed no significant correlation with facial aging. CONCLUSIONS: The two-sample MR analysis conducted in this study revealed a positive causal relationship between high HDL levels and facial aging. In contrast, facial aging demonstrated no significant correlation with high levels of TC, LDL, or TG. Further large-sample prospective studies are needed to validate these findings and to provide appropriate recommendations regarding nutrition management to delay the aging process among old patients in East Asia.


Subject(s)
Asian People , Dyslipidemias , Genome-Wide Association Study , Mendelian Randomization Analysis , Polymorphism, Single Nucleotide , Humans , Dyslipidemias/genetics , Dyslipidemias/blood , Asian People/genetics , Risk Factors , Skin Aging/genetics , Face , Asia, Eastern , Female , Aging/genetics , Cholesterol, HDL/blood , Male , East Asian People
2.
Skin Res Technol ; 30(5): e13637, 2024 May.
Article in English | MEDLINE | ID: mdl-38783624

ABSTRACT

BACKGROUND: Photo-ageing is a form of skin ageing which affects the entire face. A photo-aged skin has a diverse variety of wrinkles and dyspigmentation all over the face. Here, we discuss photo-ageing on the Chinese skin evaluated using a photo-numeric scale developed and validated on Caucasian skin (i.e., Caucasian scale) and evaluated using a photo-numeric scale developed and validated on Korean skin (i.e., Korean scale). The Korean scale can be subdivided into two scales that separately address the wrinkling and dyspigmentation constituents of photo-ageing. AIM: As there are currently no photo-ageing scales for Chinese skin, the main objective of this study is to adapt existing photo-ageing photo-numeric scales for use on ethnic Chinese skin. METHOD: Three trained assessors studied facial photo-ageing on 1,081 ethnic Chinese young adults from the Singapore/Malaysia Cross-sectional Genetics Epidemiology Study (SMCGES) cohort. RESULTS: All assessors are highly internally consistent (Weighted Kappa (κw) values≥0.952). We found that the Caucasian scale and Korean scale give nearly synonymous results for the wrinkling constituent of photo-ageing (R2 = 0.9386). The two scales are strongly concordant (Spearman's Rank Correlation (ρ) value: 0.62 ± 0.06, p = 1.31×10-84). A weak-to-moderate inter-scalar level of agreement (Cohen's Kappa (κ) values: 0.38 ± 0.05, p = 8.87×10-53) persists and is statistically significant after accounting for agreements due to chance. When tested on ethnic Chinese skin, both scales detect photo-ageing consistently (Area under curve [AUC] values: 0.76-0.84). Additionally, the Korean scale for the dyspigmentation constituent of photo-ageing is concordant with both the Caucasian scale (R2 = 0.7888) and the Korean scale for the wrinkling constituent of photo-ageing (R2 = 0.7734). CONCLUSION: Our results show that the Caucasian scale is suitable for capturing photo-ageing on Chinese skin, especially wrinkle variations. The Korean dyspigmentation scale supplements the Caucasian scale to capture dyspigmentation patterns on Chinese skin that may be absent on Caucasian skin. Currently, photo-ageing scales for Chinese skin are absent. When developed, these photo-ageing scales must be properly validated for their ability to capture photo-ageing of the entire face.


Subject(s)
East Asian People , Skin Aging , Adult , Female , Humans , Male , Young Adult , Cohort Studies , Cross-Sectional Studies , Face , Photography , Reproducibility of Results , Republic of Korea/ethnology , Republic of Korea/epidemiology , Singapore/epidemiology , Skin Aging/genetics , White People
3.
J Physiol Anthropol ; 43(1): 14, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762735

