Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.408
Filter
1.
Clin Nutr ESPEN ; 61: 88-93, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38777478

ABSTRACT

BACKGROUND: Patients with an ileostomy often have impaired quality of life, sodium depletion, secondary hyperaldosteronism, and other organ-specific pathologies. The osmolality of oral supplements influences ileostomy output and increases sodium loss. We hypothesized the existence of an osmolality range in which fluid absorption and secondary natriuresis are optimal. METHODS: This was a single-center, quasi-randomized crossover intervention study, including patients with an ileostomy and no home parenteral support. After an 8-h fasting period, each patient ingested 500 mL of 3-18 different oral supplements and a standardized meal during the various intervention periods, followed by a 6-h collection of ileostomy and urine outputs. The primary outcome was 6-h ileostomy output. RESULTS: A total of 14 ileostomy patients with a median age of 65 years (interquartile range 38-70 years) were included. The association between osmolalities (range 5-1352 mOsm/kg) and ileostomy output forecasted an S-curve. A linear association between osmolality of oral supplements (range 290-600 mOsm/kg) and ileostomy output was identified and assessed with a mixed-effects model. Ileostomy output increased by 57 g/6 h (95% confidence interval (CI) 21-94) when the oral supplement osmolality increased by 100 mOsm/kg (p = 0.005). CONCLUSION: Osmolality in oral supplements correlated with ileostomy output. Our results indicate that patients with an ileostomy may benefit from increased ingestion of oral supplements with osmolalities between 100 and 290 mOsm/kg. We define this range as the Goldilocks zone, equivalent to optimal fluid and electrolyte absorption.


Subject(s)
Cross-Over Studies , Dietary Supplements , Ileostomy , Humans , Middle Aged , Aged , Male , Female , Adult , Osmolar Concentration , Administration, Oral , Sodium/urine
2.
Physiol Rep ; 12(9): e16033, 2024 May.
Article in English | MEDLINE | ID: mdl-38740564

ABSTRACT

The pathophysiology behind sodium retention in heart failure with preserved ejection fraction (HFpEF) remains poorly understood. We hypothesized that patients with HFpEF have impaired natriuresis and diuresis in response to volume expansion and diuretic challenge, which is associated with renal hypo-responsiveness to endogenous natriuretic peptides. Nine HFpEF patients and five controls received saline infusion (0.25 mL/kg/min for 60 min) followed by intravenous furosemide (20 mg or home dose) 2 h after the infusion. Blood and urine samples were collected at baseline, 2 h after saline infusion, and 2 h after furosemide administration; urinary volumes were recorded. The urinary cyclic guanosine monophosphate (ucGMP)/plasma B-type NP (BNP) ratio was calculated as a measure of renal response to endogenous BNP. Wilcoxon rank-sum test was used to compare the groups. Compared to controls, HFpEF patients had reduced urine output (2480 vs.3541 mL; p = 0.028), lower urinary sodium excretion over 2 h after saline infusion (the percentage of infused sodium excreted 12% vs. 47%; p = 0.003), and a lower baseline ucGMP/plasma BNP ratio (0.7 vs. 7.3 (pmol/mL)/(mg/dL)/(pg/mL); p = 0.014). Patients with HFpEF had impaired natriuretic response to intravenous saline and furosemide administration and lower baseline ucGMP/plasma BNP ratios indicating renal hypo-responsiveness to NPs.


Subject(s)
Furosemide , Heart Failure , Kidney , Natriuretic Peptide, Brain , Sodium , Stroke Volume , Humans , Heart Failure/physiopathology , Heart Failure/metabolism , Male , Female , Aged , Pilot Projects , Furosemide/pharmacology , Furosemide/administration & dosage , Sodium/metabolism , Sodium/urine , Natriuretic Peptide, Brain/blood , Natriuretic Peptide, Brain/metabolism , Kidney/metabolism , Kidney/physiopathology , Kidney/drug effects , Middle Aged , Natriuresis/drug effects , Diuretics/pharmacology , Diuretics/administration & dosage , Cyclic GMP/metabolism , Cyclic GMP/urine , Aged, 80 and over
3.
J Am Heart Assoc ; 13(10): e034310, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38726910

