Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 182
Filter
1.
PLoS Negl Trop Dis ; 18(5): e0012152, 2024 May.
Article in English | MEDLINE | ID: mdl-38717980

ABSTRACT

BACKGROUND: Each year, 3,800 cases of snakebite envenomation are reported in Mexico, resulting in 35 fatalities. The only scientifically validated treatment for snakebites in Mexico is the use of antivenoms. Currently, two antivenoms are available in the market, with one in the developmental phase. These antivenoms, produced in horses, consist of F(ab')2 fragments generated using venoms from various species as immunogens. While previous studies primarily focused on neutralizing the venom of the Crotalus species, our study aims to assess the neutralization capacity of different antivenom batches against pit vipers from various genera in Mexico. METHODOLOGY: We conducted various biological and biochemical tests to characterize the venoms. Additionally, we performed neutralization tests using all three antivenoms to evaluate their effectiveness against lethal activity and their ability to neutralize proteolytic and fibrinogenolytic activities. RESULTS: Our results reveal significant differences in protein content and neutralizing capacity among different antivenoms and even between different batches of the same product. Notably, the venom of Crotalus atrox is poorly neutralized by all evaluated batches despite being the primary cause of envenomation in the country's northern region. Furthermore, even at the highest tested concentrations, no antivenom could neutralize the lethality of Metlapilcoatlus nummifer and Porthidium yucatanicum venoms. These findings highlight crucial areas for improving existing antivenoms and developing new products. CONCLUSION: Our research reveals variations in protein content and neutralizing potency among antivenoms, emphasizing the need for consistency in venom characteristics as immunogens. While Birmex neutralizes more LD50 per vial, Antivipmyn excels in specific neutralization. The inability of antivenoms to neutralize certain venoms, especially M. nummifer and P. yucatanicum, highlights crucial improvement opportunities, given the medical significance of these species.


Subject(s)
Antivenins , Neutralization Tests , Antivenins/pharmacology , Antivenins/immunology , Animals , Mexico , Snake Bites/drug therapy , Snake Bites/immunology , Viperidae , Crotalus , Crotalid Venoms/immunology
2.
Nat Commun ; 15(1): 4310, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773068

ABSTRACT

Oligoclonal mixtures of broadly-neutralizing antibodies can neutralize complex compositions of similar and dissimilar antigens, making them versatile tools for the treatment of e.g., infectious diseases and animal envenomations. However, these biotherapeutics are complicated to develop due to their complex nature. In this work, we describe the application of various strategies for the discovery of cross-neutralizing nanobodies against key toxins in coral snake venoms using phage display technology. We prepare two oligoclonal mixtures of nanobodies and demonstrate their ability to neutralize the lethality induced by two North American coral snake venoms in mice, while individual nanobodies fail to do so. We thus show that an oligoclonal mixture of nanobodies can neutralize the lethality of venoms where the clinical syndrome is caused by more than one toxin family in a murine challenge model. The approaches described may find utility for the development of advanced biotherapeutics against snakebite envenomation and other pathologies where multi-epitope targeting is beneficial.


Subject(s)
Antibodies, Neutralizing , Coral Snakes , Single-Domain Antibodies , Animals , Single-Domain Antibodies/immunology , Mice , Antibodies, Neutralizing/immunology , Coral Snakes/immunology , Disease Models, Animal , Antivenins/immunology , Elapid Venoms/immunology , Female , Snake Bites/immunology , Snake Bites/therapy , Epitopes/immunology , Mice, Inbred BALB C , Cell Surface Display Techniques
3.
PLoS Negl Trop Dis ; 18(5): e0012187, 2024 May.
Article in English | MEDLINE | ID: mdl-38809847

ABSTRACT

BACKGROUND: Snakebite envenomation inflicts a high burden of mortality and morbidity in sub-Saharan Africa. Antivenoms are the mainstay in the therapy of envenomation, and there is an urgent need to develop antivenoms of broad neutralizing efficacy for this region. The venoms used as immunogens to manufacture snake antivenoms are normally selected considering their medical importance and availability. Additionally, their ability to induce antibody responses with high neutralizing capability should be considered, an issue that involves the immunization scheme and the animal species being immunized. METHODOLOGY/PRINCIPAL FINDINGS: Using the lethality neutralization assay in mice, we compared the intrageneric neutralization scope of antisera generated by immunization of horses with monospecific, bispecific/monogeneric, and polyspecific/monogeneric immunogens formulated with venoms of Bitis spp., Echis spp., Dendroaspis spp., spitting Naja spp. or non-spitting Naja spp. It was found that the antisera raised by all the immunogens were able to neutralize the homologous venoms and, with a single exception, the heterologous congeneric venoms (considering spitting and non-spitting Naja separately). In general, the polyspecific antisera of Bitis spp, Echis spp, and Dendroaspis spp gave the best neutralization profile against venoms of these genera. For spitting Naja venoms, there were no significant differences in the neutralizing ability between monospecific, bispecific and polyspecific antisera. A similar result was obtained in the case of non-spitting Naja venoms, except that polyspecific antiserum was more effective against the venoms of N. melanoleuca and N. nivea as compared to the monospecific antiserum. CONCLUSIONS/SIGNIFICANCE: The use of polyspecific immunogens is the best alternative to produce monogeneric antivenoms with wide neutralizing coverage against venoms of sub-Saharan African snakes of the Bitis, Echis, Naja (non-spitting) and Dendroaspis genera. On the other hand, a monospecific immunogen composed of venom of Naja nigricollis is suitable to produce a monogeneric antivenom with wide neutralizing coverage against venoms of spitting Naja spp. These findings can be used in the design of antivenoms of wide neutralizing scope for sub-Saharan Africa.


