Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 898
Filter
1.
J Transl Med ; 22(1): 475, 2024 May 19.
Article in English | MEDLINE | ID: mdl-38764033

ABSTRACT

PURPOSE: To analyze the role of and mechanism underlying obstructive sleep apnea (OSA)-derived exosomes in inducing non-alcoholic fatty liver (NAFLD). METHODS: The role of OSA-derived exosomes was analyzed in inducing hepatocyte fat accumulation in mice models both in vivo and in vitro. RESULTS: OSA-derived exosomes caused fat accumulation and macrophage activation in the liver tissue. These exosomes promoted fat accumulation; steatosis was more noticeable in the presence of macrophages. Macrophages could internalize OSA-derived exosomes, which promoted macrophage polarization to the M1 type. Moreover, it inhibited sirtuin-3 (SIRT3)/AMP-activated protein kinase (AMPK) and autophagy and promoted the activation of nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasomes. The use of 3-methyladenine (3-MA) to inhibit autophagy blocked NLRP3 inflammasome activation and inhibited the M1 polarization of macrophages. miR-421 targeting inhibited SIRT3 protein expression in the macrophages. miR-421 was significantly increased in OSA-derived exosomes. Additionally, miR-421 levels were increased in OSA + NAFLD mice- and patient-derived exosomes. In the liver tissues of OSA and OSA + NAFLD mice, miR-421 displayed similar co-localization with the macrophages. Intermittent hypoxia-induced hepatocytes deliver miR-421 to the macrophages via exosomes to inhibit SIRT3, thereby participating in macrophage M1 polarization. After OSA and NAFLD modeling in miR-421-/- mice, liver steatosis and M1 polarization were significantly reduced. Additionally, in the case of miR-421 knockout, the inhibitory effects of OSA-derived exosomes on SIRT3 and autophagy were significantly alleviated. Furthermore, their effects on liver steatosis and macrophage M1 polarization were significantly reduced. CONCLUSIONS: OSA promotes the delivery of miR-421 from the hepatocytes to macrophages. Additionally, it promotes M1 polarization by regulating the SIRT3/AMPK-autophagy pathway, thereby causing NAFLD.


Subject(s)
Autophagy , Cell Polarity , Exosomes , Macrophages , MicroRNAs , Non-alcoholic Fatty Liver Disease , Sirtuin 3 , Sleep Apnea, Obstructive , Animals , Humans , Male , Mice , AMP-Activated Protein Kinases/metabolism , Base Sequence , Exosomes/metabolism , Hepatocytes/metabolism , Hepatocytes/pathology , Inflammasomes/metabolism , Liver/pathology , Liver/metabolism , Macrophages/metabolism , Mice, Inbred C57BL , MicroRNAs/metabolism , MicroRNAs/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Sirtuin 3/metabolism , Sirtuin 3/genetics , Sleep Apnea, Obstructive/complications , Sleep Apnea, Obstructive/metabolism
2.
Eur J Pharmacol ; 975: 176659, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38762158

ABSTRACT

Obstructive sleep apnea syndrome (OSAS), characterized by repeated narrow or collapse of the upper airway during sleep, resulting in periodic reductions or cessations in ventilation, consequent hypoxia, hypercapnia, increased sympathetic activity and sleep fragmentation, places a serious burden on society and health care. Intermittent hypoxia (IH), which cause central nervous system (CNS) inflammation, and ultimately lead to neuropathy, is thought to be a crucial contributor to cognitive impairment in OSAS. Wnt signaling pathway exerts an important role in the regulation of CNS disorders. Particularly, it may be involved in the regulation of neuroinflammation and cognitive dysfunction. However, its underlying mechanism remains poorly understood. Accumulating evidence demonstrated that Wnt signaling pathway may inhibited in a variety of neurological disorders. Recently studies revealed that SUMOylation was participated in the regulation of neuroinflammation. Members of Wnt/ß-catenin pathway may be targets of SUMOylation. In vitro and in vivo molecular biology experiments explored the regulatory mechanism of SUMOylation on Wnt/ß-catenin in IH-induced neuroinflammation and neuronal injury, which demonstrated that IH induced the SUMOylation of ß-catenin, microglia mediated inflammation and neuronal damage. Moreover, SENP1 regulated the de-SUMOylation of ß-catenin, triggered Wnt/ß-catenin pathway, and alleviated neuroinflammation and neuronal injury, thus improving IH-related mice cognitive dysfunction.


Subject(s)
Cognitive Dysfunction , Cysteine Endopeptidases , Hypoxia , Microglia , Sumoylation , Wnt Signaling Pathway , Animals , Microglia/metabolism , Microglia/pathology , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/etiology , Mice , Cysteine Endopeptidases/metabolism , Hypoxia/complications , Hypoxia/metabolism , Male , beta Catenin/metabolism , Mice, Inbred C57BL , Neuroinflammatory Diseases/metabolism , Inflammation/metabolism , Inflammation/pathology , Sleep Apnea, Obstructive/complications , Sleep Apnea, Obstructive/metabolism , Sleep Apnea, Obstructive/physiopathology , Humans , Disease Models, Animal
3.
Commun Biol ; 7(1): 492, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654054

ABSTRACT

A correlation exists between obstructive sleep apnoea (OSA) and the severity of metabolic dysfunction-associated steatotic liver disease (MASLD), OSA can induce more severe MASLD. However, the underlying regulatory mechanism between the two is unclear. To this end, this study explored the role and possible molecular mechanisms of adipocyte-derived exosomes under OSA in aggravating MASLD. Through sequencing technology, miR-455-3p was identified as a co-differentially expressed miRNA between the MASLD + OSA and Control groups and between the MASLD + OSA and MASLD groups. Upregulation of TCONS-00039830 and Smad2 and downregulation of miR-455-3p in the MASLD and MASLD + OSA groups were validated in vivo and in vitro. TCONS-00039830, as a differentially expressed LncRNA in exosomes found in the sequencing results, transfection notably downregulated miR-455-3p and upregulated Smad2 in hepatocytes. TCONS_00039830 overexpression increased fat, triglyceride and cholesterol levels, while miR-455-3p overexpression decreased these levels. Furthermore, exosome administration promoted the accumulation of fat, triglyceride and cholesterol, upregulated TCONS_00039830 and Smad2, and downregulated miR-455-3p. Overexpression of miR-455-3p reversed the increased fat accumulation and upregulated TCONS_00039830 and Smad2. In conclusion, OSA-derived exosomes promoted hepatocyte steatosis by regulating TCONS_00039830/miR-455-3p/Smad2 axis, thereby aggravating liver damage in MASLD.