ABSTRACT

BACKGROUND: Accurate quantification of sodium intake based on self-reported dietary assessments has been a persistent challenge. We aimed to apply machine-learning (ML) algorithms to predict 24-hour urinary sodium excretion from self-reported questionnaire information. METHODS AND RESULTS: We analyzed 3454 participants from the NHS (Nurses' Health Study), NHS-II (Nurses' Health Study II), and HPFS (Health Professionals Follow-Up Study), with repeated measures of 24-hour urinary sodium excretion over 1 year. We used an ensemble approach to predict averaged 24-hour urinary sodium excretion using 36 characteristics. The TOHP-I (Trial of Hypertension Prevention I) was used for the external validation. The final ML algorithms were applied to 167 920 nonhypertensive adults with 30-year follow-up to estimate confounder-adjusted hazard ratio (HR) of incident hypertension for predicted sodium. Averaged 24-hour urinary sodium excretion was better predicted and calibrated with ML compared with the food frequency questionnaire (Spearman correlation coefficient, 0.51 [95% CI, 0.49-0.54] with ML; 0.19 [95% CI, 0.16-0.23] with the food frequency questionnaire; 0.46 [95% CI, 0.42-0.50] in the TOHP-I). However, the prediction heavily depended on body size, and the prediction of energy-adjusted 24-hour sodium excretion was modestly better using ML. ML-predicted sodium was modestly more strongly associated than food frequency questionnaire-based sodium in the NHS-II (HR comparing Q5 versus Q1, 1.48 [95% CI, 1.40-1.56] with ML; 1.04 [95% CI, 0.99-1.08] with the food frequency questionnaire), but no material differences were observed in the NHS or HPFS. CONCLUSIONS: The present ML algorithm improved prediction of participants' absolute 24-hour urinary sodium excretion. The present algorithms may be a generalizable approach for predicting absolute sodium intake but do not substantially reduce the bias stemming from measurement error in disease associations.


Subject(s)
Hypertension , Machine Learning , Humans , Female , Male , Middle Aged , Adult , Hypertension/urine , Hypertension/diagnosis , Hypertension/physiopathology , Sodium/urine , Aged , Sodium, Dietary/urine , Algorithms , Predictive Value of Tests , Self Report , Time Factors , Reproducibility of Results , United States , Urinalysis/methods
4.
J Pediatr Endocrinol Metab ; 37(6): 553-558, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38754024

ABSTRACT

OBJECTIVES: Osteoporosis poses a growing public health challenge worldwide. While calcium and vitamin D may influence bone mineral density (BMD), the effect of sodium (Na) intake, particularly in pediatrics, remains unexplored. This study aimed to evaluate the relationship between urinary Na excretion and BMD in a Korean pediatric population. METHODS: A total of 2,018 participants (1,084 males and 934 females) aged 10-18 years were included from the data obtained from Korea National Health and Nutrition Examination Survey V (2010-2011). RESULTS: Daily Na intake was about 4,560 mg and 3,600 mg in boys and girls, respectively. The mean intake of Na per day was positively correlated with the increment of urine Na/Cr ratio quartile (p<0.001). The BMD z-score [lumbar spine (LS), femur neck (FN), and whole body except head (WB)] in the group with high Na/Cr ratio (4th quartile, 4Q) was significantly less than in those with low Na/Cr ratio (1st quartile, 1Q) (p<0.001). Moreover, the LS (p=0.028), FN (p=0.002) and WB (p=0.056) in the 4Q group showed 2.0 times, 2.8 times, and 1.9 times greater risk of low BMD z-scores than in the 1Q group, even after adjusting for other confounding factors, such as age, sex, BMI, vitamin D, moderate activity, and household incomes. CONCLUSIONS: Our findings suggest a strong negative association between urine Na excretion and BMD among Korean children and adolescents. The results underscore the importance of public health interventions targeting Na intake. Further longitudinal studies are recommended to clarify the long-term effects of Na on bone health in younger populations.