Subject(s)
Antivenins , Neutralization Tests , Animals , Horses/immunology , Antivenins/immunology , Antivenins/administration & dosage , Mice , Africa South of the Sahara , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Snake Venoms/immunology , Immune Sera/immunology , Elapid Venoms/immunology , Snake Bites/immunology
4.
Int Immunopharmacol ; 134: 112215, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38744173

ABSTRACT

Camelid single-domain antibodies (VHH) represent a promising class of immunobiologicals for therapeutic applications due to their remarkable stability, specificity, and therapeutic potential. To enhance the effectiveness of antivenoms for snakebites, various methods have been explored to address limitations associated with serum therapy, particularly focusing on mitigating local damage and ensuring sustainable production. Our study aimed to characterize the pharmacological profile and neutralization capacity of anti-Phospholipase A2 (PLA2) monomeric VHH (Genbank accessions: KC329718). Using a post-envenoming mouse model, we used intravital microscopy to assess leukocyte influx, measured CK and LDH levels, and conducted a histopathology analysis to evaluate VHH KC329718's ability to neutralize myotoxic activity. Our findings demonstrated that VHH KC329718 exhibited heterogeneous distribution in muscle tissue. Treatment with VHH KC329718 reduced leukocyte influx caused by BthTX-I (a Lys-49 PLA2) by 28 %, as observed through intravital microscopy. When administered at a 1:10 ratio [venom or toxin:VHH (w/w)], VHH KC329718 significantly decreased myotoxicity, resulting in a 35-40 % reduction in CK levels from BthTX-I and BthTX-II (an Asp-49 PLA2) and a 60 % decrease in CK levels from B. jararacussu venom. LDH levels also showed reductions of 60%, 80%, and 60% induced by BthTX-I, BthTX-II, and B. jararacussu venom, respectively. Histological analysis confirmed the neutralization potential, displaying a significant reduction in tissue damage and inflammatory cell count in mice treated with VHH KC329718 post B. jararacussu venom inoculation. This study underscores the potential of monomeric anti-PLA2 VHH in mitigating myotoxic effects, suggesting a promising avenue for the development of new generation antivenoms to address current therapeutic limitations.


Subject(s)
Antivenins , Bothrops , Phospholipases A2 , Single-Domain Antibodies , Snake Bites , Animals , Single-Domain Antibodies/immunology , Snake Bites/drug therapy , Snake Bites/immunology , Antivenins/pharmacology , Antivenins/therapeutic use , Mice , Phospholipases A2/metabolism , Crotalid Venoms/immunology , Crotalid Venoms/toxicity , Male , Disease Models, Animal , Muscle, Skeletal/pathology , Muscle, Skeletal/drug effects , Leukocytes/drug effects , Leukocytes/immunology , Humans , Creatine Kinase/blood
5.
Int J Mol Sci ; 25(8)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38673799

ABSTRACT

Over 32,000 individuals succumb to snake envenoming in sub-Saharan Africa (sSA) annually. This results from several factors, including a lack of antivenom products capable of neutralising the venoms of diverse snake species in this region. Most manufacturers produce polyvalent antivenoms targeting 3 to 16 clinically important snake species in sSA. However, specific products are unavailable for many others, especially those with a restricted geographic distribution. While next-generation antivenoms, comprising a cocktail of broadly neutralising antibodies, may offer an effective solution to this problem, given the need for their clinical validation, recombinant antivenoms are far from being available to snakebite victims. One of the strategies that could immediately address this issue involves harnessing the cross-neutralisation potential of existing products. Therefore, we assessed the neutralisation potency of PANAF-Premium antivenom towards the venoms of 14 medically important snakes from 13 countries across sSA for which specific antivenom products are unavailable. Preclinical assays in a murine model of snake envenoming revealed that the venoms of most snake species under investigation were effectively neutralised by this antivenom. Thus, this finding highlights the potential use of PANAF-Premium antivenom in treating bites from diverse snakes across sSA and the utility of harnessing the cross-neutralisation potential of antivenoms.


Subject(s)
Antivenins , Snake Bites , Snake Venoms , Antivenins/pharmacology , Antivenins/immunology , Snake Bites/drug therapy , Snake Bites/immunology , Animals , Africa South of the Sahara , Mice , Snake Venoms/immunology , Snakes , Antibodies, Neutralizing/immunology , Humans , Disease Models, Animal
6.
Drug Discov Today ; 29(5): 103967, 2024 May.
Article in English | MEDLINE | ID: mdl-38555033

ABSTRACT

Single-domain antibodies (sdAbs) hold promise for developing new biopharmaceuticals to treat neglected tropical diseases (NTDs), including snakebites, which are severe and occur frequently. In addition, limitations of conventional snakebite treatments, especially in terms of local action, and the global antivenom crisis incentivize the use of this biotechnological tool to design next-generation snakebite antivenoms. Conventional antivenoms for snakebite treatment are usually composed of immunoglobulin G or F(ab')2 fragments derived from the plasma of immunized animals. sdAbs, the smallest antigen-binding fragments, are derived from the variable domains of camelid heavy-chain antibodies. sdAbs may have some advantages over conventional antivenoms for local toxicity, such as better penetration into tissues due to their small size, and high solubility and affinity for venom antigens due to their unique antigen-binding loops and ability to access cryptic epitopes. We present an overview of current antivenom therapy in the context of sdAb development for toxin neutralization. Furthermore, strategies are presented for identifying snake venom's major toxins as well as for developing antisnake toxin sdAbs by employing proteomic tools for toxin neutralization.