Subject(s)
Exosomes , MicroRNAs , Sleep Apnea, Obstructive , Smad2 Protein , Animals , Exosomes/metabolism , Exosomes/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Smad2 Protein/metabolism , Smad2 Protein/genetics , Sleep Apnea, Obstructive/metabolism , Sleep Apnea, Obstructive/genetics , Sleep Apnea, Obstructive/complications , Male , Rats , Adipocytes/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Fatty Liver/metabolism , Fatty Liver/genetics , Fatty Liver/pathology , Rats, Sprague-Dawley , Humans , Hepatocytes/metabolism , Disease Models, Animal
4.
Elife ; 122024 Apr 24.
Article in English | MEDLINE | ID: mdl-38655918

ABSTRACT

Obstructive sleep apnea (OSA) is a prevalent sleep-related breathing disorder that results in multiple bouts of intermittent hypoxia. OSA has many neurological and systemic comorbidities, including dysphagia, or disordered swallow, and discoordination with breathing. However, the mechanism in which chronic intermittent hypoxia (CIH) causes dysphagia is unknown. Recently, we showed the postinspiratory complex (PiCo) acts as an interface between the swallow pattern generator (SPG) and the inspiratory rhythm generator, the preBötzinger complex, to regulate proper swallow-breathing coordination (Huff et al., 2023). PiCo is characterized by interneurons co-expressing transporters for glutamate (Vglut2) and acetylcholine (ChAT). Here we show that optogenetic stimulation of ChATcre:Ai32, Vglut2cre:Ai32, and ChATcre:Vglut2FlpO:ChR2 mice exposed to CIH does not alter swallow-breathing coordination, but unexpectedly disrupts swallow behavior via triggering variable swallow motor patterns. This suggests that glutamatergic-cholinergic neurons in PiCo are not only critical for the regulation of swallow-breathing coordination, but also play an important role in the modulation of swallow motor patterning. Our study also suggests that swallow disruption, as seen in OSA, involves central nervous mechanisms interfering with swallow motor patterning and laryngeal activation. These findings are crucial for understanding the mechanisms underlying dysphagia, both in OSA and other breathing and neurological disorders.


Subject(s)
Deglutition , Hypoxia , Animals , Mice , Deglutition/physiology , Hypoxia/metabolism , Hypoxia/physiopathology , Male , Optogenetics , Vesicular Glutamate Transport Protein 2/metabolism , Vesicular Glutamate Transport Protein 2/genetics , Sleep Apnea, Obstructive/physiopathology , Sleep Apnea, Obstructive/metabolism , Cholinergic Neurons/physiology , Cholinergic Neurons/metabolism , Interneurons/physiology , Interneurons/metabolism , Respiration , Female
5.
Biol Sex Differ ; 15(1): 38, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664845

ABSTRACT

BACKGROUND: Obstructive sleep apnea (OSA) affects 10-26% of adults in the United States with known sex differences in prevalence and severity. OSA is characterized by elevated inflammation, oxidative stress (OS), and cognitive dysfunction. However, there is a paucity of data regarding the role of sex in the OSA phenotype. Prior findings suggest women exhibit different OSA phenotypes than men, which could result in under-reported OSA prevalence in women. To examine the relationship between OSA and sex, we used chronic intermittent hypoxia (CIH) to model OSA in rats. We hypothesized that CIH would produce sex-dependent phenotypes of inflammation, OS, and cognitive dysfunction, and these sex differences would be dependent on mitochondrial oxidative stress (mtOS). METHODS: Adult male and female Sprague Dawley rats were exposed to CIH or normoxia for 14 days to examine the impact of sex on CIH-associated circulating inflammation (IL-1ß, IL-6, IL-10, TNF-α), circulating steroid hormones, circulating OS, and behavior (recollective and spatial memory; gross and fine motor function; anxiety-like behaviors; and compulsive behaviors). Rats were implanted with osmotic minipumps containing either a mitochondria-targeting antioxidant (MitoTEMPOL) or saline vehicle 1 week prior to CIH initiation to examine how inhibiting mtOS would affect the CIH phenotype. RESULTS: Sex-specific differences in CIH-induced inflammation, OS, motor function, and compulsive behavior were observed. In female rats, CIH increased inflammation (plasma IL-6 and IL-6/IL-10 ratio) and impaired fine motor function. Conversely, CIH elevated circulating OS and compulsivity in males. These sex-dependent effects of CIH were blocked by inhibiting mtOS. Interestingly, CIH impaired recollective memory in both sexes but these effects were not mediated by mtOS. No effects of CIH were observed on spatial memory, gross motor function, or anxiety-like behavior, regardless of sex. CONCLUSIONS: Our results indicate that the impact of CIH is dependent on sex, such as an inflammatory response and OS response in females and males, respectively, that are mediated by mtOS. Interestingly, there was no effect of sex or mtOS in CIH-induced impairment of recollective memory. These results indicate that mtOS is involved in the sex differences observed in CIH, but a different mechanism underlies CIH-induced memory impairments.