Subject(s)
Bone Density , Nutrition Surveys , Sodium , Humans , Male , Female , Child , Adolescent , Sodium/urine , Republic of Korea/epidemiology , Osteoporosis/urine , Osteoporosis/epidemiology , Follow-Up Studies , Cross-Sectional Studies , Prognosis
5.
J Hypertens ; 42(6): 1086-1093, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38690907

ABSTRACT

BACKGROUND: Early-life programming due to prematurity and very low birth weight (VLBW, <1500 g) is believed to contribute to development of hypertension, but the mechanisms remain unclear. Experimental data suggest that altered pressure natriuresis (increased renal perfusion pressure promoting sodium excretion) may be a contributing mechanism. We hypothesize that young adults born preterm will have a blunted pressure natriuresis response to mental stress compared with those born term. METHODS: In this prospective cohort study of 190 individuals aged 18-23 years, 156 born preterm with VLBW and 34 controls born term with birth weight at least 2500 g, we measured urine sodium/creatinine before and after a mental stress test and continuous blood pressure before and during the stress test. Participants were stratified into groups by the trajectory at which mean arterial pressure (MAP) increased following the test. The group with the lowest MAP trajectory was the reference group. We used generalized linear models to assess poststress urine sodium/creatinine relative to the change in MAP trajectory and assessed the difference between groups by preterm birth status. RESULTS: Participants' mean age was 19.8 years and 57% were women. Change in urine sodium/creatinine per unit increase in MAP when comparing middle trajectory group against the reference group was greater in those born preterm [ß 5.4%, 95% confidence interval (95% CI) -11.4 to 5.3] than those born term (ß 38.5%, 95% CI -0.04 to 92.0), interaction term P = 0.002. CONCLUSION: We observed that, as blood pressure increased following mental stress, young adults born preterm exhibited decreased sodium excretion relative to term-born individuals.


Subject(s)
Premature Birth , Sodium , Stress, Psychological , Humans , Female , Male , Young Adult , Stress, Psychological/physiopathology , Stress, Psychological/urine , Adolescent , Sodium/urine , Prospective Studies , Premature Birth/physiopathology , Blood Pressure/physiology , Infant, Newborn , Creatinine/urine , Adult , Natriuresis
6.
Am J Physiol Renal Physiol ; 326(6): F1091-F1100, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38695074

ABSTRACT

We have previously shown that kidney collecting ducts make vasopressin. However, the physiological role of collecting duct-derived vasopressin is uncertain. We hypothesized that collecting duct-derived vasopressin is required for the appropriate concentration of urine. We developed a vasopressin conditional knockout (KO) mouse model wherein Cre recombinase expression induces deletion of arginine vasopressin (Avp) exon 1 in the distal nephron. We then used age-matched 8- to 12-wk-old Avp fl/fl;Ksp-Cre(-) [wild type (WT)] and Avp fl/fl;Ksp-Cre(+) mice for all experiments. We collected urine, serum, and kidney lysates at baseline. We then challenged both WT and knockout (KO) mice with 24-h water restriction, water loading, and administration of the vasopressin type 2 receptor agonist desmopressin (1 µg/kg ip) followed by the vasopressin type 2 receptor antagonist OPC-31260 (10 mg/kg ip). We performed immunofluorescence and immunoblot analysis at baseline and confirmed vasopressin KO in the collecting duct. We found that urinary osmolality (UOsm), plasma Na+, K+, Cl-, blood urea nitrogen, and copeptin were similar in WT vs. KO mice at baseline. Immunoblots of the vasopressin-regulated proteins Na+-K+-2Cl- cotransporter, NaCl cotransporter, and water channel aquaporin-2 showed no difference in expression or phosphorylation at baseline. Following 24-h water restriction, WT and KO mice had no differences in UOsm, plasma Na+, K+, Cl-, blood urea nitrogen, or copeptin. In addition, there were no differences in the rate of urinary concentration or dilution as in WT and KO mice UOsm was nearly identical after desmopressin and OPC-31260 administration. We conclude that collecting duct-derived vasopressin is not essential to appropriately concentrate or dilute urine.NEW & NOTEWORTHY Hypothalamic vasopressin is required for appropriate urinary concentration. However, whether collecting duct-derived vasopressin is involved remains unknown. We developed a novel transgenic mouse model to induce tissue-specific deletion of vasopressin and showed that collecting duct-derived vasopressin is not required to concentrate or dilute urine.


