Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.553
Filter
1.
J Helminthol ; 98: e47, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38828707

ABSTRACT

Relative to the numerous studies focused on mammalian schistosomes, fewer include avian schistosomatids particularly in the southern hemisphere. This is changing and current research emerging from the Neotropics shows a remarkable diversity of endemic taxa. To contribute to this effort, nine ducks (Spatula cyanoptera, S.versicolor, Netta peposaca), 12 swans (Cygnus melancoryphus) and 1,400 Physa spp. snails from Chile and Argentina were collected for adults and larval schistosomatids, respectively. Isolated schistosomatids were preserved for morphological and molecular analyses (28S and COI genes). Four different schistosomatid taxa were retrieved from birds: Trichobilharzia sp. in N. peposaca and S. cyanoptera that formed a clade; S.cyanoptera and S. versicolor hosted Trichobilharzia querquedulae; Cygnus melancoryphus hosted the nasal schistosomatid, Nasusbilharzia melancorhypha; and one visceral, Schistosomatidae gen. sp., which formed a clade with furcocercariae from Argentina and Chile from previous work. Of the physid snails, only one from Argentina had schistosomatid furcocercariae that based on molecular analyses grouped with T. querquedulae. This study represents the first description of adult schistosomatids from Chile as well as the elucidation of the life cycles of N.melancorhypha and T. querquedulae in Chile and Neotropics, respectively. Without well-preserved adults, the putative new genus Schistosomatidae gen. sp. could not be described, but its life cycle involves Chilina spp. and C. melancoryphus. Scanning electron microscopy of T. querquedulae revealed additional, undescribed morphological traits, highlighting its diagnostic importance. Authors stress the need for additional surveys of avian schistosomatids from the Neotropics to better understand their evolutionary history.


Subject(s)
Life Cycle Stages , Phylogeny , Schistosomatidae , Animals , Schistosomatidae/genetics , Schistosomatidae/classification , Schistosomatidae/isolation & purification , Schistosomatidae/growth & development , Schistosomatidae/anatomy & histology , Chile , Argentina , Birds/parasitology , Bird Diseases/parasitology , RNA, Ribosomal, 28S/genetics , Snails/parasitology , South America , Electron Transport Complex IV/genetics
2.
Parasit Vectors ; 17(1): 244, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822348

ABSTRACT

BACKGROUND: Snails of the Lymnaeidae family are the intermediate hosts of Fasciola species, the causative agents of fascioliasis. The purpose of this study was to determine the prevalence of Fasciola species in lymnaeid snails and to investigate the association of geoclimatic factors and Fasciola species distribution in northwestern provinces of Iran using geographical information system (GIS) data. METHODS: A total of 2000 lymnaeid snails were collected from 33 permanent and seasonal habitats in northwestern Iran during the period from June to November 2021. After identification by standard morphological keys, they were subjected to shedding and crushing methods. Different stages of Fasciola obtained from these snails were subjected to the ITS1 polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method for species identification. The associations of weather temperature, rainfall, humidity, evaporation, air pressure, wind speed, elevation, and land cover with the distribution of Fasciola species were investigated. Geographical and statistical analysis was performed using ArcMap and SPSS software, respectively, to determine factors related to Fasciola species distribution. RESULTS: Of the 2000 snails collected, 19 were infected with Fasciola hepatica (0.09%), six with F. gigantica (0.03%), and 13 with other trematodes. Among geoclimatic and environmental factors, mean humidity, maximum humidity, and wind speed were significantly higher in areas where F. hepatica was more common than F. gigantica. The altitude of F. hepatica-prevalent areas was generally lower than F. gigantica areas. No significant relationship was observed between other investigated geoclimatic factors and the distribution of infected snails. CONCLUSIONS: The present study showed the relationship of humidity and wind speed with the distribution of snails infected with F. hepatica or F. gigantica in the northwestern regions of Iran. In contrast to F. gigantica, F. hepatica was more prevalent in low-altitude areas. Further research is recommended to elucidate the relationship between geoclimatic factors and the presence of intermediate hosts of the two Fasciola species.


Subject(s)
Fasciola , Fascioliasis , Snails , Animals , Iran/epidemiology , Fascioliasis/epidemiology , Fascioliasis/veterinary , Fascioliasis/parasitology , Snails/parasitology , Fasciola/genetics , Fasciola/isolation & purification , Fasciola/classification , Fasciola hepatica/genetics , Fasciola hepatica/isolation & purification , Fasciola hepatica/physiology , Fasciola hepatica/classification , Climate , Ecosystem , Seasons , Polymorphism, Restriction Fragment Length
3.
Folia Parasitol (Praha) ; 712024 May 06.
Article in English | MEDLINE | ID: mdl-38841845

