Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 241
Filter
1.
J Physiol Sci ; 74(1): 37, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39020291

ABSTRACT

An increase in ambient temperature leads to an increase in sleep. However, the mechanisms behind this phenomenon remain unknown. This study aimed to investigate the role of microglia in the increase of sleep caused by high ambient temperature. We confirmed that at 35 °C, slow-wave sleep was significantly increased relative to those observed at 25 °C. Notably, this effect was abolished upon treatment with PLX3397, a CSF1R inhibitor that can deplete microglia, while sleep amount at 25 °C was unaffected. These observations suggest that microglia play a pivotal role in modulating the homeostatic regulation of sleep in response to the fluctuations in ambient temperature.


Subject(s)
Microglia , Sleep, Slow-Wave , Microglia/drug effects , Microglia/physiology , Animals , Male , Sleep, Slow-Wave/physiology , Sleep, Slow-Wave/drug effects , Mice , Mice, Inbred C57BL , Temperature , Hot Temperature , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/antagonists & inhibitors , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Homeostasis/physiology , Homeostasis/drug effects , Sleep/physiology , Sleep/drug effects
2.
Nat Commun ; 15(1): 5249, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898100

ABSTRACT

Memory consolidation relies in part on the reactivation of previous experiences during sleep. The precise interplay of sleep-related oscillations (slow oscillations, spindles and ripples) is thought to coordinate the information flow between relevant brain areas, with ripples mediating memory reactivation. However, in humans empirical evidence for a role of ripples in memory reactivation is lacking. Here, we investigated the relevance of sleep oscillations and specifically ripples for memory reactivation during human sleep using targeted memory reactivation. Intracranial electrophysiology in epilepsy patients and scalp EEG in healthy participants revealed that elevated levels of slow oscillation - spindle activity coincided with the read-out of experimentally induced memory reactivation. Importantly, spindle-locked ripples recorded intracranially from the medial temporal lobe were found to be correlated with the identification of memory reactivation during non-rapid eye movement sleep. Our findings establish ripples as key-oscillation for sleep-related memory reactivation in humans and emphasize the importance of the coordinated interplay of the cardinal sleep oscillations.


Subject(s)
Electroencephalography , Memory Consolidation , Humans , Male , Female , Adult , Memory Consolidation/physiology , Epilepsy/physiopathology , Sleep Stages/physiology , Young Adult , Memory/physiology , Temporal Lobe/physiology , Sleep/physiology , Sleep, Slow-Wave/physiology
3.
Nat Commun ; 15(1): 4566, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38914541

ABSTRACT

Idling brain activity has been proposed to facilitate inference, insight, and innovative problem-solving. However, it remains unclear how and when the idling brain can create novel ideas. Here, we show that cortical offline activity is both necessary and sufficient for building unlearned inferential knowledge from previously acquired information. In a transitive inference paradigm, male C57BL/6J mice gained the inference 1 day after, but not shortly after, complete training. Inhibiting the neuronal computations in the anterior cingulate cortex (ACC) during post-learning either non-rapid eye movement (NREM) or rapid eye movement (REM) sleep, but not wakefulness, disrupted the inference without affecting the learned knowledge. In vivo Ca2+ imaging suggests that NREM sleep organizes the scattered learned knowledge in a complete hierarchy, while REM sleep computes the inferential information from the organized hierarchy. Furthermore, after insufficient learning, artificial activation of medial entorhinal cortex-ACC dialog during only REM sleep created inferential knowledge. Collectively, our study provides a mechanistic insight on NREM and REM coordination in weaving inferential knowledge, thus highlighting the power of idling brain in cognitive flexibility.


