Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
1.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Article in English | MEDLINE | ID: mdl-33972420

ABSTRACT

Venom is a key adaptive innovation in snakes, and how nonvenom genes were co-opted to become part of the toxin arsenal is a significant evolutionary question. While this process has been investigated through the phylogenetic reconstruction of toxin sequences, evidence provided by the genomic context of toxin genes remains less explored. To investigate the process of toxin recruitment, we sequenced the genome of Bothrops jararaca, a clinically relevant pitviper. In addition to producing a road map with canonical structures of genes encoding 12 toxin families, we inferred most of the ancestral genes for their loci. We found evidence that 1) snake venom metalloproteinases (SVMPs) and phospholipases A2 (PLA2) have expanded in genomic proximity to their nonvenomous ancestors; 2) serine proteinases arose by co-opting a local gene that also gave rise to lizard gilatoxins and then expanded; 3) the bradykinin-potentiating peptides originated from a C-type natriuretic peptide gene backbone; and 4) VEGF-F was co-opted from a PGF-like gene and not from VEGF-A. We evaluated two scenarios for the original recruitment of nontoxin genes for snake venom: 1) in locus ancestral gene duplication and 2) in locus ancestral gene direct co-option. The first explains the origins of two important toxins (SVMP and PLA2), while the second explains the emergence of a greater number of venom components. Overall, our results support the idea of a locally assembled venom arsenal in which the most clinically relevant toxin families expanded through posterior gene duplications, regardless of whether they originated by duplication or gene co-option.


Subject(s)
Bothrops/genetics , Crotalid Venoms/genetics , Evolution, Molecular , Genome/genetics , Snake Venoms/genetics , Amino Acid Sequence , Animals , Base Sequence , Bothrops/classification , Crotalid Venoms/classification , Female , Gene Expression Profiling/methods , Phylogeny , Proteome/metabolism , Proteomics/methods , RNA-Seq/methods , Sequence Analysis, DNA/methods , Snake Venoms/classification
2.
Proc Natl Acad Sci U S A ; 117(20): 10911-10920, 2020 05 19.
Article in English | MEDLINE | ID: mdl-32366667

ABSTRACT

The genetic origins of novelty are a central interest of evolutionary biology. Most new proteins evolve from preexisting proteins but the evolutionary path from ancestral gene to novel protein is challenging to trace, and therefore the requirements for and order of coding sequence changes, expression changes, or gene duplication are not clear. Snake venoms are important novel traits that are comprised of toxins derived from several distinct protein families, but the genomic and evolutionary origins of most venom components are not understood. Here, we have traced the origin and diversification of one prominent family, the snake venom metalloproteinases (SVMPs) that play key roles in subduing prey in many vipers. Genomic analyses of several rattlesnake (Crotalus) species revealed the SVMP family massively expanded from a single, deeply conserved adam28 disintegrin and metalloproteinase gene, to as many as 31 tandem genes in the Western Diamondback rattlesnake (Crotalus atrox) through a number of single gene and multigene duplication events. Furthermore, we identified a series of stepwise intragenic deletions that occurred at different times in the course of gene family expansion and gave rise to the three major classes of secreted SVMP toxins by sequential removal of a membrane-tethering domain, the cysteine-rich domain, and a disintegrin domain, respectively. Finally, we show that gene deletion has further shaped the SVMP complex within rattlesnakes, creating both fusion genes and substantially reduced gene complexes. These results indicate that gene duplication and intragenic deletion played essential roles in the origin and diversification of these novel biochemical weapons.


Subject(s)
Biological Evolution , Crotalus/metabolism , Snake Venoms/genetics , Snake Venoms/metabolism , Animals , Crotalid Venoms/genetics , Crotalid Venoms/metabolism , Evolution, Molecular , Female , Gene Duplication , Gene Fusion , Metalloproteases/genetics , Metalloproteases/metabolism , Snake Venoms/classification , Toxins, Biological/metabolism
3.
Biotechniques ; 65(6): 339-345, 2018 12.
Article in English | MEDLINE | ID: mdl-30477329

ABSTRACT

DNA barcoding is a simple technique used to develop a large-scale system of classification that is broadly applicable across a wide variety of taxa. DNA-based analysis of snake venoms can provide a system of classification independent of currently accepted taxonomic relationships by generating DNA barcodes specific to each venom sample. DNA purification from dried snake venoms has previously required large amounts of starting material, has resulted in low yields and inconsistent amplification, and was possible with front-fanged snakes only. Here, we present a modified DNA extraction protocol applied to venoms of both front- and rear-fanged snakes that requires significantly less starting material (1 mg) and yields sufficient amounts of DNA for successful PCR amplification of regions commonly used for DNA barcoding. [Formula: see text].


