Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.486
Filter
1.
Sci Rep ; 14(1): 11157, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38834598

ABSTRACT

Snakebite envenomation is a major public health issue which causes severe morbidity and mortality, affecting millions of people annually. Of a diverse range of clinical manifestations, local and systemic haemorrhage are of particular relevance, as this may result in ischemia, organ failure and even cardiovascular shock. Thus far, in vitro studies have failed to recapitulate the haemorrhagic effects observed in vivo. Here, we present an organ-on-a-chip approach to investigate the effects of four different snake venoms on a perfused microfluidic blood vessel model. We assess the effect of the venoms of four snake species on epithelial barrier function, cell viability, and contraction/delamination. Our findings reveal two different mechanisms by which the microvasculature is being affected, either by disruption of the endothelial cell membrane or by delamination of the endothelial cell monolayer from its matrix. The use of our blood vessel model may shed light on the key mechanisms by which tissue-damaging venoms exert their effects on the capillary vessels, which could be helpful for the development of effective treatments against snakebites.


Subject(s)
Lab-On-A-Chip Devices , Snake Venoms , Animals , Humans , Endothelial Cells/drug effects , Hemorrhage , Cell Survival/drug effects , Snake Bites/drug therapy , Human Umbilical Vein Endothelial Cells/drug effects , Microphysiological Systems
2.
F1000Res ; 13: 192, 2024.
Article in English | MEDLINE | ID: mdl-38708289

ABSTRACT

On the 26 th January 2023, a free to attend, 'improving in vivo snake venom research: a community discussion' meeting was held virtually. This webinar brought together researchers from around the world to discuss current neutralisation of venom lethality mouse assays that are used globally to assess the efficacy of therapies for snakebite envenoming. The assay's strengths and weaknesses were highlighted, and we discussed what improvements could be made to refine and reduce animal testing, whilst supporting preclinical antivenom and drug discovery for snakebite envenoming. This report summarises the issues highlighted, the discussions held, with additional commentary on key perspectives provided by the authors.


Subject(s)
Antivenins , Snake Bites , Snake Venoms , Antivenins/therapeutic use , Animals , Snake Venoms/antagonists & inhibitors , Mice , Snake Bites/drug therapy , Humans
3.
Int J Biol Macromol ; 269(Pt 1): 131990, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38704067

ABSTRACT

Animal-derived venom, like snake venom, has been proven to be valuable natural resources for the drug development. Previously, snake venom was mainly investigated in its pharmacological activities in regulating coagulation, vasodilation, and cardiovascular function, and several marketed cardiovascular drugs were successfully developed from snake venom. In recent years, snake venom fractions have been demonstrated with anticancer properties of inducing apoptotic and autophagic cell death, restraining proliferation, suppressing angiogenesis, inhibiting cell adhesion and migration, improving immunity, and so on. A number of active anticancer enzymes and peptides have been identified from snake venom toxins, such as L-amino acid oxidases (LAAOs), phospholipase A2 (PLA2), metalloproteinases (MPs), three-finger toxins (3FTxs), serine proteinases (SPs), disintegrins, C-type lectin-like proteins (CTLPs), cell-penetrating peptides, cysteine-rich secretory proteins (CRISPs). In this review, we focus on summarizing these snake venom-derived anticancer components on their anticancer activities and underlying mechanisms. We will also discuss their potential to be developed as anticancer drugs in the future.


Subject(s)
Antineoplastic Agents , Snake Venoms , Humans , Snake Venoms/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Animals , Neoplasms/drug therapy , L-Amino Acid Oxidase/chemistry , L-Amino Acid Oxidase/pharmacology , Apoptosis/drug effects , Phospholipases A2/metabolism , Phospholipases A2/chemistry , Toxins, Biological/chemistry , Toxins, Biological/pharmacology
4.
PLoS Negl Trop Dis ; 18(5): e0012187, 2024 May.
Article in English | MEDLINE | ID: mdl-38809847