ABSTRACT

Schistosomiasis is a snail-borne disease that has a considerable impact on human and animal health, particularly in sub-Saharan Africa. The intermediate hosts of the schistosome parasites are freshwater snails of the genera Biomphalaria Preston, 1910 and Bulinus Müller, 1781. In order to identify existing gaps in the spread of the disease in the Democratic Republic of Congo (DRC), this study compiled the available knowledge of the distribution, population dynamics and ecology of the intermediate hosts of schistosomiasis. A systematic literature search was conducted in PubMed, Embase and Scopus for all malacological studies on schistosoma intermediate hosts in DRC published between 1927 and October 2022. A total of 55 records were found, of which 31 met the inclusion criteria: these were published field and experimental studies conducted in the DRC and focused on snails as intermediate hosts of schistosomes. The analysis of these studies revealed that more up-to-date data on the distribution of snail intermediate hosts in the DRC are needed. Moreover, ecological factors have been less studied for Bulinus species than for Biomphalaria species. These factors play a crucial role in determining suitable snail habitats, and the lack of comprehensive information poses a challenge in snail control. This review makes it clear that there are no current malacological data in the DRC. There is a clear need for molecular and ecological research to update the exact species status and population dynamics of all potential intermediate host species. This will facilitate targeted snail control measures that complement drug treatment in the control of schistosomiasis in the country.


Subject(s)
Biomphalaria , Schistosomiasis , Animals , Democratic Republic of the Congo/epidemiology , Schistosomiasis/epidemiology , Schistosomiasis/veterinary , Schistosomiasis/transmission , Biomphalaria/parasitology , Schistosoma/physiology , Snails/parasitology , Bulinus/parasitology , Humans
4.
Microbiologyopen ; 13(3): e13, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38825966

ABSTRACT

The factors that influence the distribution of bacterial community composition are not well understood. The role of geographical patterns, which suggest limited dispersal, is still a topic of debate. Bacteria associated with hosts face unique dispersal challenges as they often rely on their hosts, which provide specific environments for their symbionts. In this study, we examined the effect of biogeographic distances on the bacterial diversity and composition of bacterial communities in the gastrointestinal tract of Ampullaceana balthica. We compared the effects on the host-associated bacterial community to those on bacterial communities in water and sediment. This comparison was made using 16S ribosomal RNA gene sequencing. We found that the bacterial communities we sampled in Estonia, Denmark, and Northern Germany varied between water, sediment, and the gastrointestinal tract. They also varied between countries within each substrate. This indicates that the type of substrate is a dominant factor in determining bacterial community composition. We separately analyzed the turnover rates of water, sediment, and gastrointestinal bacterial communities over increasing geographic distances. We observed that the turnover rate was lower for gastrointestinal bacterial communities compared to water bacterial communities. This implies that the composition of gastrointestinal bacteria remains relatively stable over distances, while water bacterial communities exhibit greater variability. However, the gastrointestinal tract had the lowest percentage of country-specific amplicon sequence variants, suggesting bacterial colonization from local bacterial communities. Since the overlap between the water and gastrointestinal tract was highest, it appears that the gastrointestinal bacterial community is colonized by the water bacterial community. Our study confirmed that biogeographical patterns in host-associated communities differ from those in water and sediment bacterial communities. These host-associated communities consist of numerous facultative symbionts derived from the water bacterial community.


Subject(s)
Bacteria , Gastrointestinal Tract , Geologic Sediments , RNA, Ribosomal, 16S , Snails , Geologic Sediments/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , RNA, Ribosomal, 16S/genetics , Gastrointestinal Tract/microbiology , Animals , Snails/microbiology , Germany , Denmark , Gastrointestinal Microbiome/genetics , Water Microbiology , Biodiversity , Estonia , Phylogeny , DNA, Bacterial/genetics , Sequence Analysis, DNA
5.
An Acad Bras Cienc ; 96(2): e20230707, 2024.
Article in English | MEDLINE | ID: mdl-38747790

ABSTRACT

Urban parks are not only important for the wellbeing of the human population, but are also widely considered to be potentially important sites for the conservation of biodiversity. However, they may offer risk parasitic infections, such as schistosomiasis and fascioliasis, which are both transmitted by freshwater snails. The present study investigated the occurrence of freshwater gastropods in urban parks of the Brazilian city of Rio de Janeiro, and their possible infection by helminths of medical-veterinary importance. Gastropods were collected from six parks (2021 - 2022) and examined for the presence of larval helminths. In all, 12 gastropod species from different families were collected: Ampullariidae, Assimineidae, Burnupidae, Lymnaeidae, Physidae, Planorbidae, Succineidae, and Thiaridae. The parasitological examination revealed cercaria of three types in five snail species, with the Pleurolophocerca cercariae type in Melanoides tuberculata (the most abundant species), Echinostoma cercariae in Physella acuta and Pomacea maculata, and Virgulate cercariae, in Pomacea sp. and Pomacea maculata. None of the Biomphalaria tenagophila and Pseudosuccinea columella (the most frequent species) specimens were parasitized by Schistosoma mansoni or Fasciola hepatica, respectively. Even so, some parks may represent a considerable potential risk for transmission of both Schistosoma mansoni and Fasciola hepatica, given the presence of these gastropod vectors and the frequent contact of visitors with the waterbodies.