Subject(s)
Alethinophidia/genetics , DNA Barcoding, Taxonomic/methods , DNA/genetics , DNA/isolation & purification , Snake Venoms/genetics , Alethinophidia/classification , Animals , Cell Nucleus/genetics , Mitochondria/genetics , Phylogeny , Snake Venoms/classification
4.
PLoS Negl Trop Dis ; 10(1): e0004325, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26730709

ABSTRACT

BACKGROUND: Snake envenoming is a significant public health problem in underdeveloped and developing countries. In sub-Saharan Africa, it is estimated that 90,000-400,000 envenomations occur each year, resulting in 3,500-32,000 deaths. Envenomings are caused by snakes from the Viperidae (Bitis spp. and Echis spp.) and Elapidae (Naja spp. and Dendroaspis spp.) families. The African continent has been suffering from a severe antivenom crisis and current antivenom production is only sufficient to treat 25% of snakebite cases. Our aim is to develop high-quality antivenoms against the main snake species found in Mozambique. METHODS: Adult horses primed with the indicated venoms were divided into 5 groups (B. arietans; B. nasicornis + B. rhinoceros; N. melanoleuca; N. mossambica; N. annulifera + D. polylepis + D. angusticeps) and reimmunized two times for antivenom production. Blood was collected, and plasma was separated and subjected to antibody purification using caprylic acid. Plasmas and antivenoms were subject to titration, affinity determination, cross-recognition assays and in vivo venom lethality neutralization. A commercial anti-Crotalic antivenom was used for comparison. RESULTS: The purified antivenoms exhibited high titers against B. arietans, B. nasicornis and B. rhinoceros (5.18 x 106, 3.60 x 106 and 3.50 x 106 U-E/mL, respectively) and N. melanoleuca, N. mossambica and N. annulifera (7.41 x 106, 3.07 x 106 and 2.60 x 106 U-E/mL, respectively), but lower titers against the D. angusticeps and D. polylepis (1.87 x 106 and 1.67 x 106 U-E/mL). All the groups, except anti-N. melanoleuca, showed significant differences from the anti-Crotalic antivenom (7.55 x 106 U-E/mL). The affinity index of all the groups was high, ranging from 31% to 45%. Cross-recognition assays showed the recognition of proteins with similar molecular weight in the venoms and may indicate the possibility of paraspecific neutralization. The three monospecific antivenoms were able to provide in vivo protection. CONCLUSION: Our results indicate that the anti-Bitis and anti-Naja antivenoms developed would be useful for treating snakebite envenomations in Mozambique, although their effectiveness should to be increased. We propose instead the development of monospecific antivenoms, which would serve as the basis for two polyvalent antivenoms, the anti-Bitis and anti-Elapidae. Polyvalent antivenoms represent an increase in treatment quality, as they have a wider range of application and are easier to distribute and administer to snake envenoming victims.


Subject(s)
Antivenins/immunology , Horses/immunology , Immunoglobulin G/immunology , Snake Venoms/immunology , Snakes/classification , Animals , Antivenins/classification , Mozambique , Snake Venoms/classification
5.
Mol Immunol ; 70: 24-33, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26690707

ABSTRACT

In this report, we present a study on the antigenic cross-reactivity of various venoms from the most dangerous Egyptian snakes and scorpions belonging to families Elapidae, Viperidae and Buthidae. The study was carried out with special reference to bonding properties between venoms and antivenoms and their involvement in the formation of specific and/or cross-reactive interactions. The homologous polyclonal antivenoms showed high reactivity to the respective venoms and cross-reacted with varying degrees to other non-homologous venoms. Assorting the antivenoms according to their susceptibility to dissociation by different concentrations of NH4SCN revealed that most of the antibodies involved in homologous venom-antivenom interactions were highly avid; building up strong venom-antivenom bonding. Whereas cross-reactions due to heterologous interactions were mediated by less avid antibodies that ultimately led to the formation of venom-antivenom bonding of different power strengths depending on the antigenic similarity and hence on the phylogenetic relationship of the tested venom. A new parameter evaluating high and low avid interactions, designated as H/L value, for each antigen-antibody bonding was initiated and used as an indicator of bonding strength between different venom-antivenom partners. H/L values were many folds higher than 1 for homologous and closely related venoms, 1 or around 1 for cross-reactive venoms, whereas venoms from unrelated remote sources recorded H/L values far less than 1. Using well defined polyclonal antivenoms, H/L value was successfully used to assign eight unknown venoms to their animal families and the results were confirmed by species-specific ELISA and immunoblotting assays.