ABSTRACT

BACKGROUND: Snakebite envenomation inflicts a high burden of mortality and morbidity in sub-Saharan Africa. Antivenoms are the mainstay in the therapy of envenomation, and there is an urgent need to develop antivenoms of broad neutralizing efficacy for this region. The venoms used as immunogens to manufacture snake antivenoms are normally selected considering their medical importance and availability. Additionally, their ability to induce antibody responses with high neutralizing capability should be considered, an issue that involves the immunization scheme and the animal species being immunized. METHODOLOGY/PRINCIPAL FINDINGS: Using the lethality neutralization assay in mice, we compared the intrageneric neutralization scope of antisera generated by immunization of horses with monospecific, bispecific/monogeneric, and polyspecific/monogeneric immunogens formulated with venoms of Bitis spp., Echis spp., Dendroaspis spp., spitting Naja spp. or non-spitting Naja spp. It was found that the antisera raised by all the immunogens were able to neutralize the homologous venoms and, with a single exception, the heterologous congeneric venoms (considering spitting and non-spitting Naja separately). In general, the polyspecific antisera of Bitis spp, Echis spp, and Dendroaspis spp gave the best neutralization profile against venoms of these genera. For spitting Naja venoms, there were no significant differences in the neutralizing ability between monospecific, bispecific and polyspecific antisera. A similar result was obtained in the case of non-spitting Naja venoms, except that polyspecific antiserum was more effective against the venoms of N. melanoleuca and N. nivea as compared to the monospecific antiserum. CONCLUSIONS/SIGNIFICANCE: The use of polyspecific immunogens is the best alternative to produce monogeneric antivenoms with wide neutralizing coverage against venoms of sub-Saharan African snakes of the Bitis, Echis, Naja (non-spitting) and Dendroaspis genera. On the other hand, a monospecific immunogen composed of venom of Naja nigricollis is suitable to produce a monogeneric antivenom with wide neutralizing coverage against venoms of spitting Naja spp. These findings can be used in the design of antivenoms of wide neutralizing scope for sub-Saharan Africa.


Subject(s)
Antivenins , Neutralization Tests , Animals , Horses/immunology , Antivenins/immunology , Antivenins/administration & dosage , Mice , Africa South of the Sahara , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Snake Venoms/immunology , Immune Sera/immunology , Elapid Venoms/immunology , Snake Bites/immunology
5.
Toxicon ; 244: 107772, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38768828

ABSTRACT

Around 95% of snake venom is protein. Along with the soluble proteins, snake venom also contains proteins encapsulated in vesicles known as Snake Venom Extracellular Vesicles (SVEV). SVEVs are nano-sized membrane-bound vesicles released from the snake venom gland cells. The available published research works on SVEVs are minimal. Extracellular vesicles in the Snake Venom gland were initially discovered during the histopathological analysis of the Crotalus durissus terrificus snakes' venom gland. Later, various techniques were employed to isolate and characterize the SVEVs. The cargo of SVEV consists of a variety of proteins like Phospholipase A-2, C-type Lectins, L-Amino Acid Oxidase, Cysteine-Rich Secretory Proteins, Serine Proteinases, Dipeptidyl Peptidase-IV, Aminopeptidase-A, Ecto-5'-nucleotidases, Disintegrins. Proteomic data revealed the presence of some exclusive proteins in the SVEVs, and the other proteins are in varying concentrations in the SVEVs compared to their whole Venom. Interaction of SVEVs with mammalian cell lines showed the disruption of primary physiological functions leads to host immune modulation, and long-term effects of envenoming. Snakebite victim's blood showed variations in the specific Extracellular vesicle concentration. It has been hypothesized that SVEVs are responsible for long-term toxicity. The current review focuses on the various techniques adopted to isolate and characterize SVEVs and discusses the exclusiveness and variations of SVEV proteins and their role in snakebites.


Subject(s)
Extracellular Vesicles , Snake Venoms , Extracellular Vesicles/metabolism , Animals , Proteomics , Crotalus
6.
Toxicon ; 244: 107740, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705487