Subject(s)
Antivenins , Proteomics , Single-Domain Antibodies , Snake Bites , Snake Venoms , Antivenins/immunology , Animals , Snake Bites/drug therapy , Snake Bites/immunology , Single-Domain Antibodies/immunology , Single-Domain Antibodies/pharmacology , Humans , Snake Venoms/immunology , Proteomics/methods
7.
Front Immunol ; 12: 775678, 2021.
Article in English | MEDLINE | ID: mdl-34899734

ABSTRACT

As said by former United Nations Secretary-General Kofi Annan, "Snakebite is the most important tropical disease you've never heard of." Listed as a priority neglected tropical disease by the World Health Organization, snakebite envenoming (SBE) kills in excess of 125,000 people per year. However, due to the complexity and overlap of snake venom compositions, few reliable venom diagnostic methods for genus-/species-specific identification, which is crucial for successful SBE therapy, are available. Here, we develop a strategy to select and prepare genus-specific snake venom antibodies, which allows rapid and efficient clinical diagnosis of snakebite. Multi-omics approaches are used to choose candidate antigens from snake venoms and identify genus-specific antigenic epitope peptide fragments (GSAEPs) with ideal immunogenicity, specificity, and spatial accessibility. Double-antibody sandwich ELISA kit was established by matching a polyclonal antibody against a natural antigen and a monoclonal antibody that was prepared by natural protein as antigen and can specifically target the GSAEPs. The kit shows the ability to accurately identify venoms from similar genera of Trimeresurus and Protobothrops with a detection limit of 6.25 ng/ml on the snake venoms and a little cross-reaction, thus proving high feasibility and applicability.


Subject(s)
Antivenins/immunology , Enzyme-Linked Immunosorbent Assay , Snake Bites/diagnosis , Snake Bites/immunology , Snake Venoms/immunology , Amino Acid Sequence , Animals , Antibodies, Monoclonal/immunology , Antivenins/chemistry , Enzyme-Linked Immunosorbent Assay/methods , Epitope Mapping , Epitopes/chemistry , Epitopes/immunology , Humans , Models, Molecular , Peptides/chemistry , Peptides/immunology , Protein Conformation , Sensitivity and Specificity , Snake Venoms/chemistry , Species Specificity , Structure-Activity Relationship
8.
PLoS Negl Trop Dis ; 15(8): e0009659, 2021 08.
Article in English | MEDLINE | ID: mdl-34407084

ABSTRACT

BACKGROUND: Snakebite is a neglected tropical disease that causes high global rates of mortality and morbidity. Although snakebite can cause a variety of pathologies in victims, haemotoxic effects are particularly common and are typically characterised by haemorrhage and/or venom-induced consumption coagulopathy. Antivenoms are the mainstay therapeutic for treating the toxic effects of snakebite, but despite saving thousands of lives annually, these therapies are associated with limited cross-snake species efficacy due to venom variation, which ultimately restricts their therapeutic utility to particular geographical regions. METHODOLOGY/PRINCIPAL FINDINGS: In this study we explored the feasibility of generating globally effective pathology-specific antivenoms to counteract the haemotoxic signs of snakebite envenoming. Two different immunogen mixtures, consisting of seven and twelve haemotoxic venoms sourced from geographically diverse and/or medically important snakes, were used to raise ovine polyclonal antibodies, prior to characterisation of their immunological binding characteristics and in vitro neutralisation profiles against each of the venoms. Despite variability of the immunogen mixtures, both experimental antivenoms exhibited broadly comparable in vitro venom binding and neutralisation profiles against the individual venom immunogens in immunological and functional assays. However, in vivo assessments using a murine preclinical model of antivenom efficacy revealed substantial differences in venom neutralisation. The experimental antivenom generated from the seven venom immunogen mixture outperformed the comparator, by providing protective effects against venom lethality caused by seven of the eight geographically diverse venoms tested, including three distinct venoms that were not used as immunogens to generate this antivenom. These findings suggest that a core set of venom immunogens may be sufficient to stimulate antibodies capable of broadly neutralising a geographically diverse array of haemotoxic snake venoms, and that adding additional venom immunogens may impact negatively on the dose efficacy of the resulting antivenom. CONCLUSIONS/SIGNIFICANCE: Although selection of appropriate immunogens that encapsulate venom toxin diversity without diluting antivenom potency remains challenging and further optimisation is required, the findings from this pilot study suggest that the generation of pathology-specific antivenoms with global utility is likely to feasible, thereby highlighting their promise as future modular treatments for the world's tropical snakebite victims.


