Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.336
Filter
1.
Exp Dermatol ; 33(5): e15084, 2024 May.
Article in English | MEDLINE | ID: mdl-38711223

ABSTRACT

The transmembrane protein claudin-1 is critical for formation of the epidermal barrier structure called tight junctions (TJ) and has been shown to be important in multiple disease states. These include neonatal ichthyosis and sclerosing cholangitis syndrome, atopic dermatitis and various viral infections. To develop a model to investigate the role of claudin-1 in different disease settings, we used CRISPR/Cas9 to generate human immortalized keratinocyte (KC) lines lacking claudin-1 (CLDN1 KO). We then determined whether loss of claudin-1 expression affects epidermal barrier formation/function and KC differentiation/stratification. The absence of claudin-1 resulted in significantly reduced barrier function in both monolayer and organotypic cultures. CLDN1 KO cells demonstrated decreases in gene transcripts encoding the barrier protein filaggrin and the differentiation marker cytokeratin-10. Marked morphological differences were also observed in CLDN1 KO organotypic cultures including diminished stratification and reduced formation of the stratum granulosum. We also detected increased proliferative KC in the basale layer of CLDN1 KO organotypic cultures. These results further support the role of claudin-1 in epidermal barrier and suggest an additional role of this protein in appropriate stratification of the epidermis.


Subject(s)
Cell Differentiation , Claudin-1 , Epidermis , Filaggrin Proteins , Keratinocytes , Keratinocytes/metabolism , Claudin-1/metabolism , Claudin-1/genetics , Humans , Filaggrin Proteins/metabolism , Epidermis/metabolism , Epidermis/pathology , Skin Diseases/genetics , Skin Diseases/metabolism , Tight Junctions/metabolism , Keratin-10/metabolism , Keratin-10/genetics , Gene Knockout Techniques , Cell Proliferation , CRISPR-Cas Systems
2.
Exp Dermatol ; 33(5): e15083, 2024 May.
Article in English | MEDLINE | ID: mdl-38794808

ABSTRACT

Interferons (IFNs) are signalling proteins primarily involved in initiating innate immune responses against pathogens and promoting the maturation of immune cells. Interferon Regulatory Factor 7 (IRF7) plays a pivotal role in the IFNs signalling pathway. The activation process of IRF7 is incited by exogenous or abnormal nucleic acids, which is followed by the identification via pattern recognition receptors (PRRs) and the ensuing signalling cascades. Upon activation, IRF7 modulates the expression of both IFNs and inflammatory gene regulation. As a multifunctional transcription factor, IRF7 is mainly expressed in immune cells, yet its presence is also detected in keratinocytes, fibroblasts, and various dermal cell types. In these cells, IRF7 is critical for skin immunity, inflammation, and fibrosis. IRF7 dysregulation may lead to autoimmune and inflammatory skin conditions, including systemic scleroderma (SSc), systemic lupus erythematosus (SLE), Atopic dermatitis (AD) and Psoriasis. This comprehensive review aims to extensively elucidate the role of IRF7 and its signalling pathways in immune cells and keratinocytes, highlighting its significance in skin-related and connective tissue diseases.


Subject(s)
Connective Tissue Diseases , Interferon Regulatory Factor-7 , Keratinocytes , Signal Transduction , Skin Diseases , Humans , Interferon Regulatory Factor-7/metabolism , Interferon Regulatory Factor-7/genetics , Skin Diseases/immunology , Skin Diseases/metabolism , Keratinocytes/metabolism , Keratinocytes/immunology , Connective Tissue Diseases/metabolism , Connective Tissue Diseases/immunology , Psoriasis/immunology , Psoriasis/metabolism , Animals , Skin/metabolism , Skin/immunology , Scleroderma, Systemic/metabolism , Scleroderma, Systemic/immunology , Scleroderma, Systemic/genetics , Immunity, Innate
3.
Article in Chinese | MEDLINE | ID: mdl-38664034

ABSTRACT

Skin fibrosis diseases mainly include hypertrophic scar, keloid, and systemic sclerosis, etc. The main pathological features are excessive activation of fibroblasts and abnormal deposition of extracellular matrix. In recent years, studies have shown that aerobic glycolysis is closely related to the occurrence and development of skin fibrosis diseases. Drugs targeting aerobic glycolysis has provided new ideas for skin anti-fibrosis treatment. This article reviews the role of enzymes and products related to aerobic glycolysis in the occurrence and development of skin fibrosis diseases and the drugs targeting aerobic glycolysis for the treatment of skin fibrosis diseases.