ABSTRACT

Although non-front fanged snakes account for almost two-thirds of snake diversity, most studies on venom composition and evolution focus exclusively on front-fanged species, which comprise most of the clinically relevant accidents. Comprehensive reports on venom composition of non-front fanged snakes are still scarce for several groups. In this study, we address such shortage of knowledge by providing new insights about the venom composition among species of Phalotris, a poorly studied Neotropical dipsadid genus. Phalotris are known for their specialized venom delivery system and toxic venoms, which can cause life-threatening accidents in humans. We evaluate the venom-gland transcriptome of Phalotris, comparing the following three South American species: P. reticulatus for the Araucaria Pine forests, P. lemniscatus for the Pampa grasslands, and P. mertensi for the Brazilian Cerrado. Our results indicate similar venom profiles, in which they share a high expression level of Kunitz-type inhibitors (KUNZ). On the other hand, comparative analyses revealed substantial differences in the expression levels of C-type lectins (CTL) and snake venom metalloproteinases (SVMP). The diverse set of SVMP and CTL isoforms shows signals of positive selection, and we also identified truncated forms of type III SVMPs, which resemble type II and type I SVMPs of viperids. Additionally, we identified a CNP precursor hosting a proline-rich region containing a BPP motif resembling those commonly detected in viperid venoms with hypotensive activity. Altogether, our results suggest an evolutionary history favoring high expression levels of few KUNZ isoforms in Phalotris venoms, contrasting with a highly diverse set of SVMP and CTL isoforms. Such diversity can be comparable with the venom variability observed in some viperids. Our findings highlight the extreme phenotypic diversity of non-front fanged snakes and the importance to allocate greater effort to study neglected groups of Colubroidea.


Subject(s)
Transcriptome , Animals , Snake Venoms/genetics , Lectins, C-Type/genetics , Brazil , Metalloproteases/genetics
7.
Toxins (Basel) ; 16(4)2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38668601

ABSTRACT

The evolutionary interplay between predator and prey has significantly shaped the development of snake venom, a critical adaptation for subduing prey. This arms race has spurred the diversification of the components of venom and the corresponding emergence of resistance mechanisms in the prey and predators of venomous snakes. Our study investigates the molecular basis of venom resistance in pythons, focusing on electrostatic charge repulsion as a defense against α-neurotoxins binding to the alpha-1 subunit of the postsynaptic nicotinic acetylcholine receptor. Through phylogenetic and bioactivity analyses of orthosteric site sequences from various python species, we explore the prevalence and evolution of amino acid substitutions that confer resistance by electrostatic repulsion, which initially evolved in response to predatory pressure by Naja (cobra) species (which occurs across Africa and Asia). The small African species Python regius retains the two resistance-conferring lysines (positions 189 and 191) of the ancestral Python genus, conferring resistance to sympatric Naja venoms. This differed from the giant African species Python sebae, which has secondarily lost one of these lysines, potentially due to its rapid growth out of the prey size range of sympatric Naja species. In contrast, the two Asian species Python brongersmai (small) and Python bivittatus (giant) share an identical orthosteric site, which exhibits the highest degree of resistance, attributed to three lysine residues in the orthosteric sites. One of these lysines (at orthosteric position 195) evolved in the last common ancestor of these two species, which may reflect an adaptive response to increased predation pressures from the sympatric α-neurotoxic snake-eating genus Ophiophagus (King Cobras) in Asia. All these terrestrial Python species, however, were less neurotoxin-susceptible than pythons in other genera which have evolved under different predatory pressure as: the Asian species Malayopython reticulatus which is arboreal as neonates and juveniles before rapidly reaching sizes as terrestrial adults too large for sympatric Ophiophagus species to consider as prey; and the terrestrial Australian species Aspidites melanocephalus which occupies a niche, devoid of selection pressure from α-neurotoxic predatory snakes. Our findings underline the importance of positive selection in the evolution of venom resistance and suggest a complex evolutionary history involving both conserved traits and secondary evolution. This study enhances our understanding of the molecular adaptations that enable pythons to survive in environments laden with venomous threats and offers insights into the ongoing co-evolution between venomous snakes and their prey.


Subject(s)
Boidae , Static Electricity , Animals , Boidae/genetics , Boidae/physiology , Neurotoxins/genetics , Neurotoxins/chemistry , Phylogeny , Elapid Venoms/genetics , Elapid Venoms/chemistry , Elapid Venoms/toxicity , Receptors, Nicotinic/genetics , Receptors, Nicotinic/metabolism , Predatory Behavior , Snake Venoms/genetics , Snake Venoms/chemistry
8.
Int J Mol Sci ; 25(8)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38673799

ABSTRACT

Over 32,000 individuals succumb to snake envenoming in sub-Saharan Africa (sSA) annually. This results from several factors, including a lack of antivenom products capable of neutralising the venoms of diverse snake species in this region. Most manufacturers produce polyvalent antivenoms targeting 3 to 16 clinically important snake species in sSA. However, specific products are unavailable for many others, especially those with a restricted geographic distribution. While next-generation antivenoms, comprising a cocktail of broadly neutralising antibodies, may offer an effective solution to this problem, given the need for their clinical validation, recombinant antivenoms are far from being available to snakebite victims. One of the strategies that could immediately address this issue involves harnessing the cross-neutralisation potential of existing products. Therefore, we assessed the neutralisation potency of PANAF-Premium antivenom towards the venoms of 14 medically important snakes from 13 countries across sSA for which specific antivenom products are unavailable. Preclinical assays in a murine model of snake envenoming revealed that the venoms of most snake species under investigation were effectively neutralised by this antivenom. Thus, this finding highlights the potential use of PANAF-Premium antivenom in treating bites from diverse snakes across sSA and the utility of harnessing the cross-neutralisation potential of antivenoms.