Subject(s)
Antivenins/immunology , Antivenins/pharmacology , Snake Venoms/immunology , Snake Venoms/toxicity , Animals , Blood Coagulation Disorders/drug therapy , Cross Reactions , Disease Models, Animal , Hemorrhage/drug therapy , Male , Mice , Pilot Projects , Snake Bites/drug therapy , Snake Bites/immunology
9.
Int J Biol Macromol ; 185: 240-250, 2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34118288

ABSTRACT

Given the magnitude of the global snakebite crisis, strategies to ensure the quality of antivenom, as well as the availability and sustainability of its supply are under development by several research groups. Recombinant DNA technology has allowed the engineering of monoclonal antibodies and recombinant fragments as alternatives to conventional antivenoms. Besides having higher therapeutic efficacy, with broad neutralization capacity against local and systemic toxicity, novel antivenoms need to be safe and cost-effective. Due to the biological and physical chemical properties of camelid single-domain antibodies, with high volume of distribution to distal tissue, their modular format, and their versatility, their biotechnological application has grown considerably in recent decades. This article presents the most up-to-date developments concerning camelid single-domain-based antibodies against major toxins from snake venoms, the main venomous animals responsible for reported envenoming cases and related human deaths. A brief discussion on the composition, challenges, and perspectives of antivenoms is presented, as well as the road ahead for next-generation antivenoms based on single-domain antibodies.


Subject(s)
Single-Domain Antibodies/pharmacology , Snake Bites/drug therapy , Snake Venoms/antagonists & inhibitors , Animals , Camelids, New World , Humans , Models, Molecular , Protein Engineering , Recombinant Proteins/chemistry , Recombinant Proteins/pharmacology , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/genetics , Snake Bites/immunology , Tissue Distribution
10.
Front Immunol ; 12: 668328, 2021.
Article in English | MEDLINE | ID: mdl-33968072

ABSTRACT

This review describes the research aimed at the development of universal antivenom against elapid neurotoxic snake venoms. The antivenoms produced in Thailand in the 1980s were of low potency, especially against the elapid venoms. This was thought to be due to the low immunogenicity of the α-neurotoxins, which are the most lethal toxins in these venoms. Comparisons of various α-neurotoxin conjugates and polymers, and also different immunological adjuvants, showed that the adjuvant used is the major determinant in the antibody response in horses. The potent Freund's adjuvant was not used due to its severe local side-effect in horses. Therefore, a novel immunization protocol termed 'low dose, low volume multi-site' was developed for use in horses. This immunization protocol has led to the production of highly potent monospecific antivenoms against several elapid and viperid venoms, and two potent polyspecific antivenoms, one against 4 neurotoxic and another against 3 hematotoxic venoms. The immunization protocol has also led to other improvements in antivenom production including: several fold increases in antiserum potency, a reduction in the time required to reach therapeutically useful antibody titers, a 90% reduction in the amount of venom used, and 100% of the horses responding to the immunization program. This development is partly responsible for significant decrease in the Thailand's annual snakebite death toll from a few dozens to mostly nil in recent years. Finally, a simple and novel immunization strategy, using a 'diverse toxin repertoire' composed of numerous elapid toxin fractions as immunogen, was proposed and tested. This immunization procedure has resulted in the successful production of a widely paraspecific antiserum against at least 36 neurotoxic venoms of 28 species encompassing 10 genera and from 20 countries on four continents, and possibly against all elapid venoms with α-neurotoxins as the lethal toxins. These results indicate that, with optimizations of the composition of the 'diverse toxin repertoire', the immunization scheme and antibody fractionation to increase the antivenom neutralizing potency, an effective universal antivenom against the neurotoxic elapid snakes of the world can be produced.


Subject(s)
Antivenins/therapeutic use , Elapid Venoms/antagonists & inhibitors , Neurotoxins/antagonists & inhibitors , Snake Bites/drug therapy , Adjuvants, Immunologic/therapeutic use , Animals , Antibody Specificity , Antivenins/adverse effects , Antivenins/biosynthesis , Elapid Venoms/administration & dosage , Elapid Venoms/blood , Elapid Venoms/immunology , Elapidae , Epitopes , Horses/blood , Horses/immunology , Humans , Immunization , Neurotoxins/administration & dosage , Neurotoxins/blood , Neurotoxins/immunology , Snake Bites/immunology , Snake Bites/metabolism
11.
Front Immunol ; 12: 661457, 2021.
Article in English | MEDLINE | ID: mdl-33995385

ABSTRACT

Snakebite envenoming is predominantly an occupational disease of the rural tropics, causing death or permanent disability to hundreds of thousands of victims annually. The diagnosis of snakebite envenoming is commonly based on a combination of patient history and a syndromic approach. However, the availability of auxiliary diagnostic tests at the disposal of the clinicians vary from country to country, and the level of experience within snakebite diagnosis and intervention may be quite different for clinicians from different hospitals. As such, achieving timely diagnosis, and thus treatment, is a challenge faced by treating personnel around the globe. For years, much effort has gone into developing novel diagnostics to support diagnosis of snakebite victims, especially in rural areas of the tropics. Gaining access to affordable and rapid diagnostics could potentially facilitate more favorable patient outcomes due to early and appropriate treatment. This review aims to highlight regional differences in epidemiology and clinical snakebite management on a global scale, including an overview of the past and ongoing research efforts within snakebite diagnostics. Finally, the review is rounded off with a discussion on design considerations and potential benefits of novel snakebite diagnostics.