Subject(s)
Fibrosis , Glycolysis , Humans , Fibrosis/metabolism , Fibrosis/pathology , Skin Diseases/metabolism , Skin Diseases/pathology , Skin Diseases/drug therapy , Skin/pathology , Skin/metabolism , Keloid/metabolism , Keloid/pathology , Keloid/drug therapy , Scleroderma, Systemic/metabolism , Scleroderma, Systemic/pathology , Scleroderma, Systemic/drug therapy
4.
Mol Med ; 30(1): 52, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38641575

ABSTRACT

BACKGROUND: Skin fibrosis affects the normal function of the skin. TGF-ß1 is a key cytokine that affects organ fibrosis. The latency-associated peptide (LAP) is essential for TGF-ß1 activation. We previously constructed and prepared truncated LAP (tLAP), and confirmed that tLAP inhibited liver fibrosis by affecting TGF-ß1. SPACE peptide has both transdermal and transmembrane functions. SPACE promotes the delivery of macromolecules through the stratum corneum into the dermis. This study aimed to alleviate skin fibrosis through the delivery of tLAP by SPACE. METHODS: The SPACE-tLAP (SE-tLAP) recombinant plasmid was constructed. SE-tLAP was purified by nickel affinity chromatography. The effects of SE-tLAP on the proliferation, migration, and expression of fibrosis-related and inflammatory factors were evaluated in TGF-ß1-induced NIH-3T3 cells. F127-SE-tLAP hydrogel was constructed by using F127 as a carrier to load SE-tLAP polypeptide. The degradation, drug release, and biocompatibility of F127-SE-tLAP were evaluated. Bleomycin was used to induce skin fibrosis in mice. HE, Masson, and immunohistochemistry were used to observe the skin histological characteristics. RESULTS: SE-tLAP inhibited the proliferation, migration, and expression of fibrosis-related and inflammatory factors in NIH-3T3 cells. F127-SE-tLAP significantly reduced ECM production, collagen deposition, and fibrotic pathological changes, thereby alleviating skin fibrosis. CONCLUSION: F127-SE-tLAP could increase the transdermal delivery of LAP, reduce the production and deposition of ECM, inhibit the formation of dermal collagen fibers, and alleviate the progression of skin fibrosis. It may provide a new idea for the therapy of skin fibrosis.


Subject(s)
Polyethylenes , Polypropylenes , Skin Diseases , Transforming Growth Factor beta , Animals , Mice , Bleomycin/adverse effects , Collagen/metabolism , Fibrosis/drug therapy , Hydrogels/chemistry , Hydrogels/pharmacology , Polyethylenes/pharmacology , Polypropylenes/pharmacology , Signal Transduction , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta1/metabolism , Skin Diseases/chemically induced , Skin Diseases/drug therapy , Skin Diseases/metabolism , Smad Proteins/drug effects , Smad Proteins/metabolism , Skin/drug effects , Skin/metabolism , Skin/pathology
5.
Expert Rev Mol Med ; 26: e15, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38621674

ABSTRACT

In mammals, the skin acts as a barrier to prevent harmful environmental stimuli from entering the circulation. CYP450s are involved in drug biotransformation, exogenous and endogenous substrate metabolism, and maintaining the normal physiological function of the skin, as well as facilitating homeostasis of the internal environment. The expression pattern of CYP450s in the skin is tissue-specific and thus differs from the liver and other organs. The development of skin topical medications, and knowledge of the toxicity and side effects of these medications require a detailed understanding of the expression and function of skin-specific CYP450s. Thus, we summarized the expression of CYP450s in the skin, their function in endogenous metabolic physiology, aberrant CYP450 expression in skin diseases and the influence of environmental variables and medications. This information will serve as a crucial foundation for future studies on the skin, as well as for the design and development of new drugs for skin diseases including topical medications.