Subject(s)
Antivenins , Snake Bites , Snake Venoms , Antivenins/pharmacology , Antivenins/immunology , Snake Bites/drug therapy , Snake Bites/immunology , Animals , Africa South of the Sahara , Mice , Snake Venoms/immunology , Snakes , Antibodies, Neutralizing/immunology , Humans , Disease Models, Animal
9.
Toxins (Basel) ; 16(4)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38668590

ABSTRACT

Snakebite envenomation (SBE) is a public health issue in sub-Saharan countries. Antivenom is the only etiological treatment. Excellent tolerance is essential in managing SBE successfully. This study aimed to evaluate tolerance of InoserpTM PAN-AFRICA (IPA). It was conducted on fourteen sites across Cameroon. IPA was administered intravenously and repeated at the same dose every two hours if needed. Early and late tolerance was assessed by the onset of clinical signs within two hours and at a visit two weeks or more after the first IPA administration, respectively. Over 20 months, 447 patients presenting with a snakebite were included. One dose of IPA was administered to 361 patients and repeated at least once in 106 patients. No significant difference was shown between the proportion of adverse events in patients who received IPA (266/361, 73.7%) and those who did not (69/85, 81.2%) (p = 0.95). Adverse reactions, probably attributable to IPA, were identified in four (1.1%) patients, including one severe (angioedema) and three mild. All these reactions resolved favorably. None of the serious adverse events observed in twelve patients were attributed to IPA. No signs of late intolerance were observed in 302 patients. Tolerance appears to be satisfactory. The availability of effective and well-tolerated antivenoms would reduce the duration of treatment and prevent most disabilities and/or deaths.


Subject(s)
Antivenins , Snake Bites , Humans , Snake Bites/drug therapy , Antivenins/therapeutic use , Antivenins/adverse effects , Male , Cameroon , Female , Adult , Middle Aged , Adolescent , Young Adult , Child , Aged , Child, Preschool , Aged, 80 and over , Snake Venoms/antagonists & inhibitors , Snake Venoms/immunology , Animals , Drug Tolerance
10.
Toxins (Basel) ; 16(3)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38535794

ABSTRACT

Angiogenesis, the formation of new blood vessels, plays a critical role in various physiological and pathological conditions. Snake venom disintegrins (SVDs) have been identified as significant regulators of this process. In this review, we explore the dual roles of SVD in angiogenesis, both as antiangiogenic agents by inhibiting integrin binding and interfering with vascular endothelial growth factors and as proangiogenic agents by enhancing integrin binding, stimulating cell migration and proliferation, and inducing neoangiogenesis. Studies in vitro and in animal models have demonstrated these effects and offer significant therapeutic opportunities. The potential applications of SVD in diseases related to angiogenesis, such as cancer, ocular diseases, tissue regeneration, wound healing, and cardiovascular diseases, are also discussed. Overall, SVDs are promising potential therapeutics, and further advances in this field could lead to innovative treatments for diseases related to angiogenesis.


Subject(s)
Angiogenesis , Disintegrins , Animals , Angiogenesis Inhibitors , Snake Venoms , Integrins
11.
Biomolecules ; 14(3)2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38540699