Subject(s)
Antivenins/therapeutic use , Health Services Accessibility/statistics & numerical data , Snake Bites/drug therapy , Snakes/immunology , Animals , Antivenins/immunology , Early Diagnosis , Humans , Outcome Assessment, Health Care/methods , Outcome Assessment, Health Care/statistics & numerical data , Rural Population/statistics & numerical data , Snake Bites/diagnosis , Snake Bites/immunology , Snakes/classification , Tropical Climate
12.
Toxins (Basel) ; 13(4)2021 03 31.
Article in English | MEDLINE | ID: mdl-33807363

ABSTRACT

Snake envenomation can result in hemorrhage, local necrosis, swelling, and if not treated properly can lead to adverse systemic effects such as coagulopathy, nephrotoxicity, neurotoxicity, and cardiotoxicity, which can result in death. As such, snake venom metalloproteinases (SVMPs) and disintegrins are two toxic components that contribute to hemorrhage and interfere with the hemostatic system. Administration of a commercial antivenom is the common antidote to treat snake envenomation, but the high-cost, lack of efficacy, side effects, and limited availability, necessitates the development of new strategies and approaches for therapeutic treatments. Herein, we describe the neutralization ability of anti-disintegrin polyclonal antibody on the activities of isolated disintegrins, P-II/P-III SVMPs, and crude venoms. Our results show disintegrin activity on platelet aggregation in whole blood and the migration of the SK-Mel-28 cells that can be neutralized with anti-disintegrin polyclonal antibody. We characterized a SVMP and found that anti-disintegrin was also able to inhibit its activity in an in vitro proteolytic assay. Moreover, we found that anti-disintegrin could neutralize the proteolytic and hemorrhagic activities from crude Crotalus atrox venom. Our results suggest that anti-disintegrin polyclonal antibodies have the potential for a targeted approach to neutralize SVMPs in the treatment of snakebite envenomations.


Subject(s)
Antibodies, Neutralizing/pharmacology , Antivenins/pharmacology , Crotalid Venoms/antagonists & inhibitors , Crotalus , Disintegrins/antagonists & inhibitors , Metalloproteases/antagonists & inhibitors , Protease Inhibitors/pharmacology , Snake Bites/drug therapy , Allosteric Regulation , Animals , Antibody Specificity , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cross Reactions , Crotalid Venoms/enzymology , Crotalid Venoms/immunology , Disease Models, Animal , Disintegrins/immunology , Disintegrins/metabolism , Hemorrhage/enzymology , Hemorrhage/etiology , Hemorrhage/prevention & control , Humans , Metalloproteases/immunology , Metalloproteases/metabolism , Mice, Inbred BALB C , Platelet Aggregation/drug effects , Snake Bites/blood , Snake Bites/enzymology , Snake Bites/immunology
13.
Toxins (Basel) ; 13(3)2021 03 13.
Article in English | MEDLINE | ID: mdl-33805701

ABSTRACT

Snakebites are a relatively rare medical emergency in Europe. In more than half of the annual cases caused by Vipera ammodytes, Vipera berus, and Vipera aspis, immunotherapy with animal-derived antivenom is indicated. Among eight products recently identified as available against European medically relevant species, only Zagreb antivenom, Viperfav, and ViperaTAb have been used almost exclusively for decades. Zagreb antivenom comprises V. ammodytes-specific F(ab')2 fragments. Viperfav is a polyspecific preparation based on F(ab')2 fragments against V. aspis, V. berus, and V. ammodytes venoms. ViperaTAb contains Fab fragments against the venom of V. berus. In 2014 the production of Zagreb antivenom was discontinued. Additionally, in the period of 2017 to 2018 a shortage of Viperfav occurred. Due to a lack of the product indicated for the treatment of V. ammodytes bites, other antivenoms were implemented into clinical practice without comparative assessment of their eligibility. The aim of our work was to identify a high-quality antivenom that might ensure the successful treatment of V. ammodytes and V. berus bites at the preclinical level. Differentiation between bites from these two species is difficult and unreliable in clinical practice, so the availability of a unique antivenom applicable in the treatment of envenoming caused by both species would be the most advantageous for Southeastern Europe. Zagreb antivenom, Viperfav, and ViperaTAb, as well as Viper venom antitoxin for V. berus envenoming and the in-development Inoserp Europe, which was designed to treat envenoming caused by all medically important European snakes, were comparatively tested for the first time. Emphasis was placed on their physicochemical properties, primarily purity and aggregate content, as well as their in vivo protective efficacies. As Zagreb antivenom is no longer available on the European market, Viperfav is the highest-quality product currently available and the only antivenom whose neutralisation potency against V. ammodytes and V. berus venoms was above regulatory requirements.