Subject(s)
Antivenins/immunology , Scorpion Venoms/classification , Snake Venoms/classification , Animals , Antibody Affinity , Cross Reactions , Enzyme-Linked Immunosorbent Assay , Immunoblotting , Scorpion Venoms/immunology , Snake Venoms/immunology , Species Specificity , Venoms
6.
Toxicon ; 93: 1-10, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25448392

ABSTRACT

Snake venoms are cocktails of protein toxins that play important roles in capture and digestion of prey. Significant qualitative and quantitative variation in snake venom composition has been observed among and within species. Understanding these variations in protein components is instrumental in interpreting clinical symptoms during human envenomation and in searching for novel venom proteins with potential therapeutic applications. In the last decade, transcriptomic analyses of venom glands have helped in understanding the composition of various snake venoms in great detail. Here we review transcriptomic analysis as a powerful tool for understanding venom profile, variation and evolution.


Subject(s)
Evolution, Molecular , Gene Expression Profiling/methods , Proteins/genetics , Proteins/metabolism , Snake Venoms/chemistry , Snakes/genetics , Animals , Proteins/analysis , Snake Venoms/classification , Species Specificity
7.
J Proteomics ; 105: 323-39, 2014 Jun 13.
Article in English | MEDLINE | ID: mdl-24576642

ABSTRACT

In spite of its small territory of ~50,000km(2), Costa Rica harbors a remarkably rich biodiversity. Its herpetofauna includes 138 species of snakes, of which sixteen pit vipers (family Viperidae, subfamily Crotalinae), five coral snakes (family Elapidae, subfamily Elapinae), and one sea snake (Family Elapidae, subfamily Hydrophiinae) pose potential hazards to human and animal health. In recent years, knowledge on the composition of snake venoms has expanded dramatically thanks to the development of increasingly fast and sensitive analytical techniques in mass spectrometry and separation science applied to protein characterization. Among several analytical strategies to determine the overall protein/peptide composition of snake venoms, the methodology known as 'snake venomics' has proven particularly well suited and informative, by providing not only a catalog of protein types/families present in a venom, but also a semi-quantitative estimation of their relative abundances. Through a collaborative research initiative between Instituto de Biomedicina de Valencia (IBV) and Instituto Clodomiro Picado (ICP), this strategy has been applied to the study of venoms of Costa Rican snakes, aiming to obtain a deeper knowledge on their composition, geographic and ontogenic variations, relationships to taxonomy, correlation with toxic activities, and discovery of novel components. The proteomic profiles of venoms from sixteen out of the 22 species within the Viperidae and Elapidae families found in Costa Rica have been reported so far, and an integrative view of these studies is hereby presented. In line with other venomic projects by research groups focusing on a wide variety of snakes around the world, these studies contribute to a deeper understanding of the biochemical basis for the diverse toxic profiles evolved by venomous snakes. In addition, these studies provide opportunities to identify novel molecules of potential pharmacological interest. Furthermore, the establishment of venom proteomic profiles offers a fundamental platform to assess the detailed immunorecognition of individual proteins/peptides by therapeutic or experimental antivenoms, an evolving methodology for which the term 'antivenomics' was coined (as described in an accompanying paper in this special issue). BIOLOGICAL SIGNIFICANCE: Venoms represent an adaptive trait and an example of both divergent and convergent evolution. A deep understanding of the composition of venoms and of the principles governing the evolution of venomous systems is of applied importance for exploring the enormous potential of venoms as sources of chemical and pharmacological novelty but also to fight the consequences of snakebite envenomings. Key to this is the identification of evolutionary and ecological trends at different taxonomical levels. However, the evolution of venomous species and their venoms do not always follow the same course, and the identification of structural and functional convergences and divergences among venoms is often unpredictable by a phylogenetic hypothesis. Snake venomics is a proteomic-centered strategy to deconstruct the complex molecular phenotypes the venom proteomes. The proteomic profiles of venoms from sixteen out of the 22 venomous species within the Viperidae and Elapidae families found in Costa Rica have been completed so far. An integrative view of their venom composition, including the identification of geographic and ontogenic variations, is hereby presented. Venom proteomic profiles offer a fundamental platform to assess the detailed immunorecognition of individual venom components by therapeutic or experimental antivenoms. This aspect is reviewed in the companion paper. This article is part of a Special Issue entitled: Proteomics of non-model organisms.