Subject(s)
Fresh Water , Gastropoda , Parks, Recreational , Animals , Brazil/epidemiology , Fresh Water/parasitology , Gastropoda/parasitology , Gastropoda/classification , Humans , Snails/parasitology
6.
An Acad Bras Cienc ; 96(2): e20230972, 2024.
Article in English | MEDLINE | ID: mdl-38747796

ABSTRACT

There is a marked disparity in the state of knowledge of Holartic x Neotropical species of the freshwater snail family Physidae; the incipiency of data on Neotropical physids reflecting the lower number of dedicated specialists. The gaps in the knowledge on Neotropical physids have led to historical uncertainty about species validity. Revisiting the species is essential to reduce taxonomic impediment and delineating their probable distribution is the first step to attain this purpose. We aimed at critically analyze occurrence records of South American physids, compiled through an intensive search in the literature, biodiversity and molecular databases. We present a provisional characterization of the distribution of this family in South America, considering the probable versus the poorly documented distribution of the species. The critical underrepresentation of South American physids in collections, molecular databases and literature reinforces the role of taxonomic impediment in delaying the advance of the knowledge on species diversity. Malacological collections represented the main source of records, evidencing the relevance of unpublished data associated to specimens to assess distributional information on neglected groups. As most of the species are represented by shells, the reassessment of species identity and distribution must be done, using molecular and anatomical criteria for species delimitation.


Subject(s)
Biodiversity , Animals , South America , Animal Distribution , Gastropoda/classification , Snails/classification
7.
Parasit Vectors ; 17(1): 234, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38773521

ABSTRACT

BACKGROUND: Snail-borne trematodes afflict humans, livestock, and wildlife. Recognizing their zoonotic potential and possible hybridization, a One Health approach is essential for effective control. Given the dearth of knowledge on African trematodes, this study aimed to map snail and trematode diversity, focusing on (i) characterizing gastropod snail species and their trematode parasites, (ii) determining infection rates of snail species as intermediate hosts for medically, veterinary, and ecologically significant trematodes, and (iii) comparing their diversity across endemic regions. METHODS: A cross-sectional study conducted in 2021 in Chiredzi and Wedza districts in Zimbabwe, known for high human schistosomiasis prevalence, involved malacological surveys at 56 sites. Trematode infections in snails were detected through shedding experiments and multiplex rapid diagnostic polymerase chain reactions (RD-PCRs). Morphological and molecular analyses were employed to identify snail and trematode species. RESULTS: Among 3209 collected snail specimens, 11 species were identified, including schistosome and fasciolid competent snail species. We report for the first time the invasive exotic snail Tarebia granifera in Zimbabwe, which was highly abundant, mainly in Chiredzi, occurring at 29 out of 35 sites. Shedding experiments on 1303 snails revealed a 2.24% infection rate, with 15 trematode species identified through molecular genotyping. Five species were exclusive to Chiredzi: Bolbophorus sp., Schistosoma mansoni, Schistosoma mattheei, Calicophoron sp., and Uvulifer sp. Eight were exclusive to Wedza, including Trichobilharzia sp., Stephanoprora amurensis, Spirorchid sp., and Echinostoma sp. as well as an unidentified species of the Plagiorchioidea superfamily. One species, Tylodelphys mashonensis, was common to both regions. The RD-PCR screening of 976 non-shedding snails indicated a 35.7% trematode infection rate, including the presence of schistosomes (1.1%) Fasciola nyanzae (0.6%). In Chiredzi, Radix natalensis had the highest trematode infection prevalence (33.3%), while in Wedza, R. natalensis (55.4%) and Bulinus tropicus (53.2%) had the highest infection prevalence. CONCLUSIONS: Our xenomonitoring approach unveiled 15 trematode species, including nine new records in Zimbabwe. Schistosoma mansoni persists in the study region despite six mass deworming rounds. The high snail and parasite diversity, including the presence of exotic snail species that can impact endemic species and biomedically important trematodes, underscores the need for increased monitoring.


