Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Org Biomol Chem ; 19(10): 2312-2321, 2021 03 18.
Article in English | MEDLINE | ID: mdl-33634812

ABSTRACT

Photopharmacology develops bioactive compounds whose pharmacological potency can be regulated by light. The concept relies on the introduction of molecular photoswitches, such as azobenzenes, into the structure of bioactive compounds, such as known enzyme inhibitors. Until now, the development of photocontrolled protein kinase inhibitors proved to be challenging for photopharmacology. Here, we describe a new class of heterocyclic azobenzenes based on the longdaysin scaffold, which were designed to photo-modulate the activity of casein kinase Iα (CKIα) in the context of photo-regulation of circadian rhythms. Evaluation of a set of photoswitchable longdaysin derivatives allowed for better insight into the relationship between substituents and thermal stability of the cis-isomer. Furthermore, our studies on the chemical stability of the azo group in this type of heterocyclic azobenzenes showed that they undergo a fast reduction to the corresponding hydrazines in the presence of different reducing agents. Finally, we attempted light-dependent modulation of CKIα activity together with the accompanying modulation of cellular circadian rhythms in which CKIα is directly involved. Detailed structure-activity relationship (SAR) analysis revealed a new potent reduced azopurine with a circadian period lengthening effect more pronounced than that of its parent molecule, longdaysin. Altogether, the results presented here highlight the challenges in the development of light-controlled kinase inhibitors for the photomodulation of circadian rhythms and reveal key stability issues for using the emerging class of heteroaryl azobenzenes in biological applications.


Subject(s)
Azo Compounds/pharmacology , Casein Kinase Ialpha/antagonists & inhibitors , Circadian Rhythm/drug effects , Protein Kinase Inhibitors/pharmacology , Purines/pharmacology , Azo Compounds/chemistry , Azo Compounds/radiation effects , Cell Line, Tumor , Humans , Isomerism , Light , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/radiation effects , Purines/chemistry , Purines/radiation effects , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Small Molecule Libraries/radiation effects , Structure-Activity Relationship
2.
Nat Methods ; 13(12): 985-988, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27776112

ABSTRACT

Small-molecule fluorophores are important tools for advanced imaging experiments. We previously reported a general method to improve small, cell-permeable fluorophores which resulted in the azetidine-containing 'Janelia Fluor' (JF) dyes. Here, we refine and extend the utility of these dyes by synthesizing photoactivatable derivatives that are compatible with live-cell labeling strategies. Once activated, these derived compounds retain the superior brightness and photostability of the JF dyes, enabling improved single-particle tracking and facile localization microscopy experiments.


Subject(s)
Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Photochemical Processes , Single Molecule Imaging/methods , Small Molecule Libraries/chemistry , Small Molecule Libraries/chemical synthesis , Animals , COS Cells , Cell Culture Techniques , Cell Line, Tumor , Cell Membrane Permeability , Embryonic Stem Cells , Fluorescent Dyes/metabolism , Fluorescent Dyes/radiation effects , Humans , Ligands , Light , Mice , Microscopy, Fluorescence , Molecular Structure , Photochemistry/methods , Recombinant Fusion Proteins/metabolism , Small Molecule Libraries/metabolism , Small Molecule Libraries/radiation effects , Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet , Staining and Labeling
SELECTION OF CITATIONS
SEARCH DETAIL