Subject(s)
Cytochrome P-450 Enzyme System , Skin , Humans , Skin/metabolism , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme System/genetics , Animals , Skin Diseases/metabolism
6.
Arch Dermatol Res ; 316(5): 123, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38630260

ABSTRACT

Thymic Stromal Lymphopoietin (TSLP) is an important cytokine that invokes early immune responses. TSLP, an IL-7-like cytokine encoded by the TSLP gene, activates JAK1 and JAK2 signaling pathways, stimulating dendritic cells to induce inflammatory Th2 cells. This cytokine is associated with pruritus in various cutaneous disorders, particularly atopic dermatitis. Varying levels of the cytokine TSLP have been demonstrated in studies of different cutaneous disorders. Pharmacological treatment targeting TSLP has been explored recently, particularly in the realm of atopic dermatitis.This review explores the relation of TSLP to cutaneous diseases, highlighting its potential as a biomarker for monitoring disease progression in discoid lupus erythematosus (DLE). The pharmacological therapy involving TSLP is discussed, along with the potential role of TSLP promotion in the treatment of alopecia areata. This overview examines the background, structure, and functions of TSLP, with a focus on its association with cutaneous disorders and a special focus on the impact of the atopic march.


Subject(s)
Skin Diseases , Thymic Stromal Lymphopoietin , Humans , Alopecia Areata , Cytokines , Dermatitis, Atopic , Skin Diseases/metabolism , Skin Diseases/pathology , Thymic Stromal Lymphopoietin/metabolism
7.
J Ethnopharmacol ; 328: 118059, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38508430

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Psoriasis is characterized by hyperkeratosis that produces the classic silvery scales, and the pathogenesis of psoriasis involves abnormal proliferation of keratinocytes. Emerging evidence supports that apoptosis regulates keratinocyte proliferation and formation of stratum corneum, which maintains the homeostasis of the skin. Qinzhuliangxue mixture (QZLX) is a representative formula for the treatment of psoriasis, which was earliest recorded in the classic Chinese medicine book Xia's Surgery. In our previous clinical studies, QZLX demonstrated 83.33% efficacy with few side effects in the treatment of psoriasis. Furthermore, our published basic research has also proved that the QZLX mixture effectively inhibits the hyperproliferation of keratinocytes, thus exerting therapeutic effects on psoriasis. However, whether QZLX mixture can regulate keratinocytes apoptosis requires further clarification. OBJECTIVE OF THE STUDY: To investigate the mechanism of QZLX in the treatment of psoriasis from the perspective of keratinocyte apoptosis. MATERIALS AND METHODS: First, psoriasis-like mice with imiquimod (IMQ)-induced were given QZLX intragastric administration and Psoriasis Area Severity Index (PASI) scores were recored for 11 consecutive days to appraise the efficacy. Then, tissue samples were collected for transcriptome analysis. The DEseq2 method detected significantly differentially expressed genes (DEGs), Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway databases were used to analyze the functions and pathway enrichment of DEGs. After that, the therapeutic mechanisms of QZLX in intervening with psoriasis were explored using TUNEL, immunohistochemical staining, and western blotting. RESULTS: QZLX ameliorated the symptoms and pathological characteristics of IMQ-induced psoriasis in mice. The epidermal cell hyperplasia in the skin was inhibited, in accordance with the suppressed expression of PCNA and Ki67 after treatment. Transcriptome sequencing showed that melanoma differentiation associated gene-5 (MDA-5) was downregulated. GO and KEGG enrichment analysis of the signaling pathways indicated that the differentially expressed genes were significantly enriched in apoptosis pathways. Besides, QZLX treatment decreased the apoptosis of keratinocyte as shown by reduced TUNEL-positive cells. As MDA-5 protein levels decreased, so did the expression of the downstream protein Caspase-8, which indicates that the apoptotic pathway was triggered. Furthermore, QZLX therapy might also help to balance the apoptotic Bcl-2 family expression. CONCLUSION: QZLX restrains the apoptosis of keratinocyte in psoriasis-like mice by downregulating the MDA-5 pathway. The restoration of the balance between cell apoptosis and proliferation in the skin may lead to considerable psoriasis relief. Our study reveals the possible molecular processes behind the effects of QZLX therapy on the skin lesions of psoriasis, and lends support to its clinical efficacy.