Subject(s)
Fresh Water , Introduced Species , Snails , Trematoda , Animals , Zimbabwe/epidemiology , Snails/parasitology , Trematoda/genetics , Trematoda/classification , Trematoda/isolation & purification , Trematoda/physiology , Cross-Sectional Studies , Fresh Water/parasitology , One Health , Humans , Trematode Infections/parasitology , Trematode Infections/veterinary , Trematode Infections/epidemiology , Biodiversity , Prevalence , Schistosomiasis/epidemiology , Schistosomiasis/parasitology , Schistosomiasis/veterinary
8.
Genome Biol Evol ; 16(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38776329

ABSTRACT

We have sequenced, assembled, and analyzed the nuclear and mitochondrial genomes and transcriptomes of Potamopyrgus estuarinus and Potamopyrgus kaitunuparaoa, two prosobranch snail species native to New Zealand that together span the continuum from estuary to freshwater. These two species are the closest known relatives of the freshwater species Potamopyrgus antipodarum-a model for studying the evolution of sex, host-parasite coevolution, and biological invasiveness-and thus provide key evolutionary context for understanding its unusual biology. The P. estuarinus and P. kaitunuparaoa genomes are very similar in size and overall gene content. Comparative analyses of genome content indicate that these two species harbor a near-identical set of genes involved in meiosis and sperm functions, including seven genes with meiosis-specific functions. These results are consistent with obligate sexual reproduction in these two species and provide a framework for future analyses of P. antipodarum-a species comprising both obligately sexual and obligately asexual lineages, each separately derived from a sexual ancestor. Genome-wide multigene phylogenetic analyses indicate that P. kaitunuparaoa is likely the closest relative to P. antipodarum. We nevertheless show that there has been considerable introgression between P. estuarinus and P. kaitunuparaoa. That introgression does not extend to the mitochondrial genome, which appears to serve as a barrier to hybridization between P. estuarinus and P. kaitunuparaoa. Nuclear-encoded genes whose products function in joint mitochondrial-nuclear enzyme complexes exhibit similar patterns of nonintrogression, indicating that incompatibilities between the mitochondrial and the nuclear genome may have prevented more extensive gene flow between these two species.


Subject(s)
Phylogeny , Snails , Animals , Snails/genetics , New Zealand , Genetic Introgression , Evolution, Molecular , Genome, Mitochondrial , Genome
9.
Syst Parasitol ; 101(3): 41, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740609

ABSTRACT

Dicrocoeliid trematodes were detected from Iwasaki's snail-eating snake Pareas iwasakii in Iriomote Island, Okinawa Prefecture, Japan, and described as a new species Paradistomum dextra n. sp. in the present study. This new species can be distinguished from the type series of the other members of the genus based on size of eggs and morphological characteristics of body, oral and ventral suckers, and reproductive organs. However, the new species was hard to distinguish from Paradistomum megareceptaculum infecting snakes in Japan, including Iriomote Island where is the type locality of the new species, because it is closely similar to some part of the broad range of morphological variations in P. megareceptaculum. On the other hand, a partial sequence of 28S ribosomal DNA clearly distinguished these two species. Moreover, the new species' host snake Pareas iwasakii is reported to exclusively feed on land snails while host snakes of P. megareceptaculum feed on small vertebrates, indicating that the new species is also ecologically different from P. megareceptaculum. We also redescribed P. megareceptaculum based on adults sampled in this study and past studies to record the morphological variations of this species.


Subject(s)
Species Specificity , Trematoda , Animals , Japan , Trematoda/classification , Trematoda/anatomy & histology , Trematoda/genetics , Snails/parasitology , RNA, Ribosomal, 28S/genetics , Snakes/parasitology , Phylogeny
10.
Mar Drugs ; 22(5)2024 May 15.
Article in English | MEDLINE | ID: mdl-38786612

ABSTRACT

The development of antitumor drugs and therapy requires new approaches and molecules, and products of natural origin provide intriguing alternatives for antitumor research. Gastropodan hemocyanins-multimeric copper-containing glycoproteins have been used in therapeutic vaccines and antitumor agents in many cancer models. MATERIALS AND METHODS: We established a murine model of melanoma by challenging C57BL/6 mice with a B16F10 cell line for solid tumor formation in experimental animals. The anticancer properties of hemocyanins isolated from the marine snail Rapana thomasiana (RtH) and the terrestrial snail Helix aspersa (HaH) were evaluated in this melanoma model using various schemes of therapy. Flow cytometry, ELISA, proliferation, and cytotoxicity assays, as well as histology investigations, were also performed. RESULTS: Beneficial effects on tumor growth, tumor incidence, and survival of tumor-bearing C57BL/6 mice after administration of the RtH or HaH were observed. The generation of high titers of melanoma-specific IgM antibodies, pro-inflammatory cytokines, and tumor-specific CTLs, and high levels of tumor-infiltrated M1 macrophages enhanced the immune reaction and tumor suppression. DISCUSSION: Both RtH and HaH exhibited promising properties for applications as antitumor therapeutic agents and future experiments with humans.