Subject(s)
Gyrus Cinguli , Learning , Mice, Inbred C57BL , Prefrontal Cortex , Sleep, REM , Animals , Sleep, REM/physiology , Male , Prefrontal Cortex/physiology , Learning/physiology , Mice , Gyrus Cinguli/physiology , Wakefulness/physiology , Sleep, Slow-Wave/physiology , Knowledge , Entorhinal Cortex/physiology , Neurons/physiology
4.
Zh Nevrol Psikhiatr Im S S Korsakova ; 124(5. Vyp. 2): 26-32, 2024.
Article in Russian | MEDLINE | ID: mdl-38934663

ABSTRACT

OBJECTIVE: To compare the effect of stage 3 fragmentation and the paradoxical phase of night sleep on melatonin (MT) secretion, and to evaluate the effects of changes in autonomic balance and activation reactions that occur in the orthodox and paradoxical phases of sleep. MATERIAL AND METHODS: Fifteen healthy men participated in three sessions: with stage 3 fragmentation, with fragmentation of paradoxical sleep, and in a control experiment in which sleep was not disturbed. In each experiment, 7 saliva samples were collected in the evening, at night and in the morning and the MT content was determined. Heart rate variability was analyzed using an electrocardiogram and autonomic balance was assessed. RESULTS: Sleep fragmentation was accompanied by activation reactions and reduced the duration of stage 3 and paradoxical phase sleep by 50% and 51% in the corresponding sessions. Fragmentation of paradoxical sleep also led to an increase in the duration of night wakefulness. Sleep disturbances caused an increase in MT secretion in the second half of the night and in the morning, especially pronounced in sessions with fragmentation of paradoxical sleep, in which upon awakening MT was 1.8 times higher than in the control. Stage 3 fragmentation was accompanied by increased sympathetic activation, while fragmentation of paradoxical sleep did not cause autonomic shifts. The subjects were divided into 2 clusters: with high and low MT in night and morning saliva samples. In all sessions, subjects with high MT had 1.7-2 times longer duration of night wakefulness; in sessions with fragmentation, they had significantly more activations in the paradoxical phase of sleep. CONCLUSION: Night sleep disturbances cause an increase in MT secretion, especially pronounced during the fragmentation of the paradoxical phase. An increase in MT levels does not depend on changes in autonomic balance and is apparently associated with activation of the serotonergic system, which accompanies disturbances in the depth and continuity of sleep.


Subject(s)
Melatonin , Saliva , Sleep Deprivation , Sleep, REM , Humans , Melatonin/metabolism , Male , Sleep, REM/physiology , Adult , Saliva/metabolism , Saliva/chemistry , Sleep Deprivation/physiopathology , Sleep Deprivation/metabolism , Sleep, Slow-Wave/physiology , Young Adult , Heart Rate/physiology , Autonomic Nervous System/physiopathology , Autonomic Nervous System/metabolism , Wakefulness/physiology
5.
Int J Neuropsychopharmacol ; 27(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38875132

ABSTRACT

BACKGROUND: A compelling hypothesis about attention-deficit/hyperactivity disorder (ADHD) etiopathogenesis is that the ADHD phenotype reflects a delay in cortical maturation. Slow-wave activity (SWA) of non-rapid eye movement (NREM) sleep electroencephalogram (EEG) is an electrophysiological index of sleep intensity reflecting cortical maturation. Available data on ADHD and SWA are conflicting, and developmental differences, or the effect of pharmacological treatment, are relatively unknown. METHODS: We examined, in samples (Mage = 16.4, SD = 1.2), of ever-medicated adolescents at risk for ADHD (n = 18; 72% boys), medication-naïve adolescents at risk for ADHD (n = 15, 67% boys), and adolescents not at risk for ADHD (n = 31, 61% boys) matched for chronological age and controlling for non-ADHD pharmacotherapy, whether ADHD pharmacotherapy modulates the association between NREM SWA and ADHD risk in home sleep. RESULTS: Findings indicated medication-naïve adolescents at risk for ADHD exhibited greater first sleep cycle and entire night NREM SWA than both ever-medicated adolescents at risk for ADHD and adolescents not at risk for ADHD and no difference between ever-medicated, at-risk adolescents, and not at-risk adolescents. CONCLUSIONS: Results support atypical cortical maturation in medication-naïve adolescents at risk for ADHD that appears to be normalized by ADHD pharmacotherapy in ever-medicated adolescents at risk for ADHD. Greater NREM SWA may reflect a compensatory mechanism in middle-later adolescents at risk for ADHD that normalizes an earlier occurring developmental delay.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Electroencephalography , Humans , Attention Deficit Disorder with Hyperactivity/physiopathology , Attention Deficit Disorder with Hyperactivity/drug therapy , Adolescent , Male , Female , Sleep, Slow-Wave/physiology , Sleep, Slow-Wave/drug effects , Central Nervous System Stimulants/pharmacology , Sleep Stages/drug effects , Sleep Stages/physiology
6.
PLoS One ; 19(6): e0306218, 2024.
Article in English | MEDLINE | ID: mdl-38924001