ABSTRACT

Viperid snake venoms induce severe tissue damage, characterized by the direct toxic action of venom components, i.e., phospholipases A2 (PLA2s) and metalloproteinases (SVMPs), concomitantly with the onset of endogenous inflammatory processes, in an intricate scenario of tissue alterations. Understanding the expression of relevant genes in muscle tissue will provide valuable insights into the undergoing pathological and inflammatory processes. In this study, we have used the Nanostring technology to evaluate the patterns of gene expression in mouse skeletal muscle 1 h, 6 h, and 24 h after injection of the venoms of Bothrops asper and Daboia russelii, two medically relevant species in Latin America and Asia, respectively, with somewhat different clinical manifestations. The dose of venoms injected (30 µg) induced local pathological effects and inflammation in muscle tissue. We focused our analysis on genes related to extracellular matrix (ECM) metabolism, immune system, programmed cell death, and autophagy. The results revealed a complex pattern of expression of genes. Regarding ECM metabolism and regulation, up-regulated genes included proteinase inhibitor Serpine 1, thrombospondin 1, collagens 1A1 and 4A1 (at 1 h in the case of B. asper), TIMP1, MMP-3 (at 24 h), and lysil oxidase (LOX). In contrast, collagen chains 5A3 and 5A1 were down-regulated, especially at 6 h. Transforming growth factor ß (TGF-ß) and several genes related to myofibroblast regulation were also up-regulated, which might be related to the development of fibrosis. Several genes related to cytokine and chemokine synthesis and regulation and NFκB signaling were also up-regulated. Our observations show a variable expression of genes associated with programmed cell death and autophagy, thus revealing a hitherto unknown role of autophagy in tissue affected by snake venoms. These results provide clues to understanding the complex pattern of gene expression in tissue affected by viperid snake venoms, which likely impacts the final pathophysiology of damaged tissue in envenomings.


Subject(s)
Crotalid Venoms , Snake Bites , Animals , Mice , Antivenins , Snake Bites/genetics , Snake Venoms , Crotalid Venoms/pharmacology , Muscles , Collagen
12.
Commun Biol ; 7(1): 358, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38519650

ABSTRACT

Snakebite envenoming is an important public health issue responsible for mortality and severe morbidity. Where mortality is mainly caused by venom toxins that induce cardiovascular disturbances, neurotoxicity, and acute kidney injury, morbidity is caused by toxins that directly or indirectly destroy cells and degrade the extracellular matrix. These are referred to as 'tissue-damaging toxins' and have previously been classified in various ways, most of which are based on the tissues being affected (e.g., cardiotoxins, myotoxins). This categorisation, however, is primarily phenomenological and not mechanistic. In this review, we propose an alternative way of classifying cytotoxins based on their mechanistic effects rather than using a description that is organ- or tissue-based. The mechanisms of toxin-induced tissue damage and their clinical implications are discussed. This review contributes to our understanding of fundamental biological processes associated with snakebite envenoming, which may pave the way for a knowledge-based search for novel therapeutic options.


Subject(s)
Snake Bites , Humans , Snake Bites/drug therapy , Snake Venoms/toxicity , Snake Venoms/therapeutic use , Extracellular Matrix , Public Health
13.
Biochem Biophys Res Commun ; 706: 149748, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38460450

ABSTRACT

Angiogenesis is a process that is controlled by a delicate combination of proangiogenic and antiangiogenic molecules and can be disrupted in various illnesses, including cancer. Non-cancerous diseases can also have an abnormal or insufficient vascular growth, inflammation and hypoxia, which exacerbate angiogenesis. These conditions include atherosclerosis, psoriasis, endometriosis, asthma, obesity and AIDS. Based on that, the present work assessed the in vitro and ex vivo antiangiogenic properties stemming from BthMP, a P-I metalloproteinase from Bothrops moojeni snake venom, via the VEGF pathway. BthMP at a concentration of 5 and 40 µg/mL showed no toxicity to endothelial cells (HUVEC) in the MTT assay and was not able to induce necrosis and colony proliferation. Interestingly, BthMP inhibited adhesion, migration and invasion of HUVECs in Matrigel and arrested in vitro angiogenesis by reducing the average number of nodules in toxin-treated cells by 9.6 and 17.32 at 5 and 40 µg/mL, respectively, and the number of tubules by 15.9 at 5 µg/mL and 21.6 at 40 µg/mL in a VEGF-dependent way, an essential proangiogenic property. Furthermore, BthMP inhibited the occurrence of the angiogenic process in an ex vivo aortic ring test by decreasing new vessel formation by 52% at 5 µg/mL and by 66% at 40 µg/mL and by increasing the expression of an antiangiogenic gene, SFLT-1, and decreasing the expression of the proangiogenic genes VEGFA and ANGPT-1. Finally, this toxin reduces the production of nitric oxide, a marker that promotes angiogenesis and VEGF modulation, and decreases the protein expression of VEGFA in the supernatant of the HUVEC culture by about 30 %. These results suggest that BthMP has a promising antiangiogenic property and proves to be a biotechnological mechanism for understanding the antiangiogenic responses induced by snake venom metalloproteinases, which could be applied to a variety of diseases that exhibit an imbalance of angiogenesis mechanisms.