Subject(s)
Deamino Arginine Vasopressin , Kidney Tubules, Collecting , Mice, Knockout , Animals , Kidney Tubules, Collecting/metabolism , Kidney Tubules, Collecting/drug effects , Deamino Arginine Vasopressin/pharmacology , Kidney Concentrating Ability/drug effects , Arginine Vasopressin/metabolism , Male , Antidiuretic Hormone Receptor Antagonists/pharmacology , Mice , Aquaporin 2/metabolism , Aquaporin 2/genetics , Antidiuretic Agents/pharmacology , Receptors, Vasopressin/genetics , Receptors, Vasopressin/metabolism , Mice, Inbred C57BL , Water Deprivation , Osmolar Concentration , Sodium/urine , Sodium/metabolism , Vasopressins/metabolism , Benzazepines
7.
Public Health Nutr ; 27(1): e117, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38602104

ABSTRACT

OBJECTIVE: Monitoring time trends in salt consumption is important for evaluating the impact of salt reduction initiatives on public health outcomes. There has so far not been available data to indicate if salt consumption in Norway has changed during the previous decade. We aimed to assess whether average 24-h salt intake estimated from spot urine samples in the adult population of mid-Norway changed from 2006-2008 to 2017-2019 and to describe variations by sex, age and educational level. DESIGN: Repeated cross-sectional studies. SETTING: The population-based Trøndelag Health Study (HUNT). PARTICIPANTS: In each of two consecutive waves (HUNT3: 2006-2008 and HUNT4: 2017-2019), spot urine samples were collected from 500 men and women aged 25-64 years, in addition to 250 men and women aged 70-79 years in HUNT4. Based on spot urine concentrations of Na, K and creatinine and age, sex and BMI, we estimated 24-h Na intake using the International Cooperative Study on Salt and Blood Pressure (INTERSALT) equation for the Northern European region. RESULTS: Mean (95 % CI) estimated 24-h salt intakes in men were 11·1 (95 % CI 10·8, 11·3) g in HUNT3 and 10·9 (95 % CI 10·6, 11·1) g in HUNT4, P = 0·25. Corresponding values in women were 7·7 (95 % CI 7·5, 7·9) g and 7·7 (95 % CI 7·5, 7·9) g, P = 0·88. Mean estimated salt intake in HUNT4 decreased with increasing age in women, but not in men, and it did not differ significantly across educational level in either sex. CONCLUSIONS: Estimated 24-h salt intake in adult men and women in mid-Norway did not change from 2006-2008 to 2017-2019.


Subject(s)
Sodium Chloride, Dietary , Humans , Male , Norway , Female , Middle Aged , Adult , Cross-Sectional Studies , Aged , Sodium Chloride, Dietary/administration & dosage , Sodium Chloride, Dietary/urine , Sodium/urine , Sodium, Dietary/urine , Sodium, Dietary/administration & dosage , Potassium/urine , Creatinine/urine
8.
Sci Rep ; 14(1): 9704, 2024 04 27.
Article in English | MEDLINE | ID: mdl-38678054

ABSTRACT

Accurate measurement of sodium intake in the diet is challenging, and epidemiological studies can be hampered by the attenuation of associations due to measurement error in sodium intake. A prediction formula for habitual 24-h urine sodium excretion and sodium-to-potassium ratio might lead to more reliable conclusions. Five 24-h urinary samples and two Food Frequency Questionnaires (FFQs) were conducted among 244 Japanese participants aged 35-80 years. We conducted multivariate linear regression analysis with urinary excretion as dependent variables and eating behaviour and food frequency as independent variables. Empirical weights of sodium excretion and sodium-to-potassium ratio were extracted. Preliminary validity was also assessed by randomly dividing the subjects into development and validation groups based on the correlation coefficient between estimates by the prediction formula and urinary excretion. Taste preference, soy sauce use at the table, frequency of pickled vegetables intake and number of bowls of miso soup were extracted as determinants of sodium excretion. Correlation coefficients between the estimates and urinary excretion for men and women were 0.42 and 0.43, respectively, for sodium and 0.49 and 0.50, respectively, for sodium-to-potassium ratio. This prediction formula may provide more accurate estimation of sodium intake and sodium-to-potassium ratio than the food composition approach.