ABSTRACT

Sleep spindles are one of the prominent EEG oscillatory rhythms of non-rapid eye movement sleep. In the memory consolidation, these oscillations have an important role in the processes of long-term potentiation and synaptic plasticity. Moreover, the activity (spindle density and/or sigma power) of spindles has a linear association with learning performance in different paradigms. According to the experimental observations, the sleep spindle activity can be improved by closed loop acoustic stimulations (CLAS) which eventually improve memory performance. To examine the effects of CLAS on spindles, we propose a biophysical thalamocortical model for slow oscillations (SOs) and sleep spindles. In addition, closed loop stimulation protocols are applied on a thalamic network. Our model results show that the power of spindles is increased when stimulation cues are applied at the commencing of an SO Down-to-Up-state transition, but that activity gradually decreases when cues are applied with an increased time delay from this SO phase. Conversely, stimulation is not effective when cues are applied during the transition of an Up-to-Down-state. Furthermore, our model suggests that a strong inhibitory input from the reticular (RE) layer to the thalamocortical (TC) layer in the thalamic network shifts leads to an emergence of spindle activity at the Up-to-Down-state transition (rather than at Down-to-Up-state transition), and the spindle frequency is also reduced (8-11 Hz) by thalamic inhibition.


Subject(s)
Electroencephalography , Sleep, Slow-Wave , Thalamus , Humans , Sleep, Slow-Wave/physiology , Thalamus/physiology , Acoustic Stimulation/methods , Computer Simulation , Models, Neurological , Sleep/physiology
7.
Nature ; 630(8018): 935-942, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38867049

ABSTRACT

Memories benefit from sleep1, and the reactivation and replay of waking experiences during hippocampal sharp-wave ripples (SWRs) are considered to be crucial for this process2. However, little is known about how these patterns are impacted by sleep loss. Here we recorded CA1 neuronal activity over 12 h in rats across maze exploration, sleep and sleep deprivation, followed by recovery sleep. We found that SWRs showed sustained or higher rates during sleep deprivation but with lower power and higher frequency ripples. Pyramidal cells exhibited sustained firing during sleep deprivation and reduced firing during sleep, yet their firing rates were comparable during SWRs regardless of sleep state. Despite the robust firing and abundance of SWRs during sleep deprivation, we found that the reactivation and replay of neuronal firing patterns was diminished during these periods and, in some cases, completely abolished compared to ad libitum sleep. Reactivation partially rebounded after recovery sleep but failed to reach the levels found in natural sleep. These results delineate the adverse consequences of sleep loss on hippocampal function at the network level and reveal a dissociation between the many SWRs elicited during sleep deprivation and the few reactivations and replays that occur during these events.


Subject(s)
Hippocampus , Sleep Deprivation , Sleep, Slow-Wave , Animals , Female , Male , Rats , CA1 Region, Hippocampal/cytology , CA1 Region, Hippocampal/physiology , CA1 Region, Hippocampal/physiopathology , Maze Learning/physiology , Memory/physiology , Pyramidal Cells/physiology , Rats, Long-Evans , Sleep Deprivation/physiopathology , Sleep, Slow-Wave/physiology , Wakefulness/physiology , Time Factors , Hippocampus/cytology , Hippocampus/physiology , Hippocampus/physiopathology
8.
eNeuro ; 11(6)2024 Jun.
Article in English | MEDLINE | ID: mdl-38802242