Subject(s)
Bothrops , Endothelial Cells , Venomous Snakes , Animals , Female , Humans , Endothelial Cells/metabolism , Vascular Endothelial Growth Factor A/metabolism , Bothrops/metabolism , Metalloproteases/metabolism , Snake Venoms , Human Umbilical Vein Endothelial Cells/metabolism , Angiogenesis Inhibitors/pharmacology
14.
Toxicon ; 241: 107683, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38460604

ABSTRACT

OBJECTIVE: To establish a preclinical large-animal model of Deinagkistrodon acutus snakebite envenomation and evaluate its feasibility. METHODS: The venom of D. acutus (0 mg/kg, 1 mg/kg, 2 mg/kg, 5 mg/kg, or 10 mg/kg) was injected into the left biceps femoris of 11 male pigs. Then, the circumferences of the limbs were regularly measured, and changes in muscle injury biomarkers, blood parameters, coagulation function, vital organ function and injury biomarkers were regularly detected. At 24 h after venom injection, the animals were euthanized, and the pathological damage to the vital organs mentioned above was evaluated. RESULTS: The two pigs receiving 10 mg/kg and 5 mg/kg snake venom died at 8 h and 12 h after injection, respectively. The remaining pigs were equally divided into 0 mg/kg, 1 mg/kg, and 2 mg/kg snake venom groups, and all of them survived to 24 h after injection. Compared with the pigs receiving 0 mg/kg snake venom, the pigs receiving 1 mg/kg or 2 mg/kg snake venom exhibited significant abnormities, including limb swelling; increased muscle injury biomarker creatine kinase (CK) and coagulation function indicators prothrombin time and D-dimer; and decreased blood routine indicator platelet and coagulation function indicator fibrinogen. Moreover, significant abnormalities in myocardial and cerebral function and injury biomarkers in the heart, brain, liver, kidney and intestine were also observed. In particular, the abnormalities mentioned above were significantly obvious in those pigs receiving 2 mg/kg snake venom. Pathological evaluation revealed that the morphology of muscle, heart, brain, liver, kidney, and intestine in those pigs receiving 0 mg/kg snake venom was normal; however, pathological damage was observed in those pigs receiving 1 mg/kg and 2 mg/kg snake venom. Similarly, the pathological damage was more severe in those pigs receiving 2 mg/kg snake venom. CONCLUSION: The intramuscular injection of 2 mg/kg D. acutus venom seems to be an optimal dose for examining the preclinical efficacy of existing and novel therapeutics for treating D. acutus envenomation in pigs.


Subject(s)
Crotalinae , Snake Bites , Venomous Snakes , Male , Animals , Swine , Snake Bites/drug therapy , Snake Bites/veterinary , Snake Bites/pathology , Snake Venoms/toxicity , Biomarkers
15.
Methods Mol Biol ; 2758: 319-329, 2024.
Article in English | MEDLINE | ID: mdl-38549022

ABSTRACT

Snake venom peptidomes are known to be a large source of molecules with different pharmacological properties. The complexity and variability of snake venoms, the presence of proteinases, and the lack of complete species-specific genome sequences make snake venom peptidome profiling a challenging task that requires especial technical strategies for sample processing and mass spectrometric analysis. Here, we describe a method for assessing the content of snake venom peptides and highlight the importance of sampling procedures, as they substantially influence the peptidomic complexity of snake venoms.


Subject(s)
Peptides , Snake Venoms , Snake Venoms/chemistry , Peptides/chemistry , Mass Spectrometry , Genome , Peptide Hydrolases
16.
PLoS Negl Trop Dis ; 18(3): e0012070, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38527073