Subject(s)
Psoriasis , Skin Diseases , Animals , Mice , Psoriasis/pathology , Skin , Keratinocytes , Skin Diseases/metabolism , Imiquimod , Cell Proliferation , Hyperplasia/pathology , Apoptosis , Mice, Inbred BALB C , Disease Models, Animal
8.
Skin Res Technol ; 30(3): e13655, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38481085

ABSTRACT

BACKGROUND: The stratum corneum (SC), the outermost layer of the skin epidermis, acts as an effective bi-directional barrier, preventing water loss (inside-outside barrier) and entry of foreign substances (outside-inside barrier). Although transepidermal water loss (TEWL) is a widely-used measure of barrier function, it represents only inside-outside protection. Therefore, we aimed to establish a non-invasive method for quantitative evaluation of the outside-inside barrier function and visually present a skin barrier model. MATERIALS AND METHODS: Skin barrier damage was induced by applying a closed patch of 1% sodium dodecyl sulfate to the forearms of eight participants; they were instructed to apply a barrier cream on a designated damaged area twice daily for 5 days. The SC barrier was evaluated by measuring TEWL and fluorescein sodium salt penetration rate before, immediately after, and 5 days after damage. The penetration rate was assessed using tape-stripping (TS) technique and fluorescence microscopy. RESULTS: The rates of fluorescein sodium salt penetration into the lower layers of SC differed significantly based on the degree of skin barrier damage. The correlation between penetration rate and TEWL was weak after two rounds of TS and became stronger after subsequent rounds. Five days after skin barrier damage, the penetration rate of all layers differed significantly between areas with and without the barrier cream application. CONCLUSION: Our findings demonstrated that the penetration rate was dependent on skin barrier conditions. The penetration rate and corresponding fluorescence images are suitable quantitative indicators that can visually represent skin barrier conditions.


Subject(s)
Skin Diseases , Water Loss, Insensible , Humans , Fluorescein/metabolism , Fluorescein/pharmacology , Epidermis/metabolism , Skin/metabolism , Skin Diseases/metabolism , Water/metabolism , Emollients/pharmacology
9.
J Dermatol Sci ; 113(3): 93-102, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38383230

ABSTRACT

BACKGROUND: Aberrant keratinocytes differentiation has been demonstrated to be associated with a number of skin diseases. The roles of lncRNAs in keratinocytes differentiation remain to be largely unknown. OBJECTIVE: Here we aim to investigate the role of lnc-DC in regulating epidermal keratinocytes differentiation. METHODS: Expression of lnc-DC in the skin was queried in AnnoLnc and verified by FISH. The lncRNA expression profiles during keratinocytes differentiation were reanalyzed and verified by qPCR and FISH. Gene knock-down and over-expression were used to explore the role of lnc-DC in keratinocytes differentiation. The downstream target of lnc-DC was screened by whole transcriptome sequencing. CUT&RUN assay and siRNAs transfection was used to reveal the regulatory effect of GRHL3 on lnc-DC. The mechanism of lnc-DC regulating ZNF750 was revealed by RIP assay and RNA stability assay. RESULTS: Lnc-DC was biasedly expressed in skin and up-regulated during epidermal keratinocytes differentiation. Knockdown lnc-DC repressed epidermal keratinocytes differentiation while over-express lnc-DC showed the opposite effect. GRHL3, a well-known transcription factor regulating keratinocytes differentiation, could bind to the promoter of lnc-DC and regulate its expression. By whole transcriptome sequencing, we identified that ZNF750 was a downstream target of lnc-DC during keratinocytes differentiation. Mechanistically, lnc-DC interacted with RNA binding protein IGF2BP2 to stabilize ZNF750 mRNA and up- regulated its downstream targets TINCR and KLF4. CONCLUSION: Our study revealed the novel role of GRHL3/lnc-DC/ZNF750 axis in regulating epidermal keratinocytes differentiation, which may provide new therapeutic targets of aberrant keratinocytes differentiation related skin diseases.