Subject(s)
Hemocyanins , Melanoma, Experimental , Mice, Inbred C57BL , Animals , Melanoma, Experimental/drug therapy , Melanoma, Experimental/immunology , Mice , Hemocyanins/pharmacology , Hemocyanins/chemistry , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Immunotherapy/methods , Mollusca/chemistry , Disease Models, Animal , Cytokines/metabolism , Snails , Cell Proliferation/drug effects , Melanoma/drug therapy , Melanoma/immunology
11.
Parasitol Res ; 123(6): 229, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38819740

ABSTRACT

The intricate relationships between parasites and hosts encompass a wide range of levels, from molecular interactions to population dynamics. Parasites influence not only the physiological processes in the host organism, but also the entire ecosystem, affecting mortality of individuals, the number of offspring through parasitic castration, and matter and energy cycles. Understanding the molecular mechanisms that govern host-parasite relationships and their impact on host physiology and environment remains challenging. In this study, we analyzed how infection with Microphallus trematodes affects the metabolome of two Littorina snail species inhabiting different intertidal zone shore levels. We applied non-targeted GC-MS-based metabolomics to analyze biochemical shifts induced by trematode infection in a host organism. We have identified changes in energy, amino acid, sugar, and lipid metabolism. In particular, we observed intensified amino acid catabolism and nitrogenous catabolites (glutamine, urea) production. These changes primarily correlated with infection and interspecies differences of the hosts rather than shore level. The changes detected in the host metabolism indicate that other aspects of life may have been affected, both within the host organism and at a supra-organismal level. Therefore, we explored changes in microbiota composition, deviations in the host molluscs behavior, and acetylcholinesterase activity (ACE, an enzyme involved in neuromuscular transmission) in relation to infection. Infected snails displayed changes in their microbiome composition. Decreased ACE activity in snails was associated with reduced mobility, but whether it is associated with trematode infection remains unclear. The authors suggest a connection between the identified biochemical changes and the deformation of the shell of molluscs, changes in their behavior, and the associated microbiome. The role of parasitic systems formed by microphallid trematodes and Littorina snails in the nitrogen cycle at the ecosystem level is also assumed.


Subject(s)
Host-Parasite Interactions , Snails , Trematoda , Animals , Trematoda/physiology , Trematoda/metabolism , Snails/parasitology , Metabolome , Metabolomics , Gas Chromatography-Mass Spectrometry
12.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38811063

ABSTRACT

There is mounting evidence that intestinal microbiota communities and their genes (the gut microbiome) influence how animals behave and interact with their environment, driving individual variation. Individual covariation in behavioural, physiological, and cognitive traits among individuals along a fast-slow continuum is thought to arise because these traits are linked as part of an adaptive pace-of-life strategy. Yet paradoxically, trait intercorrelation is absent or disrupted in some populations but not others. Here, we provide experimental evidence from aquatic pond snails (Lymnaea stagnalis) that environmental stressors and the gut microbiota explain host phenotypic plasticity and disrupted covariation among traits. Antibiotic exposure at varying levels of ecologically relevant concentrations had multiple effects starting with gut microbiota diversity, differential abundance, and inferred function. Memory declined in line with antibiotic concentrations that caused the most profound gut microbiota disruption, and although pace-of-life traits remained rigid, their covariation did not. Moreover, inferred microbial metabolic pathways with biologically relevant host functions explained individual and treatment variation in phenotypes. Together, our results point to the gut microbiome as a proximate mechanism influencing the emergence and maintenance of phenotypic variation within populations and highlights the need to decipher whether the gut microbiome's sensitivity to environmental pollution facilitates adaptive or maladaptive phenotypic plasticity.


Subject(s)
Anti-Bacterial Agents , Gastrointestinal Microbiome , Animals , Gastrointestinal Microbiome/drug effects , Anti-Bacterial Agents/pharmacology , Lymnaea/microbiology , Lymnaea/physiology , Memory/drug effects , Snails/microbiology , Phenotype
13.
BMC Vet Res ; 20(1): 197, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741097

ABSTRACT

The occurrence of trematodes among ruminants and their snail vectors is a major concern across various agro-ecological regions of Ethiopia. Trematodes pose significant threats to animals, causing considerable economic losses and impacting public health. In this study, we have investigated 784 ruminant fecal samples, and 520 abattoir samples, alongside the collection and identification of snail vectors from various agro-ecological regions. Fecal examinations revealed Fasciola, Paramphistomum and Schistosoma species infected 20.5% (95% CI: 17.6, 23.8), 11.7% (95% CI: 9.6, 14.2), and 6.3% (95% CI: 4.1, 9.1) of the animals, respectively. The overall prevalence of trematodes among ruminants was 28.8% (95% CI: 25.7, 32.1%), with 6.0% (95% CI: 4.3, 7.7) showing mixed infections. Fasciola was more prevalent in Asela (26%) compared to Batu (19%) and Hawassa (11.5%), while a higher proportion of animals in Batu were infected with Paramphistomum. Schistosoma eggs were detected only in Batu (12.5%), but not in other areas. Sheep and cattle exhibited higher infection rates with Fasciola, Paramphistoma, and Schistosoma compared to goats. Significant associations were observed between trematode infections and risk factors including agro-ecology, animal species, body condition score, and deworming practices. About 20.8% and 22.7% of the slaughtered animals harbored Fasciola and Paramphistomum flukes, respectively, with a higher prevalence in Asela and Hawassa abattoirs compared to Batu abattoir. Additionally, a total of 278 snails were collected from the study areas and identified as lymnae natalensis, lymnae trancatula, Biomphalaria pffiferi, Biomphlaria sudanica, and Bulinus globosus. In conclusion, the study highlights the widespread occurrence of trematode infections, emphasizing the need for feasible control measures to mitigate their economic and public health impacts.