ABSTRACT

Snakebite envenomation is a significant global health issue that requires specific antivenom treatments. In Taiwan, available antivenoms target a variety of snakes, but none specifically target Trimeresurus gracilis, an endemic and protected species found in the high mountain areas of Taiwan. This study evaluated the effectiveness of existing antivenoms against T. gracilis venom, focusing on a bivalent antivenom developed for Trimeresurus stejnegeri and Protobothrops mucrosquamatus (TsPmAV), as well as monovalent antivenoms for Deinagkistrodon acutus (DaAV) and Gloydius brevicaudus (GbAV). Our research involved in vivo toxicity testing in mice and in vitro immunobinding experiments using (chaotropic) enzyme-linked immunosorbent assays, comparing venoms from four pit viper species (T. gracilis, T. stejnegeri, P. mucrosquamatus, and D. acutus) with three types of antivenoms. These findings indicate that TsPmAV partially neutralized T. gracilis venom, marginally surpassing the efficacy of DaAV. In vitro tests revealed that GbAV displayed higher binding capacities toward T. gracilis venom than TsPmAV or DaAV. Comparisons of electrophoretic profiles also reveal that T. gracilis venom has fewer snake venom C-type lectin like proteins than D. acutus, and has more P-I snake venom metalloproteases or fewer phospholipase A2 than G. brevicaudus, T. stejnegeri, or P. mucrosquamatus. This study highlights the need for antivenoms that specifically target T. gracilis, as current treatments using TsPmAV show limited effectiveness in neutralizing local effects in patients. These findings provide crucial insights into clinical treatment protocols and contribute to the understanding of the evolutionary adaptation of snake venom, aiding in the development of more effective antivenoms for human health.


Subject(s)
Crotalinae , Snake Bites , Trimeresurus , Venomous Snakes , Humans , Mice , Animals , Antivenins/therapeutic use , Snake Venoms , Snake Bites/drug therapy , Viper Venoms/toxicity
17.
Int J Mol Sci ; 25(5)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38473875

ABSTRACT

The interplay between predator and prey has catalyzed the evolution of venom systems, with predators honing their venoms in response to the evolving resistance of prey. A previous study showed that the African varanid species Varanus exanthematicus has heightened resistance to snake venoms compared to the Australian species V. giganteus, V. komodoensis, and V. mertensi, likely due to increased predation by sympatric venomous snakes on V. exanthematicus. To understand venom resistance among varanid lizards, we analyzed the receptor site targeted by venoms in 27 varanid lizards, including 25 Australian varanids. The results indicate an active evolutionary arms race between Australian varanid lizards and sympatric neurotoxic elapid snakes. Large species preying on venomous snakes exhibit inherited neurotoxin resistance, a trait potentially linked to their predatory habits. Consistent with the 'use it or lose it' aspect of venom resistance, this trait was secondarily reduced in two lineages that had convergently evolved gigantism (V. giganteus and the V. komodoensis/V. varius clade), suggestive of increased predatory success accompanying extreme size and also increased mechanical protection against envenomation due to larger scale osteoderms. Resistance was completely lost in the mangrove monitor V. indicus, consistent with venomous snakes not being common in their arboreal and aquatic niche. Conversely, dwarf varanids demonstrate a secondary loss at the base of the clade, with resistance subsequently re-evolving in the burrowing V. acanthurus/V. storri clade, suggesting an ongoing battle with neurotoxic predators. Intriguingly, within the V. acanthurus/V. storri clade, resistance was lost again in V. kingorum, which is morphologically and ecologically distinct from other members of this clade. Resistance was also re-evolved in V. glebopalma which is terrestrial in contrast to the arboreal/cliff dwelling niches occupied by the other members of its clade (V. glebopalma, V. mitchelli, V. scalaris, V. tristis). This 'Russian doll' pattern of venom resistance underscores the dynamic interaction between dwarf varanids and Australian neurotoxic elapid snakes. Our research, which included testing Acanthophis (death adder) venoms against varanid receptors as models for alpha-neurotoxic interactions, uncovered a fascinating instance of the Red Queen Hypothesis: some death adders have developed more potent toxins specifically targeting resistant varanids, a clear sign of the relentless predator-prey arms race. These results offer new insight into the complex dynamics of venom resistance and highlight the intricate ecological interactions that shape the natural world.