Subject(s)
RNA, Long Noncoding , Skin Diseases , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Transcription Factors/metabolism , Keratinocytes/metabolism , Skin/metabolism , Skin Diseases/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , RNA-Binding Proteins/metabolism , Tumor Suppressor Proteins/metabolism
11.
Int J Mol Sci ; 25(4)2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38397118

ABSTRACT

Chronic and excessive ultraviolet (UVA/UVB) irradiation exposure is known as a major contributor to premature skin aging, which leads to excessive reactive oxygen species generation, disturbed extracellular matrix homeostasis, DNA damage, and chronic inflammation. Sunscreen products are the major preventive option against UVR-induced photodamage, mostly counteracting the acute skin effects and only mildly counteracting accelerated aging. Therefore, novel anti-photoaging and photopreventive compounds are a subject of increased scientific interest. Our previous investigations revealed that the endemic plant Haberlea rhodopensis Friv. (HRE) activates the antioxidant defense through an NRF2-mediated mechanism in neutrophiles. In the present study, we aimed to investigate the photoprotective potential of HRE and two of its specialized compounds-the phenylethanoid glycosides myconoside (MYC) and calceolarioside E (CAL)-in UVA/UVB-stimulated human keratinocytes in an in vitro model of photoaging. The obtained data demonstrated that the application of HRE, MYC, and CAL significantly reduced intracellular ROS formation in UVR-exposed HaCaT cells. The NRF2/PGC-1α and TGF-1ß/Smad/Wnt signaling pathways were pointed out as having a critical role in the observed CAL- and MYC-induced photoprotective effect. Collectively, CAL is worth further evaluation as a potent natural NRF2 activator and a promising photoprotective agent that leads to the prevention of UVA/UVB-induced premature skin aging.


Subject(s)
Caffeic Acids , Glucosides , Skin Aging , Skin Diseases , Humans , Caffeic Acids/pharmacology , NF-E2-Related Factor 2/metabolism , Reactive Oxygen Species/metabolism , Skin/metabolism , Skin Diseases/metabolism , Ultraviolet Rays/adverse effects
12.
Skin Res Technol ; 30(2): e13603, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38332513

ABSTRACT

BACKGROUND: Psoriasis is a prevalent, long-term skin condition characterized by inflammation. Keratinocytes (KCs) are important effector cells that release inflammatory factors and chemokines to promote the inflammatory cascade in psoriasis. However, the mechanisms underlying the activation of KCs in psoriasis remain unclear. Livin suppresses apoptotic proteins and directly affects the growth and spread of cancer cells. Livin expression reportedly increases significantly in lesions of patients with psoriasis; however, its specific role in KC activation remains unknown. This study aimed to examine the impact of Livin on KC activation and the subsequent release of inflammatory mediators. METHODS: Immunofluorescence staining, reverse transcription-quantitative polymerase chain reaction, enzyme-linked immunosorbent assay (ELISA), and western blotting were used to assess Livin expression in patients with psoriasis, an imiquimod (IMQ)-induced psoriasis-like mouse model, and M5-treated HaCaT cells. To investigate the role of Livin in KCs, we performed RNA sequencing and proteomic analysis of Livin-knockdown (knockdown-HaCaT) and negative control (NC-HaCaT) cells. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes were used for enrichment analyses. Moreover, the effect of Livin expression on the release of inflammatory mediators in KCs was verified using ELISA. RESULTS: Livin expression was higher in KCs of patients with psoriasis than in those healthy controls. Livin expression in HaCaT cells treated with M5 increased significantly over time. Livin expression was higher in the skin lesions of the IMQ mouse model than in the control group. Proteomic analysis and RNA sequencing used to investigate the function of Livin in HaCaT cells revealed its potential role in mediating KC activation and inflammatory mediator release, which affected the pathology of psoriasis. CONCLUSIONS: Livin expression played an effect on KCs activation, which induced release of inflammatory mediators and up-regulation of keratin. This study provides a new effector molecule for the mechanism of inflammatory response in psoriasis.