Subject(s)
Feces , Snails , Trematode Infections , Animals , Ethiopia/epidemiology , Trematode Infections/veterinary , Trematode Infections/epidemiology , Trematode Infections/parasitology , Feces/parasitology , Prevalence , Snails/parasitology , Sheep , Sheep Diseases/epidemiology , Sheep Diseases/parasitology , Goat Diseases/epidemiology , Goat Diseases/parasitology , Goats , Cattle Diseases/epidemiology , Cattle Diseases/parasitology , Cattle , Trematoda/isolation & purification , Trematoda/classification , Abattoirs , Fasciola/isolation & purification , Paramphistomatidae/isolation & purification , Ruminants/parasitology
14.
Sci Rep ; 14(1): 11511, 2024 05 20.
Article in English | MEDLINE | ID: mdl-38769354

ABSTRACT

Four invasive Mediterranean snails, i.e., Theba pisana (Müller, 1774), Cernuella virgata (da Costa, 1778), Cochlicella acuta (Müller, 1774) and Cochlicella barbara (Linnaeus, 1758) cost $170 million yearly to the grain industry in Australia. Their impact is mainly due to their estivation behavior: snails climb on cereal and legume stalks to rest during summer, which coincides with harvest, causing grain contamination issues in crops such as wheat, barley and canola. Diverse management methods have been developed to regulate snail populations, with limited success. Our study investigates the potential for a push-pull strategy to divert invasive snails from cultivated fields. A "push" part (i.e. using a repellent stimuli) was based on the use of a chemical deterrent repelling snails from the cultivated field, and a "pull" part (i.e. using an attractive stimuli) was based on offering attractive estivation supports for snails to aggregate outside the cultivated field. First, artificial estivation supports of different colors were tested under laboratory and field conditions and showed that red supports were the most attractive for these snails. Second, different substances were tested as potential snail deterrents (garlic, coffee, coffee grounds, copper). Garlic extracts were the most powerful snail deterrent and were shown to effectively protect an estivation support and food source from snails under laboratory conditions. These results, which were highly consistent for the four species, illustrate the potential of a push-pull strategy against invasive snails in Australia. It is the first attempt to develop a push-pull strategy relying on both visual and chemical stimuli to achieve results, as well as manipulating the estivation behavior of a pest.


Subject(s)
Introduced Species , Snails , Animals , Snails/physiology , Australia , Photic Stimulation/methods , Behavior, Animal/physiology
15.
Article in English | MEDLINE | ID: mdl-38723703

ABSTRACT

Mollusks, including snails, possess two chambered hearts. The heart and cardiomyocytes of snails have many similarities with those of mammals. Also, the biophysics and pharmacology of Ca, K, and Na ion channels resemble. Similar to mammals, in mollusks, the ventricular cardiomyocytes and K channels are often studied, which are selectively sensitive to antagonists such as 4-AP, E-4031, and TEA. Since the physiological properties of the ventricular cardiac cells of snails are well characterized, the enzymatically dissociated atrial cardiomyocytes of Cornu aspersum (Müller, 1774) were studied using the whole-cell patch-clamp technique for detailed comparisons with mice, Mus musculus. The incubation of tissues in a solution simultaneously containing two enzymes, collagenase and papain, enabled the isolation of single cells. Recordings in the atrial cardiomyocytes of snails revealed outward K+ currents closely resembling those of the ventricle. The latter was consistent, whether the voltage ramp or steps and long or short pulses were used. Interestingly, under identical conditions, the current waveforms of atrial cardiomyocytes in snails were similar to those of mice left ventricles, albeit the kinetics and the absence of inward rectifier K channel (IK1) activation. Therefore, the heart of mollusks could be used as a simple and accessible experimental model, particularly for pharmacology and toxicology studies.