Sleep apnea is a common sleeping condition in adults with a wide range of symptoms that include inflammation, oxidative stress, memory problems, anxiety, and compulsivity. Men are diagnosed with sleep apnea more often than women. Although there is limited information on how sleep apnea affects men and women differently, previous studies suggest that women may exhibit different sleep apnea symptoms than men. To examine the impact of male and female sex on common sleep apnea symptoms, we exposed adult male and female rats to a model of sleep apnea called chronic intermittent hypoxia (CIH). We found that many effects of CIH were different in males and females. CIH females had increased inflammation and motor problems, whereas CIH males had increased oxidative stress and compulsivity. To investigate the reason for these CIH sex differences, we blocked mitochondrial oxidative stress. Blocking mitochondrial oxidative stress decreased CIH associated sex differences. However, blocking mitochondrial oxidative stress had no impact on CIH-induced memory impairment that was observed in male and female rats. Our findings support previous reports that suggest that women exhibit different sleep apnea symptoms than men. Further, we extend these findings by showing that mitochondrial oxidative stress is involved in these sex differences. Clinically, patients diagnosed with sleep apnea are typically treated with continuous positive airway pressure (CPAP) machines, which have high rates of non-compliance (15­40%). Therefore, understanding why sleep apnea is causing these symptoms will be important in developing therapeutics.


Subject(s)
Hypoxia , Rats, Sprague-Dawley , Sex Characteristics , Sleep Apnea, Obstructive , Animals , Female , Male , Sleep Apnea, Obstructive/complications , Sleep Apnea, Obstructive/metabolism , Hypoxia/metabolism , Oxidative Stress , Mitochondria/metabolism , Rats , Inflammation/metabolism , Cytokines/metabolism , Cytokines/blood , Behavior, Animal
6.
J Agric Food Chem ; 72(12): 6226-6235, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38492240

ABSTRACT

The sleep-breathing condition obstructive sleep apnea (OSA) is characterized by repetitive upper airway collapse, which can exacerbate oxidative stress and free radical generation, thereby detrimentally impacting both motor and sensory nerve function and inducing muscular damage. OSA development is promoted by increasing proportions of fast-twitch muscle fibers in the genioglossus. Orientin, a water-soluble dietary C-glycosyl flavonoid with antioxidant properties, increased the expression of slow myosin heavy chain (MyHC) and signaling factors associated with AMP-activated protein kinase (AMPK) activation both in vivo and in vitro. Inhibiting AMPK signaling diminished the effects of orientin on slow MyHC, fast MyHC, and Sirt1 expression. Overall, orientin enhanced type I muscle fibers in the genioglossus, enhanced antioxidant capacity, increased mitochondrial biogenesis through AMPK signaling, and ultimately improved fatigue resistance in C2C12 myotubes and mouse genioglossus. These findings suggest that orientin may contribute to upper airway stability in patients with OSA, potentially preventing airway collapse.


Subject(s)
AMP-Activated Protein Kinases , Glucosides , Sleep Apnea, Obstructive , Humans , Mice , Animals , AMP-Activated Protein Kinases/metabolism , Antioxidants/metabolism , Organelle Biogenesis , Muscle, Skeletal/metabolism , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Slow-Twitch/metabolism , Flavonoids/metabolism , Sleep Apnea, Obstructive/metabolism
7.
Int J Mol Sci ; 25(6)2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38542182

ABSTRACT

Obstructive sleep apnea syndrome (OSA) has been associated with increased cancer incidence and aggressiveness. One hypothesis to support this association is the implication of immune response, particularly the programmed cell death pathway, formed by the receptor PD-1 and its ligand PD-L1. Recent studies have shown dysregulation of this pathway in severe OSA patients. It has also been shown that small extracellular vesicles (sEVs) carrying PD-L1 induce lymphocyte dysfunction. Thus, the aim of our study was to analyze the expression of PD-L1 on sEVs of OSA patients and to evaluate the role of sEVs on lymphocyte activation and cytotoxicity. Circulating sEVs were isolated from OSA patients and the control group. Lymphocytes were isolated from the control group. Circulating sEVs were characterized by western blot, nanotracking analysis, and flow cytometry and were incubated with lymphocytes. Our results show no differences in the quantity and composition of sEVs in OSA patients and no significant effects of sEVs in OSA patients on lymphocyte activation and cytotoxicity. These results suggest that OSA does not modify PD-L1 expression on sEVs, which does not contribute to dysregulation of cytotoxic lymphocytes.


Subject(s)
Extracellular Vesicles , Neoplasms , Sleep Apnea, Obstructive , Humans , B7-H1 Antigen , Extracellular Vesicles/metabolism , Neoplasms/complications , Sleep Apnea, Obstructive/metabolism
8.
Arch Bronconeumol ; 60(4): 207-214, 2024 Apr.
Article in English, Spanish | MEDLINE | ID: mdl-38485582

ABSTRACT

INTRODUCTION: Although higher incidence of cancer represents a major burden for obstructive sleep apnea (OSA) patients, the molecular pathways driving this association are not completely understood. Interestingly, adenosinergic signaling has emerged as a powerful immune checkpoint driving tumor development and progression. METHODS: Here, we explored the expression of the adenosinergic ecto-enzymes CD39 and CD73 in T-lymphocytes of OSA patients without any evidence of cancer, as well as their soluble forms in plasma (sCD39 and sCD73), along with adenosine. In addition, we explored the role of intermittent hypoxia (IH) in this context by in vitro models. RESULTS: Our results showed that CD39 is upregulated while CD73 is downregulated in OSA T-cells' membrane. Moreover, our findings suggest that IH, through HIF-1, mediates the upregulation of both CD39 and CD73; and that CD73 downregulation could be mediated by a higher release of sCD73 by OSA T-lymphocytes. Importantly, we found that both sCD39 and sCD73 are upregulated in OSA plasma, suggesting T-lymphocytes as a potential source for plasmatic sCD73. Finally, our data propose the alterations in CD39/CD73 axis could underlie the upsurge of adenosine levels in the plasma of OSA patients. CONCLUSION: Our study reveals a hypoxia-mediated alteration of the CD39/CD73 axis in OSA patients, which could trigger ADO upregulation, thus potentially contributing to the immune suppressive environment and ultimately facilitating tumor development and progression. Therefore, our data highlights the need for new longitudinal studies evaluating CD39 and/or CD73 as potential cancer-risk prognostic biomarkers in OSA patients.