ABSTRACT

BACKGROUND: Changes develop on the facial skin as a person ages. Other than chronological time, it has been discovered that gender, ethnicity, air pollution, smoking, nutrition, and sun exposure are notable risk factors that influence the development of skin ageing phenotypes such as wrinkles and photo-ageing. These risk factors can be quantified through epidemiological collection methods. We previously studied wrinkles and photo-ageing in detail using photo-numeric scales. The analysis was performed on the ethnic Chinese skin by three trained assessors. Recent studies have shown that it is possible to use self-reported data to identify skin-related changes including skin colour and skin cancer. In order to investigate the association between risk factors and skin ageing phenotypic outcomes in large-scale epidemiological studies, it would be useful to evaluate whether it is also possible for participants to self-report signs of ageing on their skin. AIM: We have previously identified several validated photo-numeric scales for wrinkling and photo-ageing to use on ethnic Chinese skin. Using these scales, our trained assessors grade wrinkling and photo-ageing with moderately high inter-assessor concordance and agreement. The main objective of this study involves letting participants grade self-reported wrinkling and photo-ageing using these same scales. We aim to compare the concordance and agreement between signs of skin ageing by the participant and signs of ageing identified by our assessors. METHOD: Three trained assessors studied facial photo-ageing on 1081 ethnic Chinese young adults from the Singapore/Malaysia Cross-sectional Genetics Epidemiology Study (SMCGES) cohort. Self-reported facial photo-ageing data by the same 1081 participants were also collated and the two sets of data are compared. RESULTS: Here, we found that self-reported signs of photo-ageing are concordant with photo-ageing detected by our assessors. This finding is consistent whether photo-ageing is evaluated through studying wrinkle variations (Spearman's rank correlation (ρ) value: 0.246-0.329) or through studying dyspigmentation patterns (Spearman's rank correlation (ρ) value 0.203-0.278). When studying individual wrinkles, both participants and assessors often detect the presence of the same wrinkle (Spearman's rank correlation (ρ) value 0.249-0.366). A weak-to-fair level of agreement between both participants and assessors (Cohen's kappa (κ) values: 0.041-0.233) persists and is statistically significant after accounting for agreements due to chance. Both the participant and the assessor are largely consistent in evaluating the extent of photo-ageing (area under curve (AUC) values 0.689-0.769) and in discerning between the presence or absence of a given facial wrinkle (area under curve (AUC) values 0.601-0.856). CONCLUSION: When we analyse the overall appearance of the face, our results show that signs of photo-ageing identified by the participant are concordant with signs of photo-ageing identified by our assessors. When we focused our analysis on specific areas of the face, we found that participants were more likely to identify and self-report the same wrinkles that our assessors have also detected. Here, we found that self-reported signs of skin ageing provide a satisfactory approximation to the signs of skin ageing identified by our assessors. The ability to use self-reported signs of skin ageing should also be evaluated on scales beyond the ones discussed in this study. Currently, there are not as many photo-numeric scales for quantifying dyspigmentation patterns as there are for quantifying wrinkle variations. As Chinese skin is known to become dyspigmented more easily with age, more photo-numeric scales need to be developed and properly validated.


Subject(s)
Self Report , Skin Aging , Humans , Skin Aging/physiology , Skin Aging/genetics , Female , Singapore/epidemiology , Male , Cross-Sectional Studies , Adult , Middle Aged , Malaysia/epidemiology , Malaysia/ethnology , Asian People/statistics & numerical data , Young Adult , Cohort Studies , Aged , East Asian People
4.
Clin Immunol ; 263: 110199, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38565329

ABSTRACT

Cell-cell communication is crucial for regulating signaling and cellular function. However, the precise cellular and molecular changes remain poorly understood in skin aging. Based on single-cell and bulk RNA data, we explored the role of cell-cell ligand-receptor interaction in skin aging. We found that the macrophage migration inhibitory factor (MIF)/CD74 ligand-receptor complex was significantly upregulatedin aged skin, showing the predominant paracrine effect of keratinocytes on fibroblasts. Enrichment analysis and in vitro experiment revealed a close association of the activation of the MIF/CD74 with inflammatory pathways and immune response. Mechanistically, MIF/CD74 could significantly inhibit PPARγ protein, which thus significantly increased the degree of fibroblast senescence, and significantly up-regulated the expression of senescence-associated secretory phenotype (SASP) factors and FOS gene. Therefore, our study reveals that MIF/CD74 inhibits the activation of the PPAR signaling pathway, subsequently inducing the production of SASP factors and the upregulation of FOS expression, ultimately accelerating fibroblast senescence.


Subject(s)
Antigens, Differentiation, B-Lymphocyte , Fibroblasts , Histocompatibility Antigens Class II , Macrophage Migration-Inhibitory Factors , Single-Cell Analysis , Skin Aging , Macrophage Migration-Inhibitory Factors/genetics , Macrophage Migration-Inhibitory Factors/metabolism , Antigens, Differentiation, B-Lymphocyte/genetics , Antigens, Differentiation, B-Lymphocyte/metabolism , Humans , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class II/metabolism , Fibroblasts/metabolism , Skin Aging/genetics , Skin Aging/physiology , Single-Cell Analysis/methods , Signal Transduction , Cellular Senescence/genetics , Intramolecular Oxidoreductases/genetics , Intramolecular Oxidoreductases/metabolism , Sequence Analysis, RNA , Keratinocytes/metabolism , Keratinocytes/immunology , PPAR gamma/metabolism , PPAR gamma/genetics , Middle Aged , Male , Female , Skin/metabolism , Skin/immunology , Cells, Cultured , Adult
5.
J Cosmet Dermatol ; 23(6): 2270-2278, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38634239