Subject(s)
Proteome/chemistry , Proteome/classification , Proteomics/methods , Snake Venoms/chemistry , Snake Venoms/classification , Snakes , Animals , Costa Rica , Humans , Mass Spectrometry , Proteome/toxicity , Snake Venoms/toxicity
8.
Biochimie ; 95(10): 1923-32, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23851011

ABSTRACT

Snake venoms contain a variety of protein and peptide toxins, and the three-finger toxins (3FTxs) are among the best characterized family of venom proteins. The compact nature and highly conserved molecular fold of 3FTxs, together with their abundance in many venoms, has contributed to their utility in structure-function studies. Although many target the nicotinic acetylcholine receptor of vertebrate skeletal muscle, often binding with nanomolar Kds, several non-conventional 3FTxs show pronounced taxon-specific neurotoxic effects. Here we describe the purification and characterization of fulgimotoxin, a monomeric 3FTx from the venom of Oxybelis fulgidus, a neotropical rear-fanged snake. Fulgimotoxin retains the canonical 5 disulfides of the non-conventional 3FTxs and is highly neurotoxic to lizards; however, mice are unaffected, demonstrating that this toxin is taxon-specific in its effects. Analysis of structural features of fulgimotoxin and other colubrid venom 3FTxs indicate the presence of a "colubrid toxin motif" (CYTLY) and a second conserved segment (WAVK) found in Boiga and Oxybelis taxon-specific 3FTxs, both in loop II. Because specific residues in loop II conventional α-neurotoxic 3FTxs are intimately associated with receptor binding, we hypothesize that this loop, with its highly conserved substitutions, confers taxon-specific neurotoxicity. These findings underscore the importance of rear-fanged snake venoms for understanding the evolution of toxin molecules and demonstrate that even among well-characterized toxin families, novel structural and functional motifs may be found.


Subject(s)
Colubridae/physiology , Neurotoxins/chemistry , Snake Venoms/chemistry , Amino Acid Motifs , Animals , Colubridae/classification , Conserved Sequence , Injections, Intraperitoneal , Lethal Dose 50 , Lizards/physiology , Mice , Models, Molecular , Molecular Sequence Data , Neurotoxins/classification , Neurotoxins/isolation & purification , Neurotoxins/toxicity , Phylogeny , Protein Binding , Protein Structure, Secondary , Protein Structure, Tertiary , Sequence Analysis, DNA , Snake Venoms/classification , Snake Venoms/isolation & purification , Snake Venoms/toxicity , Species Specificity
9.
Mol Cell Proteomics ; 12(3): 651-63, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23242553

ABSTRACT

Snake venom metalloproteases (SVMP) are composed of five domains: signal peptide, propeptide, metalloprotease, disintegrin, and cysteine-rich. Secreted toxins are typically combinatorial variations of the latter three domains. The SVMP-encoding genes of Psammophis mossambicus venom are unique in containing only the signal and propeptide domains. We show that the Psammophis SVMP propeptide evolves rapidly and is subject to a high degree of positive selection. Unlike Psammophis, some species of Echis express both the typical multidomain and the unusual monodomain (propeptide only) SVMP, with the result that a lower level of variation is exerted upon the latter. We showed that most mutations in the multidomain Echis SVMP occurred in the protease domain responsible for proteolytic and hemorrhagic activities. The cysteine-rich and disintegrin-like domains, which are putatively responsible for making the P-III SVMPs more potent than the P-I and P-II forms, accumulate the remaining variation. Thus, the binding sites on the molecule's surface are evolving rapidly whereas the core remains relatively conserved. Bioassays conducted on two post-translationally cleaved novel proline-rich peptides from the P. mossambicus propeptide domain showed them to have been neofunctionalized for specific inhibition of mammalian a7 neuronal nicotinic acetylcholine receptors. We show that the proline rich postsynaptic specific neurotoxic peptides from Azemiops feae are the result of convergent evolution within the precursor region of the C-type natriuretic peptide instead of the SVMP. The results of this study reinforce the value of studying obscure venoms for biodiscovery of novel investigational ligands.