ABSTRACT

Sleep's contribution to affective regulation is insufficiently understood. Previous human research has focused on memorizing or rating affective pictures and less on physiological affective responsivity. This may result in overlapping definitions of affective and declarative memories and inconsistent deductions for how rapid eye movement sleep (REMS) and slow-wave sleep (SWS) are involved. Literature associates REMS theta (4-8 Hz) activity with emotional memory processing, but its contribution to social stress habituation is unknown. Applying selective sleep stage suppression and oscillatory analyses, we investigated how sleep modulated affective adaptation toward social stress and retention of neutral declarative memories. Native Finnish participants (N = 29; age, M = 25.8 years) were allocated to REMS or SWS suppression conditions. We measured physiological (skin conductance response, SCR) and subjective stress response and declarative memory retrieval thrice: before laboratory night, the next morning, and after 3 d. Linear mixed models were applied to test the effects of condition and sleep parameters on emotional responsivity and memory retrieval. Greater overnight increase in SCR toward the stressor emerged after suppressed SWS (intact REMS) relative to suppressed REMS (20.1% vs 6.1%; p = 0.016). The overnight SCR increase was positively associated with accumulated REMS theta energy irrespective of the condition (r = 0.601; p = 0.002). Subjectively rated affective response and declarative memory recall were comparable between the conditions. The contributions of REMS and SWS to habituation of social stress are distinct. REMS theta activity proposedly facilitates the consolidation of autonomic affective responses. Declarative memory consolidation may not have greater dependence on intact SWS relative to intact REMS.


Subject(s)
Affect , Galvanic Skin Response , Sleep, REM , Stress, Psychological , Humans , Male , Female , Adult , Stress, Psychological/physiopathology , Stress, Psychological/psychology , Sleep, REM/physiology , Young Adult , Affect/physiology , Galvanic Skin Response/physiology , Mental Recall/physiology , Polysomnography , Sleep, Slow-Wave/physiology
9.
Sleep Med ; 119: 103-113, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38669833

ABSTRACT

OBJECTIVE: To investigate the relationship between both self-reported and objective sleep variables and low-grade inflammation in children and adolescents with major depressive disorder (MDD) of moderate to severe symptom severity. METHODS: In this cross-sectional study, we examined twenty-nine children and adolescents diagnosed with MDD and twenty-nine healthy controls (HC). Following a one-week actigraphy assessment, comprehensive sleep evaluations were conducted, including a one-night sleep EEG measurement and self-reported sleep data. Plasma high-sensitivity C-reactive protein (hsCRP) was employed as a marker to assess low-grade inflammation. RESULTS: No significant difference in hsCRP levels was observed between participants with MDD and HC. Furthermore, after adjusting for sleep difficulties, hsCRP exhibited no correlation with the severity of depressive symptoms. In HC, levels of hsCRP were not linked to self-reported and objective sleep variables. In contrast, depressed participants showed a significant correlation between hsCRP levels and increased subjective insomnia severity (Insomnia Severity Index; r = 0.41, p < 0.05), increased time spent in the N2 sleep stage (r = 0.47, p < 0.01), and decreased time spent in slow-wave sleep (r = - 0.61, p < 0.001). Upon additional adjustments for body mass index, tobacco use and depression severity, only the inverse association between hsCRP and time spent in slow-wave sleep retained statistical significance. Moderation analysis indicated that group status (MDD vs. HC) significantly moderates the association between slow-wave sleep and hsCRP. CONCLUSION: Our findings suggest that alterations in the architecture of slow-wave sleep may have a significant influence on modulating low-grade inflammatory processes in children and adolescents with MDD.


Subject(s)
Actigraphy , C-Reactive Protein , Depressive Disorder, Major , Inflammation , Humans , Depressive Disorder, Major/physiopathology , Depressive Disorder, Major/blood , Male , Female , Adolescent , Cross-Sectional Studies , Child , Inflammation/blood , C-Reactive Protein/analysis , Sleep, Slow-Wave/physiology , Self Report , Electroencephalography , Severity of Illness Index , Sleep Initiation and Maintenance Disorders/physiopathology , Sleep Initiation and Maintenance Disorders/blood
10.
Article in English | MEDLINE | ID: mdl-38683718