ABSTRACT

BACKGROUND: Ultraviolet radiation causes skin photoaging by producing a variety of enzymes, which impact both skin health and hinder beauty. Currently, the early diagnosis and treatment of photoaging remain a challenge. Bioinformatics analysis has strong advantages in exploring core genes and the biological pathways of photoaging. AIMS: To screen and validate key risk genes associated with plasminogen in photoaging and to identify potential target genes for photoaging. METHODS: Two human transcriptome datasets were obtained by searching the Gene Expression Omnibus (GEO) database, and the mRNAs in the GSE131789 dataset were differentially analyzed, and then the weighted gene co-expression network analysis (WGCNA) was performed to find out the strongest correlations. Template genes, interaction analysis of differentially expressed genes (DEGs), modular genes with the most WGCNA correlations, and genecard database genes related to plasminogen were performed, and further Kyoto genes and Genome Encyclopedia (KEGG) pathway analysis. Two different algorithms, least absolute shrinkage and selection operator (LASSO) and support vector machines-recursive feature elimination (SVM-RFE), were used to find key genes. Then the data set (GSE206495) was validated and analyzed. Real-time PCR was performed to validate the expression of key genes through in vitro cellular experiments. RESULTS: IFI6, IFI44L, HRSP12, and BMP4 were screened from datasets as key genes for photoaging and further analysis showed that these genes have significant diagnostic value for photoaging. CONCLUSION: IFI6, IFI44L, HRSP12, and BMP4 play a key role in the pathogenesis of photoaging, and serve as promising potential predictive biomarkers for photoaging.


Subject(s)
Computational Biology , Plasminogen , Skin Aging , Humans , Skin Aging/genetics , Skin Aging/radiation effects , Plasminogen/genetics , Ultraviolet Rays/adverse effects , Transcriptome , Gene Expression Profiling , Genes, Regulator/genetics , Databases, Genetic , Support Vector Machine , Gene Regulatory Networks , Skin/radiation effects , Skin/metabolism
6.
Biomed Pharmacother ; 174: 116592, 2024 May.
Article in English | MEDLINE | ID: mdl-38615608

ABSTRACT

Multiple epigenetic factors play a regulatory role in maintaining the homeostasis of cutaneous components and are implicated in the aging process of the skin. They have been associated with the activation of the senescence program, which is the primary contributor to age-related decline in the skin. Senescent species drive a series of interconnected processes that impact the immediate surroundings, leading to structural changes, diminished functionality, and heightened vulnerability to infections. Geroprotective medicines that may restore the epigenetic balance represent valid therapeutic alliances against skin aging. Most of them are well-known Western medications such as metformin, nicotinamide adenine dinucleotide (NAD+), rapamycin, and histone deacetylase inhibitors, while others belong to Traditional Chinese Medicine (TCM) remedies for which the scientific literature provides limited information. With the help of the Geroprotectors.org database and a comprehensive analysis of the referenced literature, we have compiled data on compounds and formulae that have shown potential in preventing skin aging and have been identified as epigenetic modulators.


Subject(s)
Epigenesis, Genetic , Skin Aging , Humans , Epigenesis, Genetic/drug effects , Skin Aging/drug effects , Skin Aging/genetics , Animals , Skin/metabolism , Skin/drug effects , Medicine, Chinese Traditional/methods , Protective Agents/pharmacology
7.
Biomolecules ; 14(3)2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38540700

ABSTRACT

Skin aging is a multifaceted biological phenomenon influenced by a combination of intrinsic or extrinsic factors. There is an increasing interest in anti-aging materials including components that improve skin wrinkles. Despite the availability of several such wrinkle-improving materials, the demand for ingredients with outstanding efficacy is increasing. Therefore, this study aimed to explore the mechanisms of wrinkle-related genes reported in previous genome-wide association studies (GWASs), identify materials that regulate these genes, and develop an effective anti-wrinkle formula containing the active ingredients that regulate the expression of these genes. We selected two candidate genes, EDAR and BNC2, that are reportedly related to periorbital wrinkles. We investigated their functions in the skin through in vitro experiments using human skin cell lines (keratinocytes and fibroblasts). Moreover, we identified ingredients that regulate the expression of these two genes and confirmed their efficacy through in vitro experiments using the skin cell lines. Finally, we developed a formula containing these ingredients and confirmed that it enhanced dermal collagen in the 3D skin and improved fine wrinkles under the eyes more effectively than retinol in humans, when applied for 8 weeks. Our results are significant and relevant, as we have discovered a special formula for wrinkle improvement with reliable efficacy that surpasses the efficacy of retinol and does not cause side-effects such as skin irritation.