Subject(s)
Heart Atria , Heart Ventricles , Myocytes, Cardiac , Animals , Heart Atria/drug effects , Heart Atria/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Heart Ventricles/drug effects , Heart Ventricles/metabolism , Heart Ventricles/cytology , Mice , Patch-Clamp Techniques , Potassium Channels/metabolism , Snails
16.
J Hazard Mater ; 472: 134623, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38754231

ABSTRACT

This study aimed to investigate the impact of arsenic stress on the gut microbiota of a freshwater invertebrate, specifically the apple snail (Pomacea canaliculata), and elucidate its potential role in arsenic bioaccumulation and biotransformation. Waterborne arsenic exposure experiments were conducted to characterize the snail's gut microbiomes. The results indicate that low concentration of arsenic increased the abundance of gut bacteria, while high concentration decreased it. The dominant bacterial phyla in the snail were Proteobacteria, Firmicutes, Bacteroidota, and Actinobacteriota. In vitro analyses confirmed the critical involvement of the gut microbiota in arsenic bioaccumulation and biotransformation. To further validate the functionality of the gut microbiota in vivo, antibiotic treatment was administered to eliminate the gut microbiota in the snails, followed by exposure to waterborne arsenic. The results demonstrated that antibiotic treatment reduced the total arsenic content and the proportion of arsenobetaine in the snail's body. Moreover, the utilization of physiologically based pharmacokinetic modeling provided a deeper understanding of the processes of bioaccumulation, metabolism, and distribution. In conclusion, our research highlights the adaptive response of gut microbiota to arsenic stress and provides valuable insights into their potential role in the bioaccumulation and biotransformation of arsenic in host organisms. ENVIRONMENTAL IMPLICATION: Arsenic, a widely distributed and carcinogenic metalloid, with significant implications for its toxicity to both humans and aquatic organisms. The present study aimed to investigate the effects of As on gut microbiota and its bioaccumulation and biotransformation in freshwater invertebrates. These results help us to understand the mechanism of gut microbiota in aquatic invertebrates responding to As stress and the role of gut microbiota in As bioaccumulation and biotransformation.


Subject(s)
Arsenic , Biotransformation , Gastrointestinal Microbiome , Snails , Water Pollutants, Chemical , Animals , Gastrointestinal Microbiome/drug effects , Arsenic/metabolism , Arsenic/toxicity , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/toxicity , Snails/metabolism , Snails/drug effects , Fresh Water , Bioaccumulation , Bacteria/metabolism , Bacteria/drug effects , Anti-Bacterial Agents/pharmacology
17.
Int J Food Microbiol ; 418: 110732, 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38728973

ABSTRACT

Trematodes belonging to the family Echinostomatidae are food-borne parasites which cause echinostomiasis in animals and humans. This is a global public health issue, particularly in East and Southeast Asia. A method to detect the infective stage of Echinostomatidae species is required to prevent transmission to humans. In this study, a loop-mediated isothermal amplification coupled with a lateral flow dipstick (LAMP-LFD) assay was developed for visual detection of the metacercarial stage in edible snails of the genus Filopaludina from local markets in Thailand. The LAMP-LFD method can be performed within 70 min at a consistent temperature of 66 °C, and the results can be interpreted with the naked eye. The detection limits of the assay using Echinostoma mekongi, E. macrorchis, E. miyagawai and Hypoderaeum conoideum genomic DNA were equal between the four species at 50 pg/µL. A specificity evaluation demonstrated that the LAMP-LFD assay had no cross-reaction with another parasite (Thapariella species) or with the snail host species (Filopaludina martensi martensi, F. sumatrensis speciosa, and F. s. polygramma). Clinical test assessments were compared to microscopic examination in 110 edible snail samples. The clinical sensitivity and specificity of the tests were 84.62 % and 100 %, respectively, with a strong level of agreement based on the kappa statistic and the results of both methods were not significantly different (p > 0.05) per McNemar's test. The test successfully developed in this study may be useful for the detection of the metacercarial stage in edible snails for epidemiological investigations, control, surveillance, and to prevent future echinostomiasis health issues.


Subject(s)
Nucleic Acid Amplification Techniques , Snails , Animals , Nucleic Acid Amplification Techniques/methods , Snails/parasitology , Echinostomatidae/isolation & purification , Echinostomatidae/genetics , Echinostomatidae/classification , Thailand , Sensitivity and Specificity , Molecular Diagnostic Techniques/methods , Food Parasitology
18.
Environ Sci Pollut Res Int ; 31(23): 34295-34308, 2024 May.
Article in English | MEDLINE | ID: mdl-38700770