ABSTRACT

Sleep is vital to our daily activity. Lack of proper sleep can impair functionality and overall health. While stress is known for its detrimental impact on sleep quality, the precise effect of pre-sleep stress on subsequent sleep structure remains unknown. This study introduced a novel approach to study the pre-sleep stress effect on sleep structure, specifically slow-wave sleep (SWS) deficiency. To achieve this, we selected forehead resting EEG immediately before and upon sleep onset to extract stress-related neurological markers through power spectra and entropy analysis. These markers include beta/delta correlation, alpha asymmetry, fuzzy entropy (FuzzEn) and spectral entropy (SpEn). Fifteen subjects were included in this study. Our results showed that subjects lacking SWS often exhibited signs of stress in EEG, such as an increased beta/delta correlation, higher alpha asymmetry, and increased FuzzEn in frontal EEG. Conversely, individuals with ample SWS displayed a weak beta/delta correlation and reduced FuzzEn. Finally, we employed several supervised learning models and found that the selected neurological markers can predict subsequent SWS deficiency. Our investigation demonstrated that the classifiers could effectively predict varying levels of slow-wave sleep (SWS) from pre-sleep EEG segments, achieving a mean balanced accuracy surpassing 0.75. The SMOTE-Tomek resampling method could improve the performance to 0.77. This study suggests that stress-related neurological markers derived from pre-sleep EEG can effectively predict SWS deficiency. Such information can be integrated with existing sleep-improving techniques to provide a personalized sleep forecasting and improvement solution.


Subject(s)
Algorithms , Electroencephalography , Entropy , Sleep, Slow-Wave , Humans , Electroencephalography/methods , Male , Female , Sleep, Slow-Wave/physiology , Adult , Young Adult , Stress, Psychological/physiopathology , Alpha Rhythm/physiology , Forecasting , Beta Rhythm/physiology , Delta Rhythm , Sleep Deprivation/physiopathology , Reproducibility of Results
11.
Ann Neurol ; 96(1): 46-60, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38624158

ABSTRACT

OBJECTIVE: Recent evidence shows that during slow-wave sleep (SWS), the brain is cleared from potentially toxic metabolites, such as the amyloid-beta protein. Poor sleep or elevated cortisol levels can worsen amyloid-beta clearance, potentially leading to the formation of amyloid plaques, a neuropathological hallmark of Alzheimer disease. Here, we explored how nocturnal neural and endocrine activity affects amyloid-beta fluctuations in the peripheral blood. METHODS: We acquired simultaneous polysomnography and all-night blood sampling in 60 healthy volunteers aged 20-68 years. Nocturnal plasma concentrations of amyloid-beta-40, amyloid-beta-42, cortisol, and growth hormone were assessed every 20 minutes. Amyloid-beta fluctuations were modeled with sleep stages, (non)oscillatory power, and hormones as predictors while controlling for age and participant-specific random effects. RESULTS: Amyloid-beta-40 and amyloid-beta-42 levels correlated positively with growth hormone concentrations, SWS proportion, and slow-wave (0.3-4Hz) oscillatory and high-band (30-48Hz) nonoscillatory power, but negatively with cortisol concentrations and rapid eye movement sleep (REM) proportion measured 40-100 minutes previously (all t values > |3|, p values < 0.003). Older participants showed higher amyloid-beta-40 levels. INTERPRETATION: Slow-wave oscillations are associated with higher plasma amyloid-beta levels, whereas REM sleep is related to decreased amyloid-beta plasma levels, possibly representing changes in central amyloid-beta production or clearance. Strong associations between cortisol, growth hormone, and amyloid-beta presumably reflect the sleep-regulating role of the corresponding releasing hormones. A positive association between age and amyloid-beta-40 may indicate that peripheral clearance becomes less efficient with age. ANN NEUROL 2024;96:46-60.


Subject(s)
Amyloid beta-Peptides , Polysomnography , Sleep, REM , Sleep, Slow-Wave , Humans , Middle Aged , Amyloid beta-Peptides/blood , Amyloid beta-Peptides/metabolism , Adult , Male , Aged , Female , Sleep, Slow-Wave/physiology , Young Adult , Sleep, REM/physiology , Hydrocortisone/blood , Peptide Fragments/blood
12.
Elife ; 122024 Apr 25.
Article in English | MEDLINE | ID: mdl-38661727

ABSTRACT

We are unresponsive during slow-wave sleep but continue monitoring external events for survival. Our brain wakens us when danger is imminent. If events are non-threatening, our brain might store them for later consideration to improve decision-making. To test this hypothesis, we examined whether novel vocabulary consisting of simultaneously played pseudowords and translation words are encoded/stored during sleep, and which neural-electrical events facilitate encoding/storage. An algorithm for brain-state-dependent stimulation selectively targeted word pairs to slow-wave peaks or troughs. Retrieval tests were given 12 and 36 hr later. These tests required decisions regarding the semantic category of previously sleep-played pseudowords. The sleep-played vocabulary influenced awake decision-making 36 hr later, if targeted to troughs. The words' linguistic processing raised neural complexity. The words' semantic-associative encoding was supported by increased theta power during the ensuing peak. Fast-spindle power ramped up during a second peak likely aiding consolidation. Hence, new vocabulary played during slow-wave sleep was stored and influenced decision-making days later.