Subject(s)
Psoriasis , Skin Diseases , Animals , Humans , Mice , Cell Proliferation , Disease Models, Animal , Imiquimod/adverse effects , Imiquimod/metabolism , Inflammation Mediators/adverse effects , Inflammation Mediators/metabolism , Keratinocytes/metabolism , Proteomics , Psoriasis/pathology , Skin Diseases/metabolism
13.
Int J Mol Sci ; 25(3)2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38338991

ABSTRACT

Side streams and byproducts of food are established sources of natural ingredients in cosmetics. In the present study, we obtained upcycled low-molecular-weight anionic peptides (LMAPs) using byproducts of the post-yuzu-juicing process by employing an enzyme derived from Bacillus sp. For the first time, we isolated anionic peptides less than 500 Da in molecular weight from Citrus junos TANAKA seeds via hydrolysis using this enzyme. The protective effect of LMAPs against UVR-induced photoaging was evaluated using a reconstructed skin tissue (RST) model and keratinocytes. The LMAPs protected the keratinocytes by scavenging intracellular reactive oxygen species and by reducing the levels of paracrine cytokines (IL-6 and TNF-α) in UVR (UVA 2 J/cm2 and UVB 15 mJ/cm2)-irradiated keratinocytes. Additionally, the increase in melanin synthesis and TRP-2 expression in RST caused by UVR was significantly inhibited by LMAP treatment. This treatment strongly induced the expression of filaggrin and laminin-5 in UVR-irradiated RST. It also increased type I collagen expression in the dermal region and in fibroblasts in vitro. These results suggest that a hydrolytic system using the enzyme derived from Bacillus sp. can be used for the commercial production of LMAPs from food byproducts and that these LMAPs can be effective ingredients for improving photoaging-induced skin diseases.


Subject(s)
Citrus , Skin Aging , Skin Diseases , Skin/metabolism , Cytokines/metabolism , Skin Diseases/metabolism , Ultraviolet Rays/adverse effects , Fibroblasts/metabolism
14.
Stem Cell Res Ther ; 15(1): 37, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38331803

ABSTRACT

Adipose-derived stem cells (ASCs) are a critical adult stem cell subpopulation and are widely utilized in the fields of regenerative medicine and stem cell research due to their abundance, ease of harvest, and low immunogenicity. ASCs, which are homologous with skin by nature, can treat immune-related skin diseases by promoting skin regeneration and conferring immunosuppressive effects, with the latter being the most important therapeutic mechanism. ASCs regulate the immune response by direct cell-cell communication with immune cells, such as T cells, macrophages, and B cells. In addition to cell-cell interactions, ASCs modulate the immune response indirectly by secreting cytokines, interleukins, growth factors, and extracellular vesicles. The immunomodulatory effects of ASCs have been exploited to treat many immune-related skin diseases with good therapeutic outcomes. This article reviews the mechanisms underlying the immunomodulatory effects of ASCs, as well as progress in research on immune-related skin diseases.


Subject(s)
Mesenchymal Stem Cells , Skin Diseases , Adult , Humans , Adipose Tissue , Mesenchymal Stem Cells/metabolism , Adipocytes , Skin , Skin Diseases/therapy , Skin Diseases/metabolism
15.
J Cutan Pathol ; 51(5): 353-359, 2024 May.
Article in English | MEDLINE | ID: mdl-38199812

ABSTRACT

BACKGROUND: Venous malformations (VMs) are distinguished from lymphatic malformations (LMs) when specific diagnostic skin lesions are present. In the deep type, this is difficult by clinico-radiologic evaluation alone. We aimed to investigate the usefulness of lymphatic vessel endothelial cell (LEC) markers for the differential diagnosis of the deep VMs and LMs. METHODS: A retrospective study was conducted based on the medical records of patients with VMs and LMs who underwent biopsy with both D2-40 and PROX-1 immunohistochemistry. We compared the initial clinico-radiological diagnosis with the final pathological diagnosis and identified which ones showed a difference. RESULTS: From 261 patients who had VMs and LMs, 111 remained after the exclusion of those who showed definite surface diagnostic features. After pathological diagnosis with the expressions of D2-40 and PROX-1, 38 of 111 (34.2%) patients' final diagnoses were changed. Among these 38 cases, diagnosis was not changed by D2-40 positivity alone, but changed by PROX-1 positivity alone (52.6%) or by both (47.4%). The diagnostic changes were more frequent in the deep category (43.7%) than in the superficial category. CONCLUSIONS: Identifying the expression of D2-40, and especially PROX-1, in the differential diagnosis of VMs and LMs may provide important treatment guidelines and understanding their natural course.