ABSTRACT

Fertilization can change the composition of antibiotic resistance genes(ARGs) and their host bacteria in agricultural fields, while complex microbial activities help ARGs into crops and transmit them to humans through agricultural products.Therefore, this study constructed a farmland food chain with soil-lettuce-snail as a typical structure, added genetically engineered Pseudomonas fluorescens containing multidrug-resistant plasmid RP4 to track its spread in the farmland food chain, and used different fertilization methods to explore its influence on the spread and diffusion of ARGs and intl1 in the farmland food chain. It was found that exogenous Pseudomonas can enter plants from soil and pass into snails' intestines, and there is horizontal gene transfer phenomenon of RP4 plasmid in bacteria. At different interfaces of the constructed food chain, the addition of exogenous drug-resistant bacteria had different effects on the total abundance of ARGs and intl1. Fertilization, especially manure, not only promoted the spread of Pseudomonas aeruginosa and the transfer of RP4 plasmid levels, but also significantly increased the total abundance of ARGs and intl1 at all interfaces of the constructed food chain. The main ARGs host bacteria in the constructed food chain include Proteobacteria, Bacteroides, and Firmicutes, while Flavobacterium of Bacteroides is the unique potential host bacteria of RP4 plasmid. In conclusion, this study provides a reference for the risk assessment of ARGs transmitted to the human body through the food chain, and has important practical significance to reduce the antibiotic resistance contamination of agricultural products and ensure the safety of vegetable basket.


Subject(s)
Drug Resistance, Microbial , Food Chain , Plasmids , Soil Microbiology , Plasmids/genetics , Drug Resistance, Microbial/genetics , Animals , Snails , Soil/chemistry , Gene Transfer, Horizontal , Anti-Bacterial Agents/pharmacology
19.
Infect Dis Poverty ; 13(1): 32, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711151

ABSTRACT

The three most important genera of snails for the transmission of schistosomes are Bulinus, Biomphalaria and Oncomelania. Each of these genera, found in two distantly related families, includes species that act as the intermediate host for one of the three most widespread schistosome species infecting humans, Schistosoma haematobium, S. mansoni and S. japonicum, respectively. An important step in the fight against schistosomiasis in Asia has been taken with the publication of the article "Chromosome-level genome assembly of Oncomelania hupensis: the intermediate snail host of Schistosoma japonicum", which means that genomes for all three major genera, including species across three continents, are now available in the public domain. This includes the first genomes of African snail vectors, namely Biomphalaria sudanica, Bi. pfeifferi and Bulinus truncatus, as well as high-quality chromosome level assemblies for South American Bi. glabrata. Most importantly, the wealth of new genomic and transcriptomic data is helping to establish the specific molecular mechanisms that underly compatibility between snails and their schistosomes, which although diverse and complex, may help to identify potential targets dictating host parasite interactions that can be utilised in future transmission control strategies. This new work on Oncomelania hupensis and indeed studies on other snail vectors, which provide deep insights into the genome, will stimulate research that may well lead to new and much needed control interventions.


Subject(s)
Disease Vectors , Genomics , Snails , Animals , Humans , Host-Parasite Interactions , Schistosomiasis/transmission , Schistosomiasis/prevention & control , Schistosomiasis/parasitology , Snails/parasitology
20.
Environ Pollut ; 352: 124095, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38703984

ABSTRACT

Elevated CO2 levels and methylmercury (MeHg) pollution are important environmental issues faced across the globe. However, the impact of elevated CO2 on MeHg production and its biological utilization remains to be fully understood, particularly in realistic complex systems with biotic interactions. Here, a complete paddy wetland microcosm, namely, the rice-fish-snail co-culture system, was constructed to investigate the impacts of elevated CO2 (600 ppm) on MeHg formation, bioaccumulation, and possible health risks, in multiple environmental and biological media. The results revealed that elevated CO2 significantly increased MeHg concentrations in the overlying water, periphyton, snails and fish, by 135.5%, 66.9%, 45.5%, and 52.1%, respectively. A high MeHg concentration in periphyton, the main diet of snails and fish, was the key factor influencing the enhanced MeHg in aquatic products. Furthermore, elevated CO2 alleviated the carbon limitation in the overlying water and proliferated green algae, with subsequent changes in physico-chemical properties and nutrient concentrations in the overlying water. More algal-derived organic matter promoted an enriched abundance of Archaea-hgcA and Deltaproteobacteria-hgcA genes. This consequently increased the MeHg in the overlying water and food chain. However, MeHg concentrations in rice and soil did not increase under elevated CO2, nor did hgcA gene abundance in soil. The results reveal that elevated CO2 exacerbated the risk of MeHg intake from aquatic products in paddy wetland, indicating an intensified MeHg threat under future elevated CO2 levels.


Subject(s)
Carbon Dioxide , Fishes , Methylmercury Compounds , Oryza , Water Pollutants, Chemical , Wetlands , Methylmercury Compounds/analysis , Carbon Dioxide/analysis , Fishes/metabolism , Animals , Oryza/metabolism , Oryza/chemistry , Water Pollutants, Chemical/analysis , Food Chain , Ecosystem , Environmental Monitoring , Snails/drug effects , Snails/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...