Subject(s)
Evolution, Molecular , Metalloproteases/genetics , Protein Precursors/genetics , Snake Venoms/genetics , Amino Acid Sequence , Animals , Binding Sites/genetics , Cell Line, Tumor , Dose-Response Relationship, Drug , Humans , Metalloproteases/classification , Metalloproteases/metabolism , Models, Molecular , Molecular Sequence Data , Mutation , Nicotinic Antagonists/pharmacology , Peptides/pharmacology , Phylogeny , Protein Precursors/chemistry , Protein Precursors/metabolism , Protein Structure, Tertiary , Receptors, Nicotinic/metabolism , Selection, Genetic , Sequence Homology, Amino Acid , Snake Venoms/classification , Snake Venoms/enzymology , Species Specificity , alpha7 Nicotinic Acetylcholine Receptor
10.
Toxicon ; 59(7-8): 696-708, 2012 Jun 01.
Article in English | MEDLINE | ID: mdl-22465490

ABSTRACT

Venom proteins are added to reptile venoms through duplication of a body protein gene, with the duplicate tissue-specifically expressed in the venom gland. Molecular scaffolds are recruited from a wide range of tissues and with a similar level of diversity of ancestral activity. Transcriptome studies have proven an effective and efficient tool for the discovery of novel toxin scaffolds. In this study, we applied venom gland transcriptomics to a wide taxonomical diversity of advanced snakes and recovered transcripts encoding three novel protein scaffold types lacking sequence homology to any previously characterised snake toxin type: lipocalin, phospholipase A2 (type IIE) and vitelline membrane outer layer protein. In addition, the first snake maxillary venom gland isoforms were sequenced of ribonuclease, which was only recently sequenced from lizard mandibular venom glands. Further, novel isoforms were also recovered for the only recently characterised veficolin toxin class also shared between lizard and snake venoms. The additional complexity of snake venoms has important implications not only for understanding their molecular evolution, but also reinforces the tremendous importance of venoms as a diverse bio-resource.


Subject(s)
Snake Venoms/chemistry , Snake Venoms/classification , Snake Venoms/genetics , Snakes/metabolism , Transcriptome , Amino Acid Sequence , Animals , Evolution, Molecular , Gene Library , Lipocalins/analysis , Lipocalins/chemistry , Lipocalins/genetics , Lizards/metabolism , Molecular Sequence Data , Phospholipases A2/analysis , Phospholipases A2/chemistry , Phospholipases A2/genetics , Phylogeny , Protein Conformation , Ribonucleases/metabolism , Salivary Glands/metabolism
11.
J Proteome Res ; 11(2): 1152-62, 2012 Feb 03.
Article in English | MEDLINE | ID: mdl-22168127

ABSTRACT

Rear-fanged and aglyphous snakes are usually considered not dangerous to humans because of their limited capacity of injecting venom. Therefore, only a few studies have been dedicated to characterizing the venom of the largest parcel of snake fauna. Here, we investigated the venom proteome of the rear-fanged snake Thamnodynastes strigatus , in combination with a transcriptomic evaluation of the venom gland. About 60% of all transcripts code for putative venom components. A striking finding is that the most abundant type of transcript (∼47%) and also the major protein type in the venom correspond to a new kind of matrix metalloproteinase (MMP) that is unrelated to the classical snake venom metalloproteinases found in all snake families. These enzymes were recently suggested as possible venom components, and we show here that they are proteolytically active and probably recruited to venom from a MMP-9 ancestor. Other unusual proteins were suggested to be venom components: a protein related to lactadherin and an EGF repeat-containing transcript. Despite these unusual molecules, seven toxin classes commonly found in typical venomous snakes are also present in the venom. These results support the evidence that the arsenals of these snakes are very diverse and harbor new types of biologically important molecules.