Subject(s)
Antibodies, Neutralizing/pharmacology , Antivenins/pharmacology , Immunoglobulin Fab Fragments/pharmacology , Snake Bites/drug therapy , Viper Venoms/antagonists & inhibitors , Viperidae , Animals , Antibodies, Neutralizing/chemistry , Antibody Specificity , Antivenins/chemistry , Europe , Health Resources/supply & distribution , Immunoglobulin Fab Fragments/chemistry , Snake Bites/immunology , Snake Bites/metabolism , Time Factors , Viper Venoms/immunology , Viper Venoms/metabolism , Viperidae/metabolism
14.
Front Immunol ; 12: 628113, 2021.
Article in English | MEDLINE | ID: mdl-33790901

ABSTRACT

Background: The immunologic pathways activated during snakebite envenoming (SBE) are poorly described, and their association with recovery is unclear. The immunologic response in SBE could inform a prognostic model to predict recovery. The purpose of this study was to develop pre- and post-antivenom prognostic models comprised of clinical features and immunologic cytokine data that are associated with recovery from SBE. Materials and Methods: We performed a prospective cohort study in an academic medical center emergency department. We enrolled consecutive patients with Crotalinae SBE and obtained serum samples based on previously described criteria for the Surgical Critical Care Initiative (SC2i)(ClinicalTrials.gov Identifier: NCT02182180). We assessed a standard set of clinical variables and measured 35 unique cytokines using Luminex Cytokine 35-Plex Human Panel pre- and post-antivenom administration. The Patient-Specific Functional Scale (PSFS), a well-validated patient-reported outcome of functional recovery, was assessed at 0, 7, 14, 21 and 28 days and the area under the patient curve (PSFS AUPC) determined. We performed Bayesian Belief Network (BBN) modeling to represent relationships with a diagram composed of nodes and arcs. Each node represents a cytokine or clinical feature and each arc represents a joint-probability distribution (JPD). Results: Twenty-eight SBE patients were enrolled. Preliminary results from 24 patients with clinical data, 9 patients with pre-antivenom and 11 patients with post-antivenom cytokine data are presented. The group was mostly female (82%) with a mean age of 38.1 (SD ± 9.8) years. In the pre-antivenom model, the variables most closely associated with the PSFS AUPC are predominantly clinical features. In the post-antivenom model, cytokines are more fully incorporated into the model. The variables most closely associated with the PSFS AUPC are age, antihistamines, white blood cell count (WBC), HGF, CCL5 and VEGF. The most influential variables are age, antihistamines and EGF. Both the pre- and post-antivenom models perform well with AUCs of 0.87 and 0.90 respectively. Discussion: Pre- and post-antivenom networks of cytokines and clinical features were associated with functional recovery measured by the PSFS AUPC over 28 days. With additional data, we can identify prognostic models using immunologic and clinical variables to predict recovery from SBE.


Subject(s)
Crotalid Venoms/immunology , Crotalinae/immunology , Cytokines/blood , Snake Bites/immunology , Adult , Aged , Animals , Antivenins/therapeutic use , Biomarkers/blood , Crotalid Venoms/antagonists & inhibitors , Female , Humans , Male , Middle Aged , Models, Immunological , Predictive Value of Tests , Prospective Studies , Recovery of Function , Snake Bites/blood , Snake Bites/drug therapy , Time Factors , Treatment Outcome
15.
Toxins (Basel) ; 13(4)2021 04 14.
Article in English | MEDLINE | ID: mdl-33919927

ABSTRACT

Vipera ammodytes (V. ammodytes) is the most venomous European viper. The aim of this study was to compare the clinical efficacy and pharmacokinetic values of intravenous Vipera berus venom-specific (paraspecific) Fab fragments (ViperaTAb) and intramuscular V. ammodytes venom-specific F(ab')2 fragments (European viper venom antiserum, also called "Zagreb" antivenom) in V.ammodytes-envenomed patients. This was a prospective study of V.ammodytes-envenomed patients that were treated intravenously with ViperaTAb or intramuscularly with European viper venom antiserum that was feasible only due to the unique situation of an antivenom shortage. The highest venom concentration, survival, length of hospital stay and adverse reactions did not differ between the groups. Patients treated with intravenous Fab fragments were sicker, with significantly more rhabdomyolysis and neurotoxicity. The kinetics of Fab fragments after one or more intravenous applications matched better with the venom concentration in the early phase of envenomation compared to F(ab')2 fragments that were given intramuscularly only on admission. F(ab')2 fragments given intramuscularly had 25-fold longer apparent total body clearance and 14-fold longer elimination half-time compared to Fab fragments given intravenously (2 weeks vs. 24 h, respectively). In V.ammodytes-envenomed patients, the intramuscular use of specific F(ab')2 fragments resulted in a slow rise of antivenom serum concentration that demanded their early administration but without the need for additional doses for complete resolution of all clinical signs of envenomation. Intravenous use of paraspecific Fab fragments resulted in the immediate rise of antivenom serum concentration that enabled their use according to the clinical progress, but multiple doses might be needed for efficient therapy of thrombocytopenia due to venom recurrence, while the progression of rhabdomyolysis and neurotoxic effects of the venom could not be prevented.