Subject(s)
Adenosine , Neoplasms , Humans , Adenosine/metabolism , Hypoxia/metabolism , Neoplasms/metabolism , T-Lymphocytes , Sleep Apnea, Obstructive/metabolism
9.
Int J Mol Sci ; 25(5)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38474310

ABSTRACT

Obstructive sleep apnea (OSA) is characterized by intermittent repeated episodes of hypoxia-reoxygenation. OSA is associated with cerebrovascular consequences. An enhanced blood-brain barrier (BBB) permeability has been proposed as a marker of those disorders. We studied in mice the effects of 1 day and 15 days intermittent hypoxia (IH) exposure on BBB function. We focused on the dorsal part of the hippocampus and attempted to identify the molecular mechanisms by combining in vivo BBB permeability (Evans blue tests) and mRNA expression of several junction proteins (zona occludens (ZO-1,2,3), VE-cadherin, claudins (1,5,12), cingulin) and of aquaporins (1,4,9) on hippocampal brain tissues. After 15 days of IH exposure we observed an increase in BBB permeability, associated with increased mRNA expressions of claudins 1 and 12, aquaporins 1 and 9. IH seemed to increase early for claudin-1 mRNA expression as it doubled with 1 day of exposure and returned near to its base level after 15 days. Claudin-1 overexpression may represent an immediate response to IH exposure. Then, after 15 days of exposure, an increase in functional BBB permeability was associated with enhanced expression of aquaporin. These BBB alterations are possibly associated with a vasogenic oedema that may affect brain functions and accelerate neurodegenerative processes.


Subject(s)
Aquaporins , Sleep Apnea, Obstructive , Mice , Animals , Blood-Brain Barrier/metabolism , Claudin-1/metabolism , Disease Models, Animal , Hypoxia/metabolism , Claudins/metabolism , Sleep Apnea, Obstructive/metabolism , Permeability , Aquaporins/metabolism , RNA, Messenger/metabolism , Claudin-5/metabolism
10.
Int J Mol Sci ; 25(3)2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38339130

ABSTRACT

Obstructive sleep apnea (OSA), a respiratory sleep disorder associated with cardiovascular diseases, is more prevalent in men. However, OSA occurrence in pregnant women rises to a level comparable to men during late gestation, creating persistent effects on both maternal and offspring health. The exact mechanisms behind OSA-induced cardiovascular diseases remain unclear, but inflammation and oxidative stress play a key role. Animal models using intermittent hypoxia (IH), a hallmark of OSA, reveal several pro-inflammatory signaling pathways at play in males, such as TLR4/MyD88/NF-κB/MAPK, miRNA/NLRP3, and COX signaling, along with shifts in immune cell populations and function. Limited evidence suggests similarities in pregnancies and offspring. In addition, suppressing these inflammatory molecules ameliorates IH-induced inflammation and tissue injury, providing new potential targets to treat OSA-associated cardiovascular diseases. This review will focus on the inflammatory mechanisms linking IH to cardiovascular dysfunction in males, pregnancies, and their offspring. The goal is to inspire further investigations into the understudied populations of pregnant females and their offspring, which ultimately uncover underlying mechanisms and therapeutic interventions for OSA-associated diseases.


Subject(s)
Cardiovascular Diseases , Sleep Apnea, Obstructive , Male , Animals , Humans , Female , Pregnancy , Cardiovascular Diseases/complications , Hypoxia/metabolism , Sleep Apnea, Obstructive/metabolism , Immunity , Inflammation/metabolism
11.
Epigenetics ; 19(1): 2293409, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38232183

ABSTRACT

Long noncoding RNAs (lncRNAs) regulate the progression of type 2 diabetes mellitus complicated with obstructive sleep apnoea (T2DM-OSA). However, the role of the lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) in T2DM-OSA remains unknown. This study aimed to reveal the function of NEAT1 in T2DM-OSA and the underlying mechanism. KKAy mice were exposed to intermittent hypoxia (IH) or intermittent normoxia to generate a T2DM-OSA mouse model. HMEC-1 cells were treated with high glucose (HG) and IH to construct a T2DM-OSA cell model. RNA expression was detected by qRT-PCR. The protein expression of Apelin, NF-E2-related factor 2 (Nrf2), haem oxygenase-1 (HO-1), and up-frameshift suppressor 1 (UPF1) was assessed using western blot. Cell injury was evaluated using flow cytometry, enzyme-linked immunosorbent assay, and oxidative stress kit assays. RIP, RNA pull-down, and actinomycin D assays were performed to determine the associations between NEAT1, UPF1, and Apelin. NEAT1 expression was upregulated in the aortic vascular tissues of mice with T2DM exposed to IH and HMEC-1 cells stimulated with HG and IH, whereas Apelin expression was downregulated. The absence of NEAT1 protected HMEC-1 cells from HG- and IH-induced damage. Furthermore, NEAT1 destabilized Apelin mRNA by recruiting UPF1. Apelin overexpression decreased HG- and IH-induced injury to HMEC-1 cells by activating the Nrf2/HO-1 pathway. Moreover, NEAT1 knockdown reduced HG- and IH-induced injury to HMEC-1 cells through Apelin. NEAT1 silencing reduced HMEC-1 cell injury through the Apelin/Nrf2/HO-1 signalling pathway in T2DM-OSA.Abbreviations: LncRNAs, long non-coding RNAs; T2DM, type 2 diabetes mellitus; OSA, obstructive sleep apnoea; NEAT1, nuclear paraspeckle assembly transcript 1; IH, intermittent hypoxia; HMEC-1, human microvascular endothelial cells; HG, high glucose; Nrf2, NF-E2-related factor 2; UPF1, up-frameshift suppressor 1; HO-1, haem oxygenase-1; qRT-PCR, quantitative real-time polymerase chain reaction; ELISA, enzyme-linked immunosorbent assay; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; TNF-α, tumour necrosis factor-α; CCK-8, Cell Counting Kit-8; IL-1ß, interleukin-1ß; ROS, reactive oxygen species; MDA, malondialdehyde; SOD, superoxide dismutase; RIP, RNA immunoprecipitation; SD, standard deviations; GSH, glutathione; AIS, acute ischaemic stroke; HMGB1, high mobility group box-1 protein; TLR4, toll-like receptor 4.