Subject(s)
Colubridae/metabolism , Matrix Metalloproteinases/chemistry , Proteome/chemistry , Proteomics/methods , Snake Venoms/chemistry , Amino Acid Sequence , Animals , Matrix Metalloproteinases/classification , Molecular Sequence Data , Phylogeny , Protein Binding , Proteome/classification , Sequence Alignment , Snake Venoms/antagonists & inhibitors , Snake Venoms/classification , Snake Venoms/metabolism , Transcriptome
12.
Toxicon ; 59(1): 124-131, 2012.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP, SESSP-IBACERVO | ID: biblio-1068288

ABSTRACT

Snakebite envenomation is considered a highly relevant public health hazard in South America, having an impact in terms of mortality and morbidity. In Brazil, Bothrops (sensu latu) poisoning is responsible for 90% of the snakebites and in patients treated at the Vital Brazil Hospital (Butantan Institute) this index reaches 97.5%. The objective of the present study was to analyze more specifically the ability of the antibothropic antivenom, produced by the Butantan Institute, São Paulo, Brazil, to neutralize metallo-and serine peptidases, known as the major toxins present in Bothrops jararaca venom. A set of Fret peptides (Free Ressonance Energy Transfer) was studied using the BjV (B. jararaca venom) and site-directed inhibitors PMSF, EDTA and 1,10-phenanthroline. Two substrates were reached to be used as specific tools for studies with metallo peptidases, Abz-FASSAQ-EDDnp, and the serine peptidases, Abz-RPPGFSPFRQ-EDDnp. In disagreement with the literature, the use of both substrates and the antibothropic serum showed a weak neutralization of the serine peptidases present in this venom and a strong neutralization of the metallo peptidases. In order to investigate possible mechanisms of action that have not yet been described for the serine peptidases from the BjV, the present study shows for the first time a new tyrosine-specific chymotrypsin-like and angiotensin-degrading serine peptidase activity, that was partially blocked by the antibothropic serum. In conclusion, the antivenom presented a good neutralization of metallo peptidases but not of serine peptidases, indicating that further studies about serine peptidases immunogenicity are necessary to improve the antibothropic serum.


Subject(s)
Male , Female , Humans , Antivenins/analysis , Antivenins/classification , Antivenins/adverse effects , Antivenins/therapeutic use , Bothrops , Snake Bites , Snake Venoms/classification
13.
Vet Clin Pathol ; 40(3): 282-92, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21827516

ABSTRACT

Envenomation of domestic animals by snakes occurs frequently in certain geographic areas. However, reports describing clinical signs, clinicopathologic abnormalities, therapeutic approaches, and outcomes are sparse. This review summarizes various snake families, venom types associated with harmful snakes, and the significant hematologic, hemostatic, and biochemical abnormalities associated with envenomation. Hematologic abnormalities include RBC membrane abnormalities, hemolysis, hemoconcentration, leukogram changes, and platelet abnormalities, specifically thrombocytopenia. Coagulopathies associated with snake envenomation are well described in human medicine, and many studies have demonstrated properties of venoms that lead to both procoagulation and anticoagulation. As expected, similar abnormalities have been described in domestic animals. Biochemical abnormalities are associated with the effects of venom on tissues such as liver, skeletal and cardiac muscle, vascular endothelium, and kidney as well as effects on protein components and cholesterol. This comprehensive review of clinicopathologic abnormalities associated with envenomation and their relationships to characterized venom constituents should be useful both in the diagnosis and management of envenomation and should serve as a foundation for future research in this field.


Subject(s)
Animals, Domestic , Snake Bites/veterinary , Snake Venoms/classification , Snakes/classification , Animals , Blood Coagulation/drug effects , Blood Platelets/pathology , Erythrocytes/pathology , Hemolysis/drug effects , Hemostasis/drug effects , Leukocytes/pathology , Snake Bites/blood , Snake Bites/pathology , Snake Venoms/adverse effects , Thrombocytopenia/blood , Thrombocytopenia/veterinary
14.
Inflamm Allergy Drug Targets ; 10(5): 343-57, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21824082

ABSTRACT

This review summarizes the key contributions to our knowledge regarding the immune response induced by snake venom toxins, focusing particularly on the production of antibodies and their venom-neutralizing effects. We cover the past and present state of the art of anti-snake venom production, followed by an overview of the venomous snakes and their venoms. The toxic properties of relevant snake venom toxins are approached in some details, with particular emphasis on the molecular domains responsible for binding to cells or plasma components in victims. The interactions of these domains are also reviewed, particularly the putatively relevant epitopes, along with the immune system and the resulting antibodies. We also review trials aimed at reducing the quantities of non-relevant antibodies in the antivenoms by substituting whole venoms with purified toxins to immunize animals, or the immunogenicity of the heterologous antivenom antibodies by humanizing their molecules.