Subject(s)
Memory, Long-Term , Sleep, Slow-Wave , Humans , Sleep, Slow-Wave/physiology , Male , Female , Memory, Long-Term/physiology , Adult , Young Adult , Brain/physiology , Decision Making/physiology , Vocabulary , Electroencephalography
13.
Nat Commun ; 15(1): 3661, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38688901

ABSTRACT

Optochemistry, an emerging pharmacologic approach in which light is used to selectively activate or deactivate molecules, has the potential to alleviate symptoms, cure diseases, and improve quality of life while preventing uncontrolled drug effects. The development of in-vivo applications for optochemistry to render brain cells photoresponsive without relying on genetic engineering has been progressing slowly. The nucleus accumbens (NAc) is a region for the regulation of slow-wave sleep (SWS) through the integration of motivational stimuli. Adenosine emerges as a promising candidate molecule for activating indirect pathway neurons of the NAc expressing adenosine A2A receptors (A2ARs) to induce SWS. Here, we developed a brain-permeable positive allosteric modulator of A2ARs (A2AR PAM) that can be rapidly photoactivated with visible light (λ > 400 nm) and used it optoallosterically to induce SWS in the NAc of freely behaving male mice by increasing the activity of extracellular adenosine derived from astrocytic and neuronal activity.


Subject(s)
Adenosine , Nucleus Accumbens , Receptor, Adenosine A2A , Sleep, Slow-Wave , Animals , Nucleus Accumbens/metabolism , Nucleus Accumbens/drug effects , Nucleus Accumbens/physiology , Male , Receptor, Adenosine A2A/metabolism , Receptor, Adenosine A2A/genetics , Mice , Adenosine/metabolism , Adenosine/pharmacology , Allosteric Regulation , Sleep, Slow-Wave/physiology , Sleep, Slow-Wave/drug effects , Astrocytes/metabolism , Astrocytes/drug effects , Light , Neurons/metabolism , Neurons/drug effects , Mice, Inbred C57BL , Humans , Adenosine A2 Receptor Agonists/pharmacology
14.
J Neurosci Res ; 102(4): e25325, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38562056

ABSTRACT

Brain states (wake, sleep, general anesthesia, etc.) are profoundly associated with the spatiotemporal dynamics of brain oscillations. Previous studies showed that the EEG alpha power shifted from the occipital cortex to the frontal cortex (alpha anteriorization) after being induced into a state of general anesthesia via propofol. The sleep research literature suggests that slow waves and sleep spindles are generated locally and propagated gradually to different brain regions. Since sleep and general anesthesia are conceptualized under the same framework of consciousness, the present study examines whether alpha anteriorization similarly occurs during sleep and how the EEG power in other frequency bands changes during different sleep stages. The results from the analysis of three polysomnography datasets of 234 participants show consistent alpha anteriorization during the sleep stages N2 and N3, beta anteriorization during stage REM, and theta posteriorization during stages N2 and N3. Although it is known that the neural circuits responsible for sleep are not exactly the same for general anesthesia, the findings of alpha anteriorization in this study suggest that, at macro level, the circuits for alpha oscillations are organized in the similar cortical areas. The spatial shifts of EEG power in different frequency bands during sleep may offer meaningful neurophysiological markers for the level of consciousness.