Subject(s)
Lymphatic Vessels , Skin Diseases , Vascular Malformations , Humans , Immunohistochemistry , Retrospective Studies , Vascular Malformations/diagnosis , Vascular Malformations/metabolism , Skin , Skin Diseases/metabolism
16.
Clin Exp Dermatol ; 49(5): 450-458, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38173286

ABSTRACT

The CD1 and MR1 protein families present lipid antigens and small molecules to T cells, complementing well-studied major histocompatibility complex-peptide mechanisms. The CD1a subtype is highly and continuously expressed within the skin, most notably on Langerhans cells, and has been demonstrated to present self and foreign lipids to T cells, highlighting its cutaneous sentinel role. Alteration of CD1a-dependent T-cell responses has recently been discovered to contribute to the pathogenesis of several inflammatory skin diseases. In this review, we overview the structure and role of CD1a and outline the current evidence implicating CD1a in the development of psoriasis, atopic dermatitis and allergic contact dermatitis.


Subject(s)
Antigens, CD1 , Skin Diseases , T-Lymphocytes , Humans , Antigens, CD1/metabolism , Antigens, CD1/immunology , Dermatitis, Allergic Contact/immunology , Dermatitis, Atopic/immunology , Langerhans Cells/immunology , Psoriasis/immunology , Skin/immunology , Skin/pathology , T-Lymphocytes/immunology , Skin Diseases/drug therapy , Skin Diseases/metabolism , Skin Diseases/pathology
17.
J Invest Dermatol ; 144(2): 206-224, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38189700

ABSTRACT

IL-36 is a most recent member of the IL-1 cytokine family, primarily expressed at barrier sites of the body such as the skin, lungs, and intestine. It plays a vital role in inflammation and is implicated in the development of various cutaneous; intestinal; and pulmonary disorders, including psoriasis, inflammatory bowel disease, and chronic obstructive pulmonary disease. IL-36 comprises 4 isoforms: the proinflammatory IL-36α, IL-36ß, and IL-36γ and the anti-inflammatory IL-36R antagonist. An imbalance between proinflammatory and anti-inflammatory IL-36 isoforms can contribute to the inflammatory fate of cells and tissues. IL-36 cytokines signal through an IL-36R heterodimer mediating their function through canonical signaling cacade, including the NF-B pathway. Prominent for its role in psoriasis, IL-36 has recently been associated with disease mechanisms in atopic dermatitis, hidradenitis suppurativa, neutrophilic dermatoses, autoimmune blistering disease, and Netherton syndrome. The major cutaneous source of IL-36 cytokines is keratinocytes, pointing to its role in the communication between the epidermis, innate (neutrophils, dendritic cells) immune system, and adaptive (T helper [Th]1 cells, Th17) immune system. Thus, cutaneous IL-36 signaling is crucial for the immunopathological outcome of various skin diseases. Consequently, the IL-36/IL-36R axis has recently been recognized as a promising drug target for the treatment of inflammatory disorders beyond psoriasis. This review summarizes the current update on IL-36 cytokines in inflammatory skin diseases.


Subject(s)
Dermatitis , Interleukin-1 , Psoriasis , Skin Diseases , Humans , Anti-Inflammatory Agents , Cytokines/metabolism , Interleukin-1/metabolism , Protein Isoforms , Skin Diseases/drug therapy , Skin Diseases/metabolism , Receptors, Interleukin-1/metabolism
18.
Biomed Pharmacother ; 171: 116167, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38262152

ABSTRACT

Atopic dermatitis (AD) is a prevalent chronic inflammatory skin disease. The Janus kinase (JAK) has been identified as a target in AD, as it regulates specific inflammatory genes and adaptive immune responses. However, the efficacy of topically applied JAK inhibitors in AD is limited due to the unique structure of skin. We synthesized JAK1/JAK2 degraders (JAPT) based on protein degradation targeting chimeras (PROTACs) and prepared them into topical preparations. JAPT exploited the E3 ligase to mediate ubiquitination and degradation of JAK1/JAK2, offering a promising AD therapeutic approach with low frequency and dosage. In vitro investigations demonstrated that JAPT effectively inhibited the release of pro-inflammatory cytokines and reduced inflammation by promoting the degradation of JAK. In vivo studies further confirmed the efficacy of JAPT in degrading JAK1/JAK2, leading to a significant suppression of type I, II, and III adaptive immunity. Additionally, JAPT demonstrated a remarkable reduction in AD severity, as evidenced by improved skin lesion clearance and AD severity scores (SCORAD). Our study revealed the therapeutic potential of JAPT, surpassing conventional JAK inhibitors in the treatment of AD, which suggested that JAPT could be a promising topically applied anti-AD drug targeting the JAK-STAT signaling pathway.