Subject(s)
Antibodies, Blocking/therapeutic use , Antivenins/therapeutic use , Snake Bites/therapy , Snake Venoms/immunology , Toxins, Biological/immunology , Animals , Antibodies, Blocking/metabolism , Antibodies, Monoclonal, Humanized/genetics , Antibodies, Monoclonal, Humanized/metabolism , Antivenins/metabolism , Clinical Trials as Topic , Epitopes/metabolism , Humans , Immunity, Humoral , Protein Binding , Protein Structure, Tertiary/genetics , Snake Bites/immunology , Snake Venoms/classification , Snake Venoms/metabolism , Snakes , Toxins, Biological/classification , Toxins, Biological/metabolism
16.
Mol Biol Evol ; 28(3): 1157-72, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21062752

ABSTRACT

The proliferation of gene data from multiple loci of large multigene families has been greatly facilitated by considerable recent advances in sequence generation. The evolution of such gene families, which often undergo complex histories and different rates of change, combined with increases in sequence data, pose complex problems for traditional phylogenetic analyses, and in particular, those that aim to successfully recover species relationships from gene trees. Here, we implement gene tree parsimony analyses on multicopy gene family data sets of snake venom proteins for two separate groups of taxa, incorporating Bayesian posterior distributions as a rigorous strategy to account for the uncertainty present in gene trees. Gene tree parsimony largely failed to infer species trees congruent with each other or with species phylogenies derived from mitochondrial and single-copy nuclear sequences. Analysis of four toxin gene families from a large expressed sequence tag data set from the viper genus Echis failed to produce a consistent topology, and reanalysis of a previously published gene tree parsimony data set, from the family Elapidae, suggested that species tree topologies were predominantly unsupported. We suggest that gene tree parsimony failure in the family Elapidae is likely the result of unequal and/or incomplete sampling of paralogous genes and demonstrate that multiple parallel gene losses are likely responsible for the significant species tree conflict observed in the genus Echis. These results highlight the potential for gene tree parsimony analyses to be undermined by rapidly evolving multilocus gene families under strong natural selection.


Subject(s)
Elapidae/genetics , Gene Deletion , Multilocus Sequence Typing/classification , Snake Venoms/classification , Snake Venoms/genetics , Viperidae/genetics , Animals , Bayes Theorem , DNA, Mitochondrial/classification , DNA, Mitochondrial/genetics , Elapidae/metabolism , Evolution, Molecular , Expressed Sequence Tags , Gene Dosage , Gene Duplication , Models, Genetic , Phylogeny , Selection, Genetic/genetics , Sequence Analysis, DNA/classification , Snake Venoms/metabolism , Species Specificity , Viperidae/metabolism
17.
Journal of Threatened Taxa ; 2(10): 1177-1184, Sept.2010.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP, SESSP-IBACERVO | ID: biblio-1064354

ABSTRACT

Bothrops insularis is a threatened snake endemic to Queimada Grande Island, southern coast of São Paulo, Brazil, and the occurrence of sexual abnormalities in females (females with functional ovaries and rudimentary hemipenis) has been reported in this population. To date there are few data regarding developmental features of this particular species. The aim of this study was to follow some developmental features in specimens maintained in captivity for seven years in the Herpetology Laboratory at Instituto Butantan, São Paulo, Brazil. We verified a pronounced sexual dimorphism in development and venom production in the specimens analyzed. In this regard, females showed greater length, mass and amount of venom in comparison to males. Our results suggest a possible niche partitioning between the sexes that reduces (or minimizes) intraspecific disharmonic interactions (eg. competition) on their small living area (Queimada Grande Island). Taken together, our data suggest that males and females probably are divergent in their diets, with females feeding preferentially on endothermic prey (such as migratory birds), while males maintain the juvenile diet (with the major items being ectothermic prey).