Subject(s)
Electroencephalography , Sleep, Slow-Wave , Humans , Electroencephalography/methods , Sleep, Slow-Wave/physiology , Sleep/physiology , Sleep Stages/physiology , Polysomnography
15.
Psychopharmacology (Berl) ; 241(7): 1417-1426, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38467891

ABSTRACT

Ibogaine is a potent atypical psychedelic that has gained considerable attention due to its antiaddictive and antidepressant properties in preclinical and clinical studies. Previous research from our group showed that ibogaine suppresses sleep and produces an altered wakefulness state, which resembles natural REM sleep. However, after systemic administration, ibogaine is rapidly metabolized to noribogaine, which also shows antiaddictive effects but with a distinct pharmacological profile, making this drug a promising therapeutic candidate. Therefore, we still ignore whether the sleep/wake alterations depend on ibogaine or its principal metabolite noribogaine. To answer this question, we conducted polysomnographic recordings in rats following the administration of pure noribogaine. Our results show that noribogaine promotes wakefulness while reducing slow-wave sleep and blocking REM sleep, similar to our previous results reported for ibogaine administration. Thus, we shed new evidence on the mechanisms by which iboga alkaloids work in the brain.


Subject(s)
Ibogaine , Polysomnography , Sleep, REM , Wakefulness , Animals , Sleep, REM/drug effects , Wakefulness/drug effects , Wakefulness/physiology , Male , Rats , Ibogaine/analogs & derivatives , Ibogaine/pharmacology , Ibogaine/administration & dosage , Rats, Sprague-Dawley , Sleep, Slow-Wave/drug effects , Sleep, Slow-Wave/physiology , Hallucinogens/pharmacology , Hallucinogens/administration & dosage , Electroencephalography/drug effects
17.
Sleep ; 47(6)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38512801

ABSTRACT

Accumulation of amyloid-ß (Aß) plays an important role in Alzheimer's disease (AD) pathology. There is growing evidence that disordered sleep may accelerate AD pathology by impeding the physiological clearance of Aß from the brain that occurs in normal sleep. Therapeutic strategies for improving sleep quality may therefore help slow disease progression. It is well documented that the composition and dynamics of sleep are sensitive to ambient temperature. We therefore compared Aß pathology and sleep metrics derived from polysomnography in 12-month-old female 3xTg-AD mice (n = 8) exposed to thermoneutral temperatures during the light period over 4 weeks to those of age- and sex-matched controls (n = 8) that remained at normal housing temperature (22°C) during the same period. The treated group experienced greater proportions of slow wave sleep (SWS)-i.e. epochs of elevated 0.5-2 Hz EEG slow wave activity during non-rapid eye movement (NREM) sleep-compared to controls. Assays performed on mouse brain tissue harvested at the end of the experiment showed that exposure to thermoneutral temperatures significantly reduced levels of DEA-soluble (but not RIPA- or formic acid-soluble) Aß40 and Aß42 in the hippocampus, though not in the cortex. With both groups pooled together and without regard to treatment condition, NREM sleep continuity and any measure of SWS within NREM at the end of the treatment period were inversely correlated with DEA-soluble Aß40 and Aß42 levels, again in the hippocampus but not in the cortex. These findings suggest that experimental manipulation of SWS could offer useful clues into the mechanisms and treatment of AD.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Disease Models, Animal , Mice, Transgenic , Polysomnography , Sleep, Slow-Wave , Animals , Alzheimer Disease/physiopathology , Mice , Amyloid beta-Peptides/metabolism , Sleep, Slow-Wave/physiology , Female , Temperature , Electroencephalography , Brain/physiopathology , Brain/metabolism
18.
Sleep ; 47(7)2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38477166

ABSTRACT

We examined how aging affects the role of sleep in the consolidation of newly learned cognitive strategies. Forty healthy young adults (20-35 years) and 30 healthy older adults (60-85 years) were included. Participants were trained on the Tower of Hanoi (ToH) task, then, half of each age group were assigned to either the 90-minute nap condition, or stayed awake, before retesting. The temporal co-occurrence between slow waves (SW) and sleep spindles (SP) during non-rapid eye movement sleep was examined as a function of age in relation to memory consolidation of problem-solving skills. We found that despite intact learning, older adults derived a reduced benefit of sleep for problem-solving skills relative to younger adults. As expected, the percentage of coupled spindles was lower in older compared to younger individuals from control to testing sessions. Furthermore, coupled spindles in young adults were more strongly coupled to the SW upstate compared to older individuals. Coupled spindles in older individuals were lower in amplitude (mean area under the curve; µV) compared to the young group. Lastly, there was a significant relationship between offline gains in accuracy on the ToH and percent change of spindles coupled to the upstate of the slow wave in older, but not younger adults. Multiple regression revealed that age accounted for differences in offline gains in accuracy, as did spindle coupling during the upstate. These results suggest that with aging, spindle-slow wave coupling decreases. However, the degree of the preservation of coupling with age correlates with the extent of problem-solving skill consolidation during sleep.