Subject(s)
Antivenins/administration & dosage , Immunoglobulin Fab Fragments/administration & dosage , Snake Bites/drug therapy , Viper Venoms/antagonists & inhibitors , Viperidae , Adult , Aged , Animals , Female , Humans , Injections, Intramuscular , Injections, Intravenous , Male , Middle Aged , Pharmacokinetics , Prospective Studies , Snake Bites/diagnosis , Snake Bites/immunology , Snake Bites/metabolism , Treatment Outcome , Viper Venoms/immunology , Viper Venoms/metabolism
16.
Toxins (Basel) ; 13(2)2021 01 22.
Article in English | MEDLINE | ID: mdl-33499001

ABSTRACT

The toxin composition of snake venoms and, thus, their functional activity, can vary between and within species. Intraspecific venom variation across a species' geographic range is a major concern for antivenom treatment of envenomations, particularly for countries like French Guiana that lack a locally produced antivenom. Bothrops asper and Bothrops atrox are the most medically significant species of snakes in Latin America, both producing a variety of clinical manifestations, including systemic bleeding. These pathophysiological actions are due to the activation by the venom of the blood clotting factors Factor X and prothrombin, thereby causing severe consumptive coagulopathy. Both species are extremely wide-ranging, and previous studies have shown their venoms to exhibit regional venom variation. In this study, we investigate the differential coagulotoxic effects on human plasma of six venoms (four B. asper and two B. atrox samples) from different geographic locations, spanning from Mexico to Peru. We assessed how the venom variation of these venom samples affects neutralisation by five regionally available antivenoms: Antivipmyn, Antivipmyn-Tri, PoliVal-ICP, Bothrofav, and Soro Antibotrópico (SAB). The results revealed both inter- and intraspecific variations in the clotting activity of the venoms. These variations in turn resulted in significant variation in antivenom efficacy against the coagulotoxic effects of these venoms. Due to variations in the venoms used in the antivenom production process, antivenoms differed in their species-specific or geographical neutralisation capacity. Some antivenoms (PoliVal-ICP, Bothrofav, and SAB) showed species-specific patterns of neutralisation, while another antivenom (Antivipmyn) showed geographic-specific patterns of neutralisation. This study adds to current knowledge of Bothrops venoms and also illustrates the importance of considering evolutionary biology when developing antivenoms. Therefore, these results have tangible, real-world implications by aiding evidence-based design of antivenoms for treatment of the envenomed patient. We stress that these in vitro studies must be backed by future in vivo studies and clinical trials before therapeutic guidelines are issued regarding specific antivenom use in a clinical setting.


Subject(s)
Antibodies, Neutralizing/pharmacology , Antivenins/pharmacology , Blood Coagulation/drug effects , Bothrops , Crotalid Venoms/antagonists & inhibitors , Hemorrhage/drug therapy , Snake Bites/drug therapy , Animals , Antibody Specificity , Bothrops/immunology , Bothrops/metabolism , Cross Reactions , Crotalid Venoms/immunology , Crotalid Venoms/metabolism , Hemorrhage/blood , Hemorrhage/immunology , Humans , Snake Bites/blood , Snake Bites/immunology , Species Specificity
17.
Chem Biol Interact ; 333: 109347, 2021 Jan 05.
Article in English | MEDLINE | ID: mdl-33259806

ABSTRACT

Several reports have suggested that photobiomodulation, owing to its analgesic, anti-inflammatory, and healing effects, may be an effective therapeutic option for local effects of snakebites when the availability and accessibility of conventional serum therapy are inefficient and far from medical care centers. Although there have been studies that demonstrate the application of photobiomodulation in the treatment of local adverse events due to snakebites from snakes of the genus Bothrops, its role in the activation of leukocytes, particularly macrophages, has not been evaluated. Here, we assessed the effect of light-emitting diode (LED) treatment on macrophage activation induced by B. jararacussu venom (BjV). LED treatment caused an increase in the viability of macrophages incubated with BjV. This treatment reduced reactive oxygen species (ROS) and nitric oxide (NO) production by macrophages after incubation with BjV. However, LED treatment did not interfere with IL-1ß and IL-10 production by macrophages after incubation with BjV. In conclusion, this study showed that LED treatment has the potential to be used in combination with conventional serum therapy to prevent or minimize the progression of local to severe symptoms after Bothrops envenomation.


Subject(s)
Bothrops , Crotalid Venoms/toxicity , Low-Level Light Therapy/instrumentation , Macrophages/radiation effects , Semiconductors , Snake Bites/immunology , Snake Bites/radiotherapy , Animals , Cell Survival/drug effects , Interleukin-10/metabolism , Interleukin-1beta/metabolism , Intracellular Space/drug effects , Intracellular Space/metabolism , Intracellular Space/radiation effects , Macrophages/immunology , Male , Mice , Nitric Oxide/biosynthesis , Reactive Oxygen Species/metabolism , Snake Bites/metabolism , Snake Bites/pathology , Superoxides/metabolism
18.
J Med Toxicol ; 17(1): 48-50, 2021 01.
Article in English | MEDLINE | ID: mdl-32710249

ABSTRACT

INTRODUCTION: Studies of acute hypersensitivity reactions in pediatric populations receiving Crotalidae Polyvalent Immune Fab (CPIF) are complicated by small size, wide age ranges, and diverse definitions of such reactions. METHODS: This is a retrospective chart review of patients aged 13 years or younger treated with CPIF for Crotalid envenomation from November 2006 to 2016. The primary outcome was the presence of an acute hypersensitivity reaction to CPIF and was defined as the development of any of the following symptoms within 3 hours of initiation of CPIF infusion: urticaria, wheezing or respiratory distress, angioedema, hypotension, nausea, and/or vomiting. Demographics, CPIF dose to control and total dose, bite location, level of care, and length of stay were also recorded. RESULTS: Thirty-four patients were ultimately treated with CPIF. Ages ranged from 10 months to 13 years. Twenty-one patients (60%) were male, 24 (70.6%) were admitted to the ICU, and the median length of stay was 2 days with a range of 1-11 days. Zero patients developed an acute hypersensitivity reaction to CPIF. CONCLUSION: Acute hypersensitivity reactions to CPIF did not occur in this cohort. Such reactions are rare with the use of CPIF in pediatric patients.