Subject(s)
Animals , Sex Characteristics , Snake Bites/complications , Mutation/genetics , Snake Venoms/classification , Snake Venoms , Snake Venoms/toxicity
18.
African Journal of Biotechnology ; 9(16): 2446-2455, Apr 19, 2010.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP, SESSP-IBACERVO | ID: biblio-1059391

ABSTRACT

A method to obtain polyvalent anti-Bitis and polyvalent-anti-Naja antibodies was developed by immunizing horses with B. arietans, B. nasicornis, B. rhinoceros, N. melanoleuca and N. mossambicacrude venoms. Antibody production was followed by the ELISA method during the immunization procedure. Once the desired anti-venom antibody titers were attained, horses were bled and theimmunoglobulins were separated from the sera by (NH4)2SO4 precipitation, cleaved with pepsin and filtered through a 30 kDa ultrafiltration membrane. F(ab´)2 fragments were further purified by Q-Fast Flow chromatography, concentrated by molecular ultrafiltration and sterilized by filtration through 0.22 m membranes. The resulting F(ab´)2 preparations were rich in intact L and in pieces of H IgG(T) chains, as demonstrated by electrophoresis and Western blot and exhibited high antibody titers, as assayed bythe ELISA method. In addition, the preparations possess a significant capacity to neutralize the lethalityof venoms, as estimated by ED50 determination in mouse assay and are free of toxic substances, pyrogen and bacterial or fungal contaminations.


Subject(s)
Animals , Mice , Antivenins/immunology , Snake Bites , Snake Venoms/classification , Immunotherapy
19.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP, SESSP-IBACERVO | ID: biblio-1065511

ABSTRACT

Micrurus snake bites can cause death by muscle paralysis and respiratory arrest, few hours after envenomation.The specific treatment for coral snake envenomation is the intravenous application of heterologous antivenom and, inBrazil, it is produced by horse immunization with a mixture of M. corallinus and M. frontalis venoms, snakes that inhabit theSouth and Southeastern regions of the country. However, this antivenom might be inefficient, considering the existence ofintra- and inter-specific variations in the composition of the venoms. Therefore, the aim of the present study was toinvestigate the toxic properties of venoms from nine species of Micrurus: eight present in different geographic regions ofBrazil (M. frontalis, M. corallinus, M. hemprichii, M. spixii, M. altirostris, M. surinamensis, M. ibiboboca, M. lemniscatus) and one(M. fulvius) with large distribution in Southeastern United States and Mexico. This study also analyzed the antigenic crossreactivityand the neutralizing potential of the Brazilian coral snake antivenom against these Micrurus venoms


Subject(s)
Animals , Antidotes/administration & dosage , Antidotes/classification , Elapidae/classification , Elapid Venoms/toxicity , Snake Venoms/antagonists & inhibitors , Snake Venoms/classification , Snake Venoms/adverse effects , Snake Venoms/poisoning , Snake Venoms/toxicity , Snake Venoms/therapeutic use
20.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP, SESSP-IBACERVO | ID: biblio-1060827

ABSTRACT

Patagonfibrase is a 57.5-kDa hemorrhagic metalloproteinase isolated from the venom of Philodryas patagoniensis (Patagonia Green Racer), a South American rear-fanged snake. Herein we demonstrate that patagonfibrase undergoes autolysis at its pH optimum (7.5) and at 37 ¡ÆC, primarily producing a ¡­ 32.6 kDa fragment composed of disintegrin-like and cysteine-rich domains, as identified by mass spectrometry and N-terminal sequencing. The autolysis site for production of this fragment is similar to that observed for metalloproteinases from front-fanged Viperidae snake venoms. In the presence of Ca2+, patagonfibrase was only partially autolysed, giving rise mainly to one fragment of ¡­ 52.2 kDa. In addition, calcium markedly enhanced the azocaseinolytic activity of patagonfibrase. Our findings contribute to the understanding of the structural and mechanistic bases of this family of metalloenzymes that are widely distributed among snake venoms, demonstrating that important post-translational modifications such as proteolysis can also contribute to the diversity and complexity of proteins found in rear-fanged snake venoms.


Subject(s)
Animals , Colubridae/classification , Snakes/classification , Snake Venoms/classification , Snake Venoms/analysis , Snake Venoms/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...