Subject(s)
Brain Ischemia , Diabetes Mellitus, Type 2 , RNA Helicases , RNA, Long Noncoding , Sleep Apnea, Obstructive , Stroke , Animals , Humans , Mice , Apelin/genetics , Apelin/metabolism , Brain Ischemia/complications , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/genetics , DNA Methylation , Endothelial Cells/metabolism , Glucose , Heme Oxygenase (Decyclizing)/metabolism , Hypoxia , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Sleep Apnea, Obstructive/complications , Sleep Apnea, Obstructive/genetics , Sleep Apnea, Obstructive/metabolism , Stroke/complications , Trans-Activators/metabolism , Tumor Necrosis Factor-alpha/metabolism
12.
Int Immunopharmacol ; 126: 111234, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37977071

ABSTRACT

Obstructive sleep apnea (OSA), a state of sleep disruption, is characterized by recurrent apnea, chronic intermittent hypoxia (CIH) and hypercapnia. Previous studies have showed that CIH-induced neuroinflammatory plays a crucial role in cognitive deficits. Pseudoginsenoside GQ (PGQ) is a new oxytetracycline-type saponin formed by the oxidation and cyclization of the 20(S) Rg3 side chain. Rg3 has been found to afford anti-inflammatory effects, while whether PGQ plays a role of anti-neuroinflammatory remains unclear. The purpose of this study was to investigate whether PGQ attenuates CIH-induced neuroinflammatory and cognitive impairment and the possible mechanism it involves. We found that PGQ significantly ameliorated CIH-induced spatial learning deficits, and inhibited microglial activation, pro-inflammatory cytokine release, and neuronal apoptosis in the hippocampus of CIH mice. In addition, PGQ pretreatment promoted microglial M1 to M2 phenotypic transition in IH-induced BV-2 microglial, as well as indirectly inhibited IH-induced neuronal injury via modulation of microglia polarization. Furthermore, we noted that activation of HMGB1/TLR4/NF-κB signaling pathway induced by IH was inhibited by PGQ. Molecular docking results revealed that PGQ could bind to the active sites of HMGB1 and TLR4. Taken together, this work supports that PGQ inhibits M1 microglial polarization via the HMGB1/TLR4/NF-κB signaling pathway, and indirectly exerts neuroprotective effects, suggesting that PGQ may be a potential therapeutic strategy for cognitive impairment accompanied OSA.


Subject(s)
HMGB1 Protein , Sleep Apnea, Obstructive , Mice , Animals , Microglia , NF-kappa B/metabolism , HMGB1 Protein/metabolism , Inflammation/drug therapy , Toll-Like Receptor 4/metabolism , Molecular Docking Simulation , Hypoxia/metabolism , Sleep Apnea, Obstructive/metabolism , Cognition
13.
Sleep Breath ; 28(1): 319-329, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37726500

ABSTRACT

BACKGROUND: Exosomes are involved in cell-to-cell communication in numerous diseases including cardiovascular diseases, neurological diseases. Little attention has been dedicated to exosomal circular RNAs in obstructive sleep apnea (OSA)-related cardiovascular diseases. The aim of this study was to explore the role of exosomal circular RNA ZNF292 (circZNF292) on AC16 cells exposure to intermittent hypoxia (IH). METHODS: Exosome release inhibitor GW4869 was used to examine the effect of exosomes on IH-induced AC16 cells apoptosis. The expression of exosomal circZNF292 was detected by qRT-PCR in AC16 cells exposure to IH, and a luciferase reporter assay was conducted to confirm the connection between circZNF292 and miR-146a-5p. Exosomal circZNF292 was stably transfected with short hairpin RNAs (shRNAs) against circZNF292 and co-cultured with AC16 cells. The expression of miR-146a-5p and apoptosis-related protein was then measured to evaluate the effect of exosomal circZNF292. RESULTS: We found that IH contributed to the AC16 cells apoptosis, and the administration of GW4869 increased the apoptosis of cardiomyocytes when exposed to IH. The expression of exosomal circZNF292 decreased and miR-146a-5p increased significantly in AC16 cells exposed to IH compared to normoxic conditions. Bioinformatics analysis predicted a circZNF292/miR-146a-5p axis in IH-induced cardiomyocytes apoptosis. The dual-luciferase reporter system validated the direct interaction of circZNF292 and miR-146a-5p. Knockdown of circZNF292 increased the expressions of miR-146a-5p and accelerated the AC16 cardiomyocytes apoptosis. CONCLUSIONS: The findings of this study suggested a novel mechanism by which exosomes transmit intrinsic regulatory signals to the myocardium through the exosomal circZNF292/miR-146a-5p axis. This finding highlights the potential of targeting this pathway as a therapeutic approach for treating cardiovascular diseases associated with OSA.