Subject(s)
Skin Aging , Vitamin A , Humans , Vitamin A/pharmacology , Skin Aging/genetics , Genome-Wide Association Study , Skin , Gene Expression , Edar Receptor , DNA-Binding Proteins
8.
Skin Res Technol ; 30(3): e13636, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38424726

ABSTRACT

BACKGROUND: A growing number of experimental studies have shown an association between the gut microbiota (GM) and facial skin aging. However, the causal relationship between GM and facial skin aging remains unclear to date. METHODS: We conducted a two-sample Mendelian randomization (MR) analysis to investigate the potential causal relationship between GM and facial skin aging. MR analysis was mainly performed using the inverse-variance weighting (IVW) method, complemented by the weighted median (MW) method, MR-Egger regression, and weighted mode, and sensitivity analysis was used to test the reliability of MR analysis results. RESULTS: Eleven GM taxa associated with facial skin aging were identified by IVW method analysis, Family Victivallaceae (p = 0.010), Genus Eubacterium coprostanoligenes group (p = 0.038), and Genus Parasutterella (p = 0.011) were negatively associated with facial skin aging, while Phylum Verrucomicrobia (p = 0.034), Family Lactobacillaceae (p = 0.017) and its subgroups Genus Lactobacillus (p = 0.038), Genus Parabacteroides (p = 0.040), Genus Eggerthella (p = 0.049), Genus Family XIII UCG001 (p = 0.036), Genus Phascolarctobacterium (p = 0.027), and Genus Ruminococcaceae UCG005 (p = 0.012) were positively associated with facial skin aging. At Class and Order levels, we did not find a causal relationship between GM and facial skin aging. Results of sensitivity analyses did not show evidence of pleiotropy and heterogeneity. CONCLUSION: Our findings confirm the causal relationship between GM and facial skin aging, providing a new perspective on delaying facial aging.


Subject(s)
Gastrointestinal Microbiome , Skin Aging , Humans , Skin Aging/genetics , Gastrointestinal Microbiome/genetics , Mendelian Randomization Analysis , Reproducibility of Results , Aging
9.
Ital J Dermatol Venerol ; 159(3): 318-328, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38502535

ABSTRACT

Telomeres, the safeguarding caps at the tips of chromosomes, are pivotal in the aging process of cells and have been linked to skin ailments and inflammatory conditions. Telomeres undergo a gradual reduction in length and factors such as oxidative stress hasten this diminishing process. Skin diseases including inflammatory conditions can be correlated with the shortening of telomeres and the persistent activation of DNA damage response in skin tissues. Telomere dysfunction could disrupt the balance of the skin, impairs wound healing, and may contribute to abnormal cytokine production. Skin aging and processes related to telomeres may function as one of the triggers for skin diseases. The presence of proinflammatory cytokines and dysfunctional telomeres in conditions such as Dyskeratosis Congenita implies a possible connection between the shortening of telomeres and the onset of chronic inflammatory skin disorders. In autoinflammatory skin diseases, chronic inflammation hinders wound healing thus aggravating the progression of the disease. The NF-ĸB pathway might contribute to the initiation or progression of chronic disorders by influencing mechanisms associated with telomere biology. The intricate connections between telomeres, telomerase, telomere-associated proteins, and skin diseases are still a complex puzzle to be solved. Here, we provide an overview of the impact of telomeres on both health and disease with a specific emphasis on their role in skin, inflammation and autoinflammatory skin disorders.