Subject(s)
Aging , Memory Consolidation , Problem Solving , Humans , Problem Solving/physiology , Adult , Aged , Female , Male , Middle Aged , Aging/physiology , Young Adult , Aged, 80 and over , Memory Consolidation/physiology , Electroencephalography , Sleep/physiology , Sleep, Slow-Wave/physiology , Polysomnography , Age Factors
19.
Sleep ; 47(5)2024 May 10.
Article in English | MEDLINE | ID: mdl-38452190

ABSTRACT

STUDY OBJECTIVES: Sleep supports systems memory consolidation through the precise temporal coordination of specific oscillatory events during slow-wave sleep, i.e. the neocortical slow oscillations (SOs), thalamic spindles, and hippocampal ripples. Beneficial effects of sleep on memory are also observed in infants, although the contributing regions, especially hippocampus and frontal cortex, are immature. Here, we examined in rats the development of these oscillatory events and their coupling during early life. METHODS: EEG and hippocampal local field potentials were recorded during sleep in male rats at postnatal days (PD)26 and 32, roughly corresponding to early (1-2 years) and late (9-10 years) human childhood, and in a group of adult rats (14-18 weeks, corresponding to ~22-29 years in humans). RESULTS: SO and spindle amplitudes generally increased from PD26 to PD32. In parallel, frontocortical EEG spindles increased in density and frequency, while changes in hippocampal ripples remained nonsignificant. The proportion of SOs co-occurring with spindles also increased from PD26 to PD32. Whereas parietal cortical spindles were phase-locked to the depolarizing SO-upstate already at PD26, over frontal cortex SO-spindle phase-locking emerged not until PD32. Co-occurrence of hippocampal ripples with spindles was higher during childhood than in adult rats, but significant phase-locking of ripples to the excitable spindle troughs was observed only in adult rats. CONCLUSIONS: Results indicate a protracted development of synchronized thalamocortical processing specifically in frontocortical networks (i.e. frontal SO-spindle coupling). However, synchronization within thalamocortical networks generally precedes synchronization of thalamocortical with hippocampal processing as reflected by the delayed occurrence of spindle-ripple phase-coupling.


Subject(s)
Electroencephalography , Hippocampus , Animals , Rats , Male , Hippocampus/physiology , Thalamus/physiology , Neocortex/physiology , Sleep/physiology , Sleep, Slow-Wave/physiology , Brain Waves/physiology
20.
Commun Biol ; 7(1): 288, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38459227

ABSTRACT

Sleep boosts the integration of memories, and can thus facilitate relational learning. This benefit may be due to memory reactivation during non-REM sleep. We set out to test this by explicitly cueing reactivation using a technique called targeted memory reactivation (TMR), in which sounds are paired with learned material in wake and then softly played during subsequent sleep, triggering reactivation of the associated memories. We specifically tested whether TMR in slow wave sleep leads to enhancements in inferential thinking in a transitive inference task. Because the Up-phase of the slow oscillation is more responsive to cues than the Down-phase, we also asked whether Up-phase stimulation is more beneficial for such integration. Our data show that TMR during the Up-Phase boosts the ability to make inferences, but only for the most distant inferential leaps. Up-phase stimulation was also associated with detectable memory reinstatement, whereas Down-phase stimulation led to below-chance performance the next morning. Detection of memory reinstatement after Up-state stimulation was negatively correlated with performance on the most difficult inferences the next morning. These findings demonstrate that cueing memory reactivation at specific time points in sleep can benefit difficult relational learning problems.


Subject(s)
Sleep, Slow-Wave , Humans , Sleep, Slow-Wave/physiology , Learning/physiology , Sleep/physiology , Cues , Sound
SELECTION OF CITATIONS
SEARCH DETAIL
...