Subject(s)
Dermatitis, Atopic , Janus Kinase Inhibitors , Skin Diseases , Humans , Dermatitis, Atopic/drug therapy , Janus Kinase Inhibitors/therapeutic use , Skin , Inflammation/drug therapy , Janus Kinases/metabolism , Skin Diseases/metabolism , Janus Kinase 1/metabolism , Janus Kinase 2/metabolism
19.
J Invest Dermatol ; 144(2): 296-306.e3, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37660780

ABSTRACT

The epidermis is a constantly renewing stratified epithelial tissue that provides essential protective barrier functions. The major barrier is located at the outermost layers of the epidermis, formed by terminally differentiated keratinocytes reinforced by proteins of their cornified envelope and sequestered intercellular lipids. Disruptions to epidermal differentiation characterize various skin disorders. ZNF750 is an epithelial transcription factor essential for in vitro keratinocyte differentiation, whose truncating mutation in humans causes autosomal dominant psoriasis-like skin disease. In this study, we utilized an epidermal-specific Znf750 conditional knockout mouse model to uncover the role ZNF750 plays in epidermal development. We show that deletion of Znf750 in the developing skin does not block epidermal differentiation completely, suggesting in vivo compensatory feedback mechanisms, although it does result in impaired barrier function and perinatal lethality. Molecular dissection revealed ultrastructural defects in the differentiated layers of the epidermis, accompanied by alterations in the expression of ZNF750-dependent genes encoding key cornified envelope precursor proteins and lipid-processing enzymes, including gene subsets known to be mutated in human skin diseases involving impaired barrier function. Together, our findings provide molecular insights into the pathogenesis of human skin disease by linking ZNF750 to a subset of epidermal differentiation genes involved in barrier formation pathways.


Subject(s)
Keratinocytes , Skin Diseases , Animals , Mice , Cell Differentiation , Epidermis/metabolism , Keratinocytes/metabolism , Lipids , Skin Diseases/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Tumor Suppressor Proteins/metabolism
20.
Chin J Integr Med ; 30(3): 222-229, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37597119

ABSTRACT

OBJECTIVE: To determine the role of Tripterygium wilfordii multiglycoside (TGW) in the treatment of psoriatic dermatitis from a cellular immunological perspective. METHODS: Mouse models of psoriatic dermatitis were established by imiquimod (IMQ). Twelve male BALB/c mice were assigned to IMQ or IMQ+TGW groups according to a random number table. Histopathological changes in vivo were assessed by hematoxylin and eosin staining. Ratios of immune cells and cytokines in mice, as well as PAM212 cell proliferation in vitro were assessed by flow cytometry. Pro-inflammatory cytokine expression was determined using reverse transcription quantitative polymerase chain reaction. RESULTS: TGW significantly ameliorated the severity of IMQ-induced psoriasis-like mouse skin lesions and restrained the activation of CD45+ cells, neutrophils and T lymphocytes (all P<0.01). Moreover, TGW significantly attenuated keratinocytes (KCs) proliferation and downregulated the mRNA levels of inflammatory cytokines including interleukin (IL)-17A, IL-23, tumor necrosis factor α, and chemokine (C-X-C motif) ligand 1 (P<0.01 or P<0.05). Furthermore, it reduced the number of γ δ T17 cells in skin lesion of mice and draining lymph nodes (P<0.01). CONCLUSIONS: TGW improved psoriasis-like inflammation by inhibiting KCs proliferation, as well as the associated immune cells and cytokine expression. It inhibited IL-17 secretion from γ δ T cells, which improved the immune-inflammatory microenvironment of psoriasis.


Subject(s)
Dermatitis , Psoriasis , Skin Diseases , Male , Animals , Mice , Tripterygium , Psoriasis/drug therapy , Keratinocytes , Skin Diseases/metabolism , Cytokines/metabolism , Imiquimod/adverse effects , Imiquimod/metabolism , Dermatitis/metabolism , Dermatitis/pathology , Disease Models, Animal , Mice, Inbred BALB C , Skin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...