Subject(s)
Telomere , Humans , Skin Diseases/genetics , Inflammation/genetics , Telomere Shortening/physiology , Telomerase/metabolism , Telomerase/genetics , Dyskeratosis Congenita/genetics , Skin Aging/genetics , Skin Aging/physiology
10.
Aging Cell ; 23(5): e14123, 2024 May.
Article in English | MEDLINE | ID: mdl-38380598

ABSTRACT

Exposure to ultraviolet radiation can lead to skin photoaging, which increases the risk of skin tumors. This study aims to investigate how microRNA m6A modification contributes to skin photoaging. This study found that skin fibroblasts exposed to a single UVB dose of 30 mJ/cm2 exhibited characteristics of photoaging. The m6A level of total RNA decreased in photoaged cells with a down-regulated level of METTL14, and overexpression of METTL14 displayed a photoprotective function. Moreover, miR-100-3p was a downstream target of METTL14. And METTL14 could affect pri-miR-100 processing to mature miR-100-3p in an m6A-dependent manner via DGCR8. Furthermore, miR-100-3p targeted at 3' end untranslated region of ERRFI1 mRNA with an inhibitory effect on translation. Additionally, photoprotective effects of overexpression of METTL14 were reversed by miR-100-3p inhibitor or overexpression of ERRFI1. In UVB-induced photoaging of human skin fibroblasts, METTL14-dependent m6A can regulate miR-100-3p maturation via DGCR8 and affect skin fibroblasts photoaging through miR-100-3p/ERRFI1 axis.


Subject(s)
Fibroblasts , Methyltransferases , MicroRNAs , Skin Aging , Ultraviolet Rays , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Fibroblasts/metabolism , Fibroblasts/radiation effects , Methyltransferases/metabolism , Methyltransferases/genetics , Skin Aging/radiation effects , Skin Aging/genetics , Skin/metabolism , Skin/radiation effects , Adenosine/analogs & derivatives , Adenosine/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics
11.
Ital J Dermatol Venerol ; 159(3): 285-293, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38376504

ABSTRACT

Melanocortin-1 receptor (MC1R) and its variants have a pivotal role in melanin synthesis. However, MC1R has been associated to non-pigmentary pathways related to DNA-repair activities and inflammation. The aim of this review is to provide an up-to-date overview about the role of MC1R in the skin. Specifically, after summarizing the current knowledge about MC1R structure and polymorphisms, we report data concerning the correlation between MC1R, phenotypic traits, skin aging, other diseases and skin cancers and their risk assessment through genetic testing.


Subject(s)
Receptor, Melanocortin, Type 1 , Skin Neoplasms , Receptor, Melanocortin, Type 1/genetics , Humans , Skin Neoplasms/genetics , Polymorphism, Genetic , Skin Aging/physiology , Skin Aging/genetics , Phenotype , Skin Diseases/genetics
12.
J Cosmet Dermatol ; 23(5): 1800-1807, 2024 May.
Article in English | MEDLINE | ID: mdl-38178620

ABSTRACT

BACKGROUND: Observational studies have linked coffee, alcohol, tea, and sugar-sweetened beverage (SSB) consumption to facial skin aging. However, confounding factors may influence these studies. The present two-sample Mendelian randomization (MR) investigated the potential causal association between beverage consumption and facial skin aging. METHODS: The single-nucleotide polymorphisms (SNPs) associated with coffee, alcohol, and tea intake were derived from the IEU project. The SSB-associated SNPs were selected from a genome-wide association study (GWAS). Data on facial skin aging were derived from the largest GWAS involving 16 677 European individuals. The inverse variance-weighted (IVW) was the main MR analysis method, supplemented by other methods (MR-Egger, weighted median, simple mode, and weighted mode). The MR-Egger intercept analysis was used for sensitivity analysis. Moreover, we conducted a replication analysis using data from another GWAS dataset on coffee consumption to validate our findings. RESULTS: Four instrumental variables (IVs) sets were used to examine the causal association between beverage consumption (coffee, alcohol, tea, SSB) and facial skin aging. Our results revealed that genetically predicted higher coffee consumption reduced the risk of facial skin aging (OR: 0.852; 95% CI: 0.753-0.964; p = 0.011, IVW method). The sensitivity analysis confirmed the robustness of the findings, with no evidence of pleiotropy or heterogeneity. The results of replicated MR analysis on coffee consumption were consistent with the initial analysis (OR = 0.997; 95% CI = 0.996-0.999; p = 0.003, IVW method). CONCLUSIONS: This study manifests that higher coffee consumption is significantly associated with a reduced risk of facial skin aging. These findings can offer novel strategies for identifying the underlying etiology of facial skin aging.