Subject(s)
Lizards , Animals , Lizards/physiology , Australia , Elapidae , Snake Venoms , Venomous Snakes , Russia , Elapid Venoms
18.
J Nat Prod ; 87(4): 820-830, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38449376

ABSTRACT

Snake venoms contain various bradykinin-potentiating peptides (BPPs). First studied for their vasorelaxant properties due to angiotensin converting enzyme (ACE) inhibition, these molecules present a range of binding partners, among them the argininosuccinate synthase (AsS) enzyme. This has renewed interest in their characterization from biological sources and the evaluation of their pharmacological activities. In the present work, the low molecular weight fraction of Bothrops moojeni venom was obtained and BPPs were characterized by mass spectrometry. Eleven BPPs or related peptides were sequenced, and one of them, BPP-Bm01, was new. Interestingly, some oxidized BPPs were detected. The three most abundant peptides were BPP-Bm01, BPP-Bax12, and BPP-13a, and their putative interactions with the AsS enzyme were investigated in silico. A binding cavity for these molecules was predicted, and docking studies allowed their ranking. Three peptides were synthesized and submitted to vasorelaxation assays using rat aortic rings. While all BPPs were active, BPP-Bm01 showed the highest potency in this assay. This work adds further diversity to BPPs from snake venoms and suggests, for the first time, a putative binding pocket for these molecules in the AsS enzyme. This can guide the design of new and more potent AsS activators.


Subject(s)
Aorta , Bothrops , Oligopeptides , Peptides , Venomous Snakes , Animals , Rats , Brazil , Aorta/drug effects , Peptides/pharmacology , Peptides/chemistry , Bradykinin/pharmacology , Male , Crotalid Venoms/pharmacology , Crotalid Venoms/chemistry , Rats, Wistar , Snake Venoms/pharmacology , Vasodilator Agents/pharmacology , Vasodilator Agents/chemistry , Molecular Structure
19.
Drug Discov Today ; 29(5): 103967, 2024 May.
Article in English | MEDLINE | ID: mdl-38555033

ABSTRACT

Single-domain antibodies (sdAbs) hold promise for developing new biopharmaceuticals to treat neglected tropical diseases (NTDs), including snakebites, which are severe and occur frequently. In addition, limitations of conventional snakebite treatments, especially in terms of local action, and the global antivenom crisis incentivize the use of this biotechnological tool to design next-generation snakebite antivenoms. Conventional antivenoms for snakebite treatment are usually composed of immunoglobulin G or F(ab')2 fragments derived from the plasma of immunized animals. sdAbs, the smallest antigen-binding fragments, are derived from the variable domains of camelid heavy-chain antibodies. sdAbs may have some advantages over conventional antivenoms for local toxicity, such as better penetration into tissues due to their small size, and high solubility and affinity for venom antigens due to their unique antigen-binding loops and ability to access cryptic epitopes. We present an overview of current antivenom therapy in the context of sdAb development for toxin neutralization. Furthermore, strategies are presented for identifying snake venom's major toxins as well as for developing antisnake toxin sdAbs by employing proteomic tools for toxin neutralization.


Subject(s)
Antivenins , Proteomics , Single-Domain Antibodies , Snake Bites , Snake Venoms , Antivenins/immunology , Animals , Snake Bites/drug therapy , Snake Bites/immunology , Single-Domain Antibodies/immunology , Single-Domain Antibodies/pharmacology , Humans , Snake Venoms/immunology , Proteomics/methods
20.
Toxicon ; 241: 107662, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38417708

ABSTRACT

Snakebite envenomation is a life-threatening condition and antivenoms are used as the most effective treatment. Venom obtained from snakes in long-term captivity showed some variations in comparison to the venom of the wild snakes. The objective of this study is to compare the venom of the Pseudocerastes persicus under long-term captivity and wild conditions as well as the antivenom obtained from these venoms. We have analyzed venom samples and produced trivalent antivenoms using the venom of long-term captive (LTC) or recently wild-captured (RWC) Pseudocerastes persicus, and RWC Macrovipera lebetina, and Echis carinatus. The HPLC analysis revealed that the RWC snakes' venom had three peaks that were not present in the LTC snake's venom. Further analysis using MALDI-TOF and MS/MS showed that the fraction with a retention time (RT) of 14 min contained a toxin from the Kunitz-type serine protease inhibitor (KUT) class, while the fraction with RT 21 a peptide identified within the snake venom metalloproteinase (SVMP) class. The third peak was identified as a sphingolipid. Interestingly, the in vivo preclinical tests showed no significant differences in the effectiveness of the antivenoms. which could be due to the cross-immunogenicity or cross-reactivity between different toxins in the venom. According to our results, small variations in the venom composition of a species do not lead to a decrease in the efficacy of the polyvalent antivenom.


Subject(s)
Antivenins , Snake Bites , Animals , Antivenins/therapeutic use , Tandem Mass Spectrometry , Snakes , Snake Venoms , Chromatography, High Pressure Liquid , Snake Bites/drug therapy , Snake Bites/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL
...