Subject(s)
Potassium , Sodium , Humans , Female , Male , Middle Aged , Aged , Adult , Sodium/urine , Aged, 80 and over , Potassium/urine , Sodium, Dietary/urine , Sodium, Dietary/analysis , Feeding Behavior , Surveys and Questionnaires
9.
Nutrients ; 16(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38674887

ABSTRACT

Childhood obesity has been associated with increased sodium intake. Nonetheless, evidence linking sodium intake to Body Mass Index (BMI) and Body Fat Mass Percentage (%BF) remains limited, especially in the pediatric age group. Therefore, this study aims to investigate whether there is an association between 24 h urinary sodium excretion with BMI and %BF in a sample group of children from the ARIA study. This cross-sectional analysis included 303 children aged 7 to 12 from across 20 public schools in Porto, Portugal. Weight and %BF were assessed using the Tanita™ BC-418 Segmental Body Analyzer. Children's Total Energy Intake (TEI) was estimated through a single 24 h Recall Questionnaire, and urinary sodium and potassium excretion was estimated by a 24 h urine collection. The association of %BF and BMI with 24 h sodium excretion was estimated by a binary logistic regression adjusted for sex, age, physical activity, total energy intake, parental education, and 24 h urinary excreted potassium. There was a significant positive association between higher levels of urinary sodium excretion and higher %BF values, even after adjusting for confounders. However, the same was not observed for BMI. Our findings suggest that higher sodium intake is associated with higher values of %BF among children, regardless of TEI and potassium intake.


Subject(s)
Body Mass Index , Sodium, Dietary , Sodium , Humans , Female , Male , Child , Cross-Sectional Studies , Sodium/urine , Portugal , Sodium, Dietary/urine , Energy Intake , Pediatric Obesity/urine , Pediatric Obesity/epidemiology , Adipose Tissue/metabolism , Adiposity
10.
Acta Clin Belg ; 79(2): 103-112, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38613319

ABSTRACT

AIMS: To provide real-world data on post-diuretic spot urine sodium concentration (UNa) assessment in acute heart failure (AHF) and its implications for treatment. METHODS AND RESULTS: Automated query of the electronic medical record identified patients admitted to the cardiac intensive care unit of a single tertiary care hospital between November 2018 and December 2021, who received intravenous loop diuretics. Detailed manual chart review confirmed the AHF diagnosis. Stratification was performed based on whether post-diuretic UNa was assessed within 24 h of admission. AHF was confirmed in 340/380 identified patients. Post-diuretic UNa was assessed in 117 (34%), more frequently when ejection fraction was reduced and heart failure more advanced. Patients with versus without post-diuretic UNa assessment received higher doses of intravenous loop diuretics and more frequently acetazolamide and thiazide-like diuretics (p < 0.001 for all), resulting in similar urine output despite more advanced heart failure [2,488 mL (1,740-4,033 mL) vs. 2,400 mL (1,553-3,250 mL), respectively; p = 0.170]. Diuretic therapy remained more intense at discharge in the post-diuretic UNa group, with also a higher prescription rate of angiotensin-neprilysin inhibitors (p = 0.021). Serum creatinine increases/decreases were similarly frequent irrespectively from UNa assessment, with more dynamic changes observed in patients with UNa ≤ 80 mmol/L versus ≥ 81 mmol/L. After adjustments for baseline characteristics, the risk for death or heart failure readmission was similar in patients with versus without UNa assessment [HR (95%CI) = 1.43 (0.88-2.32); p = 0.150]. CONCLUSION: Post-diuretic UNa assessment in AHF was associated with more intense diuretic regimens, preserving urine output despite its use in a sicker population.


Subject(s)
Heart Failure , Sodium , Humans , Heart Failure/drug therapy , Heart Failure/urine , Retrospective Studies , Aged , Male , Female , Sodium/urine , Acute Disease , Middle Aged , Aged, 80 and over , Sodium Potassium Chloride Symporter Inhibitors/therapeutic use , Diuretics/therapeutic use
11.
Adv Kidney Dis Health ; 31(2): 139-146, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38649218

ABSTRACT

Hyponatremia is common in patients with liver disease and is associated with increased mortality, morbidity, and a reduced quality of life. In liver transplantation, the inclusion of hyponatremia in organ allocation scores has reduced waitlist mortality. Portal hypertension and the resulting lowering of the effective arterial blood volume are important pathogenetic factors, but in most patients with liver disease, hyponatremia is multifactorial. Treatment requires a multifaceted approach that tries to reduce electrolyte-free water intake, restore urinary dilution, and increase nonelectrolyte solute excretion. Albumin therapy for hyponatremia is a peculiarity of advanced liver disease. Its use appears to be increasing, while the vaptans are currently only given in selected cases. Osmotic demyelination is a special concern in patients with liver disease. Serial checks of serum sodium concentrations and urine volume monitoring are mandatory.