Subject(s)
Coffee , Face , Genome-Wide Association Study , Mendelian Randomization Analysis , Polymorphism, Single Nucleotide , Skin Aging , Tea , Humans , Skin Aging/genetics , Coffee/adverse effects , Tea/adverse effects , Alcohol Drinking/adverse effects , Alcohol Drinking/genetics , Sugar-Sweetened Beverages/adverse effects , Beverages/adverse effects
13.
J Cosmet Dermatol ; 23(4): 1396-1403, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38054565

ABSTRACT

BACKGROUND: SPRY1 is associated with the invasiveness and prognosis of various tumors, and TET3 affects aging by regulating gene expression. AIMS: We investigated the roles of SPRY1 and TET3 in natural skin aging, replicative aging, and photoaging, along with the effect of UVA on genome-wide DNA methylation in HaCaT cells. METHODS: TET3 and SPRY1 expression were measured in the skin of patients of different age groups, as well as in vitro human skin, HaCaT cell replicative senescence, and HaCaT and HaCaT-siTET3 cell photoaging models. Senescence was verified using ß-galactosidase staining, and DNA damage was detected using immunofluorescence staining for γ-H2A.X. 5-Methyl cytosine (5-mC) content in the genome was determined using ELISA. RESULTS: SPRY1 expression increased with age, whereas TET3 expression decreased. Similarly, SPRY1 was upregulated and TET3 was downregulated with increasing cell passages. TET3-siRNA upregulated SPRY1 expression in HaCaT cells. UVA irradiation promoted HaCaT cell senescence and induced cellular DNA damage. SPRY1 was upregulated and TET3 was downregulated upon UVA irradiation. Genome-wide 5-mC content increased upon TET3 silencing and UVA irradiation, indicating a surge in overall methylation. CONCLUSIONS: SPRY1 and TET3 are natural skin aging-related genes that counteract to regulate replicative aging and UVA-induced photoaging in HaCaT cells. The cell photoaging model may limit experimental bias caused by different exposure times of skin model samples.


Subject(s)
Dioxygenases , Skin Aging , Skin Diseases , Humans , Skin Aging/genetics , Cells, Cultured , Skin , DNA Damage , Ultraviolet Rays/adverse effects , Fibroblasts/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Phosphoproteins/genetics , Dioxygenases/genetics , Dioxygenases/metabolism , Dioxygenases/pharmacology
14.
Pac Symp Biocomput ; 29: 477-491, 2024.
Article in English | MEDLINE | ID: mdl-38160301

ABSTRACT

The advent of spatial transcriptomics technologies has heralded a renaissance in research to advance our understanding of the spatial cellular and transcriptional heterogeneity within tissues. Spatial transcriptomics allows investigation of the interplay between cells, molecular pathways, and the surrounding tissue architecture and can help elucidate developmental trajectories, disease pathogenesis, and various niches in the tumor microenvironment. Photoaging is the histological and molecular skin damage resulting from chronic/acute sun exposure and is a major risk factor for skin cancer. Spatial transcriptomics technologies hold promise for improving the reliability of evaluating photoaging and developing new therapeutics. Challenges to current methods include limited focus on dermal elastosis variations and reliance on self-reported measures, which can introduce subjectivity and inconsistency. Spatial transcriptomics offers an opportunity to assess photoaging objectively and reproducibly in studies of carcinogenesis and discern the effectiveness of therapies that intervene in photoaging and preventing cancer. Evaluation of distinct histological architectures using highly-multiplexed spatial technologies can identify specific cell lineages that have been understudied due to their location beyond the depth of UV penetration. However, the cost and interpatient variability using state-of-the-art assays such as the 10x Genomics Spatial Transcriptomics assays limits the scope and scale of large-scale molecular epidemiologic studies. Here, we investigate the inference of spatial transcriptomics information from routine hematoxylin and eosin-stained (H&E) tissue slides. We employed the Visium CytAssist spatial transcriptomics assay to analyze over 18,000 genes at a 50-micron resolution for four patients from a cohort of 261 skin specimens collected adjacent to surgical resection sites for basal cell and squamous cell keratinocyte tumors. The spatial transcriptomics data was co-registered with 40x resolution whole slide imaging (WSI) information. We developed machine learning models that achieved a macro-averaged median AUC and F1 score of 0.80 and 0.61 and Spearman coefficient of 0.60 in inferring transcriptomic profiles across the slides, and accurately captured biological pathways across various tissue architectures.