Subject(s)
Aniline Compounds , Benzylidene Compounds , Cardiovascular Diseases , MicroRNAs , Sleep Apnea, Obstructive , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , MicroRNAs/pharmacology , RNA, Circular/genetics , RNA, Circular/metabolism , RNA, Circular/pharmacology , Myocytes, Cardiac/metabolism , Cardiovascular Diseases/metabolism , Apoptosis/genetics , Hypoxia/genetics , Hypoxia/metabolism , Luciferases/metabolism , Luciferases/pharmacology , Sleep Apnea, Obstructive/metabolism , Carrier Proteins , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/pharmacology
14.
Biol Reprod ; 110(1): 185-197, 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-37823770

ABSTRACT

Obstructive sleep apnea is a recognized risk factor for gestational hypertension, yet the exact mechanism behind this association remains unclear. Here, we tested the hypothesis that intermittent hypoxia, a hallmark of obstructive sleep apnea, induces gestational hypertension through perturbed endothelin-1 signaling. Pregnant Sprague-Dawley rats were subjected to normoxia (control), mild intermittent hypoxia (10.5% O2), or severe intermittent hypoxia (6.5% O2) from gestational days 10-21. Blood pressure was monitored. Plasma was collected and mesenteric arteries were isolated for myograph and protein analyses. The mild and severe intermittent hypoxia groups demonstrated elevated blood pressure, reduced plasma nitrate/nitrite, and unchanged endothelin-1 levels compared to the control group. Western blot analysis revealed decreased expression of endothelin type B receptor and phosphorylated endothelial nitric oxide synthase, while the levels of endothelin type A receptor and total endothelial nitric oxide synthase remained unchanged following intermittent hypoxia exposure. The contractile responses to potassium chloride, phenylephrine, and endothelin-1 were unaffected in endothelium-denuded arteries from mild and severe intermittent hypoxia rats. However, mild and severe intermittent hypoxia rats exhibited impaired endothelium-dependent vasorelaxation responses to endothelin type B receptor agonist IRL-1620 and acetylcholine compared to controls. Endothelium denudation abolished IRL-1620-induced vasorelaxation, supporting the involvement of endothelium in endothelin type B receptor-mediated relaxation. Treatment with IRL-1620 during intermittent hypoxia exposure significantly attenuated intermittent hypoxia-induced hypertension in pregnant rats. This was associated with elevated circulating nitrate/nitrite levels, enhanced endothelin type B receptor expression, increased endothelial nitric oxide synthase activation, and improved vasodilation responses. Our data suggested that intermittent hypoxia exposure during gestation increases blood pressure in pregnant rats by suppressing endothelin type B receptor-mediated signaling, providing a molecular mechanism linking intermittent hypoxia and gestational hypertension.


Subject(s)
Hypertension, Pregnancy-Induced , Sleep Apnea, Obstructive , Humans , Pregnancy , Female , Rats , Animals , Nitric Oxide Synthase Type III/metabolism , Rats, Sprague-Dawley , Endothelin-1/metabolism , Endothelin-1/pharmacology , Hypertension, Pregnancy-Induced/etiology , Hypertension, Pregnancy-Induced/metabolism , Nitrates/metabolism , Nitrates/pharmacology , Nitrites/metabolism , Nitrites/pharmacology , Vasodilation , Endothelins/metabolism , Endothelins/pharmacology , Hypoxia/metabolism , Receptor, Endothelin A/metabolism , Mesenteric Arteries , Sleep Apnea, Obstructive/complications , Sleep Apnea, Obstructive/metabolism , Nitric Oxide/metabolism , Nitric Oxide/pharmacology , Endothelium, Vascular
15.
Redox Rep ; 28(1): 2279813, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38010093

ABSTRACT

OBJECTIVE: Obstructive sleep apnea (OSA) is associated with severity of pneumonia; however, the mechanism by which OSA promotes lung cancer progression is unclear. METHODS: Twenty-five lung cancer patients were recruited to investigate the relationship between OSA and cancer-associated fibroblast (CAFs) activation. Lung cancer cells (A549) and WI38 fibroblast cells were used to explore the hypoxia-induced TGFß expression using qPCR, Western blot, and ELISA. Wound healing and transwell assays were performed to evaluate cancer cell migration and invasion. A549 or A549-Luc + WI38 xenograft mouse models were established to detect the intermittent hypoxia (IH) associated with lung tumor growth and epithelial-mesenchymal transition (EMT) in vivo. RESULTS: OSA promotes CAF activation and enrichment in lung cancer patients. Hypoxia (OSA-like treatment) activated TGFß signaling in both lung cancer cells and fibroblasts, which promoted cancer cell migration and invasion, and enriched CAFs. IH promoted the progression and EMT process of lung cancer xenograft tumor. Co-inoculation of lung cancer cells and fibroblast cells could further promote lung cancer progression. CONCLUSIONS: IH promotes lung cancer progression by upregulating TGFß signaling, promoting lung cancer cell migration, and increasing the CAF activation and proportion of lung tumors.