Subject(s)
Hyponatremia , Liver Diseases , Hyponatremia/therapy , Hyponatremia/etiology , Hyponatremia/diagnosis , Humans , Liver Diseases/complications , Liver Diseases/blood , Liver Transplantation , Sodium/blood , Sodium/urine , Hypertension, Portal/therapy , Hypertension, Portal/complications , Albumins/metabolism , Albumins/therapeutic use
12.
Basic Clin Pharmacol Toxicol ; 134(6): 792-804, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38584299

ABSTRACT

Understanding the function of the kappa opioid receptor (KOP) is crucial for the development of novel therapeutic interventions that target KOP for the treatment of pain, stress-related disorders and other indications. Activation of KOP produces diuretic effects in rodents and man. Sex is a vital factor to consider when assessing drug response in pre-clinical and clinical studies. In this study, the diuretic effect of the KOP agonist, U50488 (1-10 mg/kg), was investigated in both adult female and male Wistar rats that were either normally hydrated or water-loaded. The KOP antagonist norbinaltorphimine (norBNI, 10 mg/kg) was administered 24 h prior to U50488 to confirm the involvement of KOP. U50488 elicited a significant diuretic response at doses ≥ 3 mg/kg in both female and male rats independent of hydration status. U50488 diuretic effects were inhibited by norBNI pre-administration. Water-loading reduced data variability for urine volume in males, but not in females, compared with normally hydrated rats. Sex differences were also evident in U50488 eliciting a significant increase in sodium and potassium ion excretion only in males. This may suggest different mechanisms of U50488 diuretic action in males where renal excretion mechanisms are directly affected more than in females.


Subject(s)
3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer , Diuresis , Rats, Wistar , Receptors, Opioid, kappa , Animals , Receptors, Opioid, kappa/agonists , Receptors, Opioid, kappa/metabolism , Male , Female , Diuresis/drug effects , 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/pharmacology , Rats , Sex Factors , Diuretics/pharmacology , Naltrexone/pharmacology , Naltrexone/analogs & derivatives , Sodium/urine , Sodium/metabolism , Organism Hydration Status/drug effects , Potassium/urine , Potassium/metabolism , Dose-Response Relationship, Drug , Narcotic Antagonists/pharmacology
13.
Sci Rep ; 14(1): 6993, 2024 03 24.
Article in English | MEDLINE | ID: mdl-38523151

ABSTRACT

Iodine deficiency and excessive salt intake have adverse health effects. This study evaluated the iodine level and salt intake in Chinese adults aged 18-59 years after implementing the salt reduction program and compared with both the World Health Organization (WHO) and Chinese recommendations. Adults aged 18-59 years were randomly selected using multi-stage stratified random sampling in coastal urban area (CUA), non-coastal urban area (Non-CUA), coastal rural area (CRA), and non-coastal rural area (Non-CRA) of Fujian Province, China. Iodine, sodium, and creatinine concentrations in spot urine samples were measured. Knudsen equation was used to determine 24-h urinary iodine and sodium excretion. The median urinary iodine concentration (mUIC) and urinary sodium concentration (mUNaC) among adults (n = 3513) were 132.0 µg/L and 4.0 g/d, respectively. The mUIC and median daily iodine intake in CUA, Non-CUA, CRA and Non-CRA were 112.1, 127.5, 128.5, 167.5 µg/L and 189.6, 182.5, 199.4, 236.0 µg/d, respectively. The mUNaC and median daily salt intake (mDSI) in these four areas were 2.4, 2.8, 2.9, 2.9 g/L and 9.8, 10.4, 10.4, 10.6 g/d, respectively. The mUIC and DII of residents were higher in the Non-CRA than in the other three areas (P < 0.05). The UNaC and DSI of residents were lower in the CUA than in the other three areas (P < 0.05). The logistic