Subject(s)
Skin Aging , Humans , Skin Aging/genetics , Reproducibility of Results , Computational Biology , Gene Expression Profiling , Eosine Yellowish-(YS) , Transcriptome
16.
PLoS One ; 18(11): e0290358, 2023.
Article in English | MEDLINE | ID: mdl-37943888

ABSTRACT

Skin photoaging induced by ultraviolet (UV) irradiation contributes to the formation of thick and coarse wrinkles. Humans are exposed to UV light throughout their lives. Therefore, it is crucial to determine the time-sequential effects of UV on the skin. In this study, we irradiated the mouse back skin with UV light for eight weeks and observed the changes in gene expressions via microarray analysis every week. There were more downregulated genes (514) than upregulated genes (123). The downregulated genes had more functional diversity than the upregulated genes. Additionally, the number of downregulated genes did not increase in a time-dependent manner. Instead, time-dependent kinetic patterns were observed. Interestingly, each kinetic cluster harbored functionally enriched gene sets. Since collagen changes in the dermis are considered to be a major cause of photoaging, we hypothesized that other gene sets contributing to photoaging would exhibit kinetics similar to those of the collagen-regulatory genes identified in this study. Accordingly, co-expression network analysis was conducted using 11 well-known collagen-regulatory seed genes to predict genes with similar kinetics. We ranked all downregulated genes from 1 to 504 based on their expression levels, and the top 50 genes were suggested to be involved in the photoaging process. Additionally, to validate and support our identified top 50 gene lists, we demonstrated that the genes (FN1, CCDC80, PRELP, and TGFBR3) we discovered are downregulated by UV irradiation in cultured human fibroblasts, leading to decreased collagen levels, which is indicative of photoaging processes. Overall, this study demonstrated the time-sequential genetic changes in chronically UV-irradiated skin and proposed 50 genes that are involved in the mechanisms of photoaging.


Subject(s)
Skin Aging , Skin , Humans , Animals , Mice , Skin/metabolism , Skin Aging/genetics , Ultraviolet Rays/adverse effects , Collagen/metabolism , Fibroblasts/metabolism
17.
Clin Epigenetics ; 15(1): 176, 2023 11 03.
Article in English | MEDLINE | ID: mdl-37924108

ABSTRACT

Facial aging is the most visible manifestation of aging. People desire to look younger than others of the same chronological age. Hence, perceived age is often used as a visible marker of aging, while biological age, often estimated by methylation markers, is used as an objective measure of age. Multiple epigenetics-based clocks have been developed for accurate estimation of general biological age and the age of specific organs, including the skin. However, it is not clear whether the epigenetic biomarkers (CpGs) used in these clocks are drivers of aging processes or consequences of aging. In this proof-of-concept study, we integrate data from GWAS on perceived facial aging and EWAS on CpGs measured in blood. By running EW Mendelian randomization, we identify hundreds of putative CpGs that are potentially causal to perceived facial aging with similar numbers of damaging markers that causally drive or accelerate facial aging and protective methylation markers that causally slow down or protect from aging. We further demonstrate that while candidate causal CpGs have little overlap with known epigenetics-based clocks, they affect genes or proteins with known functions in skin aging, such as skin pigmentation, elastin, and collagen levels. Overall, our results suggest that blood methylation markers reflect facial aging processes, and thus can be used to quantify skin aging and develop anti-aging solutions that target the root causes of aging.


Subject(s)
DNA Methylation , Skin Aging , Humans , Aging/genetics , Epigenesis, Genetic , Skin Aging/genetics , Face
18.
Skin Res Technol ; 29(9): e13463, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37753673

ABSTRACT

BACKGROUND: Photoaging is a degenerative biological process that affects the quality of life. It is caused by environmental factors including ultraviolet radiation (UVR), deep skin burns, smoking, active oxygen, chemical substances, and trauma. Among them, UVR plays a vital role in the aging process. AIM: With the continuous development of modern medicine, clinical researchers have investigated novel approaches to treat aging. In particular, mesenchymal stem cells (MSCs), non-coding RNAs are involved in various physiological processes have broad clinical application as they have the advantages of convenient samples, abundant sources, and avoidable ethical issues. METHODS: This article reviews research progress on five types of stem cell, exosomes, non-coding RNA in the context of photoaging treatment: adipose-derived stem cell, human umbilical cord MSCs, epidermal progenitor cells, keratinocyte stem cells, and hair follicle stem cells (HFSCs). It also includes stem cell related exosomes and their non-coding RNA research. RESULTS: The results have clinical guiding significance for prevention and control of the onset and development of photoaging. It is found that stem cells secrete cytokines, cell growth factors, non-coding RNA, exosomes and proteins to repair aging skin tissues and achieve skin rejuvenation. In particular, stem cell exosomes and non-coding RNA are found to have significant research potential, as they possess the benefits of their source cells without the disadvantages which include immune rejection and granuloma formation.