Subject(s)
Cancer-Associated Fibroblasts , Lung Neoplasms , Sleep Apnea, Obstructive , Humans , Animals , Mice , Lung Neoplasms/metabolism , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Sleep Apnea, Obstructive/metabolism , Sleep Apnea, Obstructive/pathology , Transforming Growth Factor beta/metabolism , Neoplasm Invasiveness/pathology , Hypoxia , Cell Line, Tumor
16.
BMC Psychiatry ; 23(1): 859, 2023 11 20.
Article in English | MEDLINE | ID: mdl-37985980

ABSTRACT

OBJECTIVE: Investigate the sleep characteristics of patients with obstructive sleep apnea syndrome (OSAS) comorbidity with panic disorder (PD), exploring its potential association with serum C-reactive protein (CRP) levels. PATIENTS AND METHODS: Fifty-four patients (25 OSAS patients with PD and 29 without PD) and 25 healthy controls (HCs) were included. The Self-rating anxiety scale (SAS), self-rating depression scale (SDS), and Pittsburgh sleep quality index (PSQI) were used to assess the mood and sleep quality of the subjects. All patients had circulating CRP levels and polysomnography was performed. RESULTS: OSAS with PD had higher SAS, SDS, PSQI than the OSAS without PD. Compared to OSAS without PD, OSAS with PD had higher percentage of non- rapid eye movement sleep 1 and 2 (N1 and N2%), sleep latency, and a lower percentage of rapid eye movement sleep (REM%). Respiratory-related microarousal index, AHI, and time below 90% oxygen saturation (T90) were low, and the lowest oxygen saturation (LO2) was high. Serum CRP levels in OSAS patients with PD were lower than that in OSAS patients without PD, but higher than that in HCs. In OSAS patients with PD, serum CRP levels were negatively correlated with wake time after sleep onset and SAS scores but positively correlated with sleep efficiency and N2%. Serum CRP levels were positively correlated with T90 and negatively correlated with LO2. CONCLUSION: OSAS patients with PD had worse sleep quality, less severe OSAS, and low serum CRP levels. Serum CRP levels in OSAS patients with PD were associated with poorer sleep quality and duration of hypoxia rather than AHI.


Subject(s)
C-Reactive Protein , Panic Disorder , Sleep Apnea, Obstructive , C-Reactive Protein/analysis , Sleep Apnea, Obstructive/blood , Sleep Apnea, Obstructive/metabolism , Sleep Apnea, Obstructive/pathology , Humans , Panic Disorder/blood , Respiration , Sleep Quality , Inflammation/metabolism , Inflammation/pathology , Male , Female , Middle Aged
17.
Int J Mol Sci ; 24(22)2023 Nov 08.
Article in English | MEDLINE | ID: mdl-38003263

ABSTRACT

Obstructive sleep apnea (OSA) is a highly prevalent chronic disease affecting nearly a billion people globally and increasing the risk of multi-organ morbidity and overall mortality. However, the mechanisms underlying such adverse outcomes remain incompletely delineated. Extracellular vesicles (exosomes) are secreted by most cells, are involved in both proximal and long-distance intercellular communication, and contribute toward homeostasis under physiological conditions. A multi-omics integrative assessment of plasma-derived exosomes from adult OSA patients prior to and after 1-year adherent CPAP treatment is lacking. We conducted multi-omic integrative assessments of plasma-derived exosomes from adult OSA patients prior to and following 1-year adherent CPAP treatment to identify potential specific disease candidates. Fasting morning plasma exosomes isolated from 12 adult patients with polysomnographically-diagnosed OSA were analyzed before and after 12 months of adherent CPAP therapy (mean ≥ 6 h/night) (OSAT). Exosomes were characterized by flow cytometry, transmission electron microscopy, and nanoparticle tracking analysis. Endothelial cell barrier integrity, wound healing, and tube formation were also performed. Multi-omics analysis for exosome cargos was integrated. Exosomes derived from OSAT improved endothelial permeability and dysfunction as well as significant improvement in tube formation compared with OSA. Multi-omic approaches for OSA circulating exosomes included lipidomic, proteomic, and small RNA (miRNAs) assessments. We found 30 differentially expressed proteins (DEPs), 72 lipids (DELs), and 13 miRNAs (DEMs). We found that the cholesterol metabolism (has04979) pathway is associated with lipid classes in OSA patients. Among the 12 subjects of OSA and OSAT, seven subjects had complete comprehensive exosome cargo information including lipids, proteins, and miRNAs. Multi-omic approaches identify potential signature biomarkers in plasma exosomes that are responsive to adherent OSA treatment. These differentially expressed molecules may also play a mechanistic role in OSA-induced morbidities and their reversibility. Our data suggest that a multi-omic integrative approach might be useful in understanding how exosomes function, their origin, and their potential clinical relevance, all of which merit future exploration in the context of relevant phenotypic variance. Developing an integrated molecular classification should lead to improved diagnostic classification, risk stratification, and patient management of OSA by assigning molecular disease-specific therapies.


Subject(s)
Exosomes , MicroRNAs , Sleep Apnea, Obstructive , Adult , Humans , Exosomes/metabolism , Multiomics , Proteomics , Sleep Apnea, Obstructive/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Lipids
18.
Int J Mol Sci ; 24(14)2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37511045

ABSTRACT

Patients with obstructive sleep apnea (OSA) exhibit a high prevalence of pulmonary hypertension and right ventricular (RV) hypertrophy. However, the exact molecule responsible for the pathogenesis remains unknown. Given the resistance to RV dilation observed in transient receptor potential canonical 3(Trpc3)-/- mice during a pulmonary hypertension model induced by phenylephrine (PE), we hypothesized that TRPC3 also plays a role in chronic intermittent hypoxia (CIH) conditions, which lead to RV dilation and dysfunction. To test this, we established an OSA mouse model using 8- to 12-week-old 129/SvEv wild-type and Trpc3-/- mice in a customized breeding chamber that simulated sleep and oxygen cycles. Functional parameters of the RV were evaluated through analysis of cardiac cine magnetic resonance images, while histopathological examinations were conducted on cardiomyocytes and pulmonary vessels. Following exposure to 4 weeks of CIH, Trpc3-/- mice exhibited significant RV dysfunction, characterized by decreased ejection fraction, increased end-diastole RV wall thickness, and elevated expression of pathological cardiac markers. In addition, reactive oxygen species (ROS) signaling and the endothelin system were markedly increased solely in the hearts of CIH-exposed Trpc3-/- mice. Notably, no significant differences in pulmonary vessel thickness or the endothelin system were observed in the lungs of wild-type (WT) and Trpc3-/- mice subjected to 4 weeks of CIH. In conclusion, our findings suggest that TRPC3 serves as a regulator of RV resistance in response to pressure from the pulmonary vasculature, as evidenced by the high susceptibility to RV dilation in Trpc3-/- mice without notable changes in pulmonary vasculature under CIH conditions.