Subject(s)
Antivenins/adverse effects , Crotalid Venoms/antagonists & inhibitors , Crotalinae , Drug Hypersensitivity/epidemiology , Immunoglobulin Fab Fragments/adverse effects , Snake Bites/drug therapy , Adolescent , Age Factors , Animals , Child , Child, Preschool , Crotalid Venoms/immunology , Drug Hypersensitivity/diagnosis , Drug Hypersensitivity/immunology , Female , Humans , Infant , Male , Prevalence , Retrospective Studies , Risk Assessment , Risk Factors , Snake Bites/diagnosis , Snake Bites/epidemiology , Snake Bites/immunology , Time Factors , Treatment Outcome
19.
Biologicals ; 68: 40-45, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32928631

ABSTRACT

New world Coral snakes comprise 82 species of medical importance distributed from southeastern United States to Argentina. In Colombia, Micrurus mipartitus and M. dumerilii are responsible for most coral snakebite accidents. Although infrequent, the severity of these envenomings, as well as the limited information available on the neutralizing coverage of commercially available antivenoms, underscores the need to perform studies to assess the cross-neutralizing ability of these life-saving immunobiologicals. In the present work, we evaluated the cross-recognition and neutralization ability of two equine therapeutic antivenoms: PROBIOL and SAC-ICP. PROBIOL antivenom showed cross-recognition towards both M. mipartitus and M. dumerilii venoms, with a significantly higher binding to the latter in both whole-venom ELISA and fractionated-venom immunoprofiling. In contrast, SAC-ICP antivenom cross-recognized M. dumerilii venom, but not that of M. mipartitus. Lethality of M. dumerilii venom was neutralized by both antivenoms, with a slightly higher potency for the SAC-ICP antivenom. However, the lethality of M. mipartitus venom was not neutralized by any of the two antivenoms. Results uncover the need to include M. mipartitus venom, or its most relevant toxins, in the production of coral snake antivenoms to be used in Colombia, to assure the neutralizing coverage for this species.


Subject(s)
Antivenins/immunology , Coral Snakes/immunology , Elapid Venoms/immunology , Horses/immunology , Snake Bites/immunology , Animals , Antivenins/administration & dosage , Colombia , Coral Snakes/classification , Cross Reactions/immunology , Enzyme-Linked Immunosorbent Assay , Female , Male , Mice , Neutralization Tests/methods , Snake Bites/prevention & control , Species Specificity
20.
Front Immunol ; 11: 1874, 2020.
Article in English | MEDLINE | ID: mdl-32973773

ABSTRACT

Snakebites are considered a major public health problem worldwide. In the Amazon region of Brazil, the snake Bothrops atrox (B. atrox) is responsible for 90% of the bites. These bites may cause local and systemic signs from acute inflammatory reaction and hemostatic changes, and present common hemorrhagic disorders. These alterations occur due the action of hemostatically active and immunogenic toxins which are capable of triggering a wide range of hemostatic and inflammatory events. However, the crosstalk between coagulation disorders and inflammatory reaction still has gaps in snakebites. Thus, the goal of this study was to describe the relationship between the consumption of fibrinogen and the profile of inflammatory molecules (chemokines and cytokines) in evenomations by B. atrox snakebites. A prospective study was carried out with individuals who had suffered B. atrox snakebites and presented different levels of fibrinogen consumption (normal fibrinogen [NF] and hypofibrinogenemia [HF]). Seventeen patients with NF and 55 patients with HF were eligible for the study, in addition to 50 healthy controls (CG). The molecules CXCL-8, CCL-5, CXCL-9, CCL-2, CXCL-10, IL-6, TNF, IL-2, IL-10, IFN-γ, IL-4, and IL-17A were quantified in plasma using the CBA technique at three different times (pre-antivenom therapy [T0], 24 h [T1], and 48 h [T2] after antivenom therapy). The profile of the circulating inflammatory response is different between the groups studied, with HF patients having higher concentrations of CCL-5 and lower IFN-γ. In addition, antivenom therapy seems to have a positive effect, leading to a profile of circulating inflammatory response similar in quantification of T1 and T2 on both groups. Furthermore, these results suggest that a number of interactions of CXCL-8, CXCL-9, CCL-2, IL-6, and IFN-γ in HF patients are directly affected by fibrinogen levels, which may be related to the inflammatory response and coagulation mutual relationship induced by B. atrox venom. The present study is the first report on inflammation-coagulation crosstalk involving snakebite patients and supports the better understanding of envenomation's pathophysiology mechanisms and guides in the search for novel biomarkers and prospective therapies.


Subject(s)
Crotalid Venoms , Fibrinogen/metabolism , Inflammation/immunology , Snake Bites/blood , Snake Bites/immunology , Adult , Animals , Antivenins/therapeutic use , Blood Coagulation/physiology , Bothrops , Brazil , Crotalid Venoms/adverse effects , Crotalid Venoms/immunology , Cytokines/immunology , Female , Hemostasis/physiology , Hemostatic Disorders/etiology , Humans , Male , Middle Aged , Snake Bites/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...