Subject(s)
Skin Aging , Humans , Skin Aging/genetics , Quality of Life , Ultraviolet Rays/adverse effects , Skin , RNA, Untranslated/genetics
19.
Arch Dermatol Res ; 315(9): 2575-2584, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37402830

ABSTRACT

Skin aging is a continuous and irreversible process which results in impairment of the skin role as barrier against all aggressive exogenous factors. It mainly manifests by photoaging, laxity, sagging, wrinkling, and xerosis. Carboxytherapy is considered as a safe, minimally invasive modality used for rejuvenation, restoration, and recondition of the skin. In the current study, the efficacy of carboxytherapy in the treatment of skin aging was assessed through investigation of gene expression profile for Coll I, Coll III, Coll IV, elastin, FGF, TGF-ß1, and VEGF. Our study is a 2-split clinical trial in which carboxytherapy was performed on one side of the abdomen in 15 cases with intrinsically skin aging manifestations weekly for 10 sessions, while the other side of the abdomen was left without treatment. Two weeks after the last session, skin biopsies were taken from both the treated and control sides of the abdomen in order to assess gene expression profile by qRT-PCR. The analysis of gene expression levels for all of Coll I, Coll III, Coll IV, elastin, TGF-ß1, FGF and VEGF genes showed a statistically significant difference between the interventional and control groups. The findings for all of these seven genes showed increase in the interventional group, among which Coll IV, VEGF, FGF, and elastin showed the higher mean changes. Our study confirmed the effectiveness of carboxytherapy in treating and reversing the intrinsically aging skin.Clinical Trial Registration Code and Date of Registration: ChiCTR2200055185; 2022/1/2.


Subject(s)
Skin Aging , Humans , Skin Aging/genetics , Elastin , Transforming Growth Factor beta1/genetics , Transcriptome , Vascular Endothelial Growth Factor A/genetics , Treatment Outcome
20.
Photodermatol Photoimmunol Photomed ; 39(5): 487-497, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37253092

ABSTRACT

BACKGROUND: Lysosomal cathepsin D (CTSD) can degrade internalized advanced glycation end products (AGEs) in dermal fibroblasts. CTSD expression is decreased in photoaged fibroblasts, which contributes to intracellular AGEs deposition and further plays a role in AGEs accumulation of photoaged skin. The mechanism under downregulated CTSD expression is unclear. OBJECTIVE: To explore possible mechanism of regulating CTSD expression in photoaged fibroblasts. METHODS: Dermal fibroblasts were induced into photoaging with repetitive ultraviolet A (UVA) irradiation. The competing endogenous RNA (ceRNA) networks were constructed to predict candidate circRNAs or miRNAs related with CTSD expression. AGEs-BSA degradation by fibroblasts was studied with flow cytometry, ELISA, and confocal microscopy. Effects of overexpressing circRNA-406918 via lentiviral transduction on CTSD expression, autophagy, AGE-BSA degradation were analyzed in photoaged fibroblasts. The correlation between circRNA-406918 and CTSD expression or AGEs accumulation in sun-exposed and sun-protected skin was studied. RESULTS: CTSD expression, autophagy, and AGEs-BSA degradation were significantly decreased in photoaged fibroblasts. CircRNA-406918 was identified to regulate CTSD expression, autophagy, and senescence in photoaged fibroblasts. Overexpressing circRNA-406918 potently decreased senescence and increased CTSD expression, autophagic flux, and AGEs-BSA degradation in photoaged fibroblasts. Moreover, circRNA-406918 level was positively correlated with CTSD mRNA expression and negatively associated with AGEs accumulation in photodamaged skin. Further, circRNA-406918 was predicted to mediate CTSD expression through sponging eight miRNAs. CONCLUSION: These findings suggest that circRNA-406918 regulates CTSD expression and AGEs degradation in UVA-induced photoaged fibroblasts and might exert a role in AGEs accumulation in photoaged skin.


Subject(s)
MicroRNAs , Skin Aging , Humans , Cathepsin D/genetics , Cathepsin D/metabolism , Cathepsin D/pharmacology , Fibroblasts/metabolism , Glycation End Products, Advanced/metabolism , MicroRNAs/genetics , RNA, Circular/genetics , RNA, Circular/metabolism , RNA, Circular/pharmacology , Skin/metabolism , Skin Aging/genetics , Ultraviolet Rays/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...