Subject(s)
Hypertension, Pulmonary , Hypertrophy, Right Ventricular , Sleep Apnea, Obstructive , Animals , Mice , Chronic Disease , Endothelins , Hypertension, Pulmonary/complications , Hypertension, Pulmonary/genetics , Hypertrophy, Right Ventricular/etiology , Hypertrophy, Right Ventricular/genetics , Hypoxia/complications , Hypoxia/genetics , Hypoxia/metabolism , Mice, 129 Strain , Sleep Apnea, Obstructive/metabolism , Disease Models, Animal
19.
J Ethnopharmacol ; 317: 116775, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37311503

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Wendan Decoction (WDD) is one of the classic traditional Chinese prescriptions that has been used in the treatment of type 2 diabetes mellitus (T2DM), metabolic syndrome, obstructive sleep apnea-hypopnea syndrome (OSAHS) and so on. The therapeutic effects and mechanism of WDD remain to be explored, especially from the perspective of metabolomics, oxidative stress and inflammation. AIM OF THE STUDY: To investigate the therapeutic and metabolic regulatory effects and the underlying mechanism of WDD in OSAHS with T2DM patients. MATERIALS AND METHODS: All included patients were from Rudong Hospital of Traditional Chinese Medicine, Nantong, Jiangsu Province, China. Both groups received lifestyle interventions; at the same time, all of them were administered metformin (1500 mg/day) and dapagliflozin (10 mg/day), and the treatment group was administered WDD orally. All patients were treated for two months. Before and after treatment, the changes in clinical symptoms and signs of the two groups of patients were evaluated, and the detection indicators such as body mass index (BMI), apnea-hypopnea index (AHI), lowest arterial oxygen saturation (LSaO2), Epworth sleepiness scale (ESS), percentage of total sleep time with oxygen saturation <90% (TST90), fasting plasma glucose (FPG), 2-h post-load glucose(2h-PG), fasting insulin (FINS), homeostasis model assessment of insulin resistance (HOMA-IR),hemoglobin A1c (HbA1c), blood lipid levels, as well as the adverse reactions and compliance of the patients were observed and detection of serum metabolites in patients to screen out specific biomarkers. The serum metabolic profile of WDD in OSAHS with T2DM patients was explored using ultra-high-performance liquid chromatography-quadrupole/electrostatic field orbitrap high-resolution mass spectrometry (UPLC-Q Orbitrap HRMS). RESULTS: After treatment with WDD for 8 weeks, biochemical indicators, including BMI, FPG, 2h-PG, blood lipid, FINS, HbA1c, AHI, ESS, LSaO2, TST90, and HOMA-IR, were significantly improved. Serum metabolomic analysis showed that metabolites were differentially expressed before and after WDD-treated patients. Metabolomics results revealed that WDD regulated the biomarkers, such as DL-arginine, guaiacol sulfate, azelaic acid, phloroglucinol, uracil, L-tyrosine, cascarillin, Cortisol and L-alpha-lysophosphatidylcholine. Pathway enrichment analysis showed that the metabolites were associated with oxidative stress and inflammation. CONCLUSION: The study based on clinical research and metabolomics indicated that WDD can improve OSAHS with T2DM through multiple targets and pathways, and it may be a useful alternative therapy for the treatment of OSAHS with T2DM patients.


Subject(s)
Diabetes Mellitus, Type 2 , Sleep Apnea, Obstructive , Humans , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Glycated Hemoglobin , Sleep Apnea, Obstructive/drug therapy , Sleep Apnea, Obstructive/metabolism , Treatment Outcome , Inflammation , Metabolomics
20.
Int J Mol Sci ; 24(12)2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37373028

ABSTRACT

Obstructive sleep apnea (OSA) is a chronic condition characterized by intermittent hypoxia (IH) and sleep fragmentation (SF). In murine models, chronic SF can impair endothelial function and induce cognitive declines. These deficits are likely mediated, at least in part, by alterations in Blood-brain barrier (BBB) integrity. Male C57Bl/6J mice were randomly assigned to SF or sleep control (SC) conditions for 4 or 9 weeks and in a subset 2 or 6 weeks of normal sleep recovery. The presence of inflammation and microglia activation were evaluated. Explicit memory function was assessed with the novel object recognition (NOR) test, while BBB permeability was determined by systemic dextran-4kDA-FITC injection and Claudin 5 expression. SF exposures resulted in decreased NOR performance and in increased inflammatory markers and microglial activation, as well as enhanced BBB permeability. Explicit memory and BBB permeability were significantly associated. BBB permeability remained elevated after 2 weeks of sleep recovery (p < 0.01) and returned to baseline values only after 6 weeks. Chronic SF exposures mimicking the fragmentation of sleep that characterizes patients with OSA elicits evidence of inflammation in brain regions and explicit memory impairments in mice. Similarly, SF is also associated with increased BBB permeability, the magnitude of which is closely associated with cognitive functional losses. Despite the normalization of sleep patterns, BBB functional recovery is a protracted process that merits further investigation.


Subject(s)
Cognitive Dysfunction , Sleep Apnea, Obstructive , Male , Mice , Animals , Blood-Brain Barrier/metabolism , Neuroinflammatory Diseases , Sleep Deprivation , Sleep Apnea, Obstructive/metabolism , Inflammation/metabolism , Mice, Inbred C57BL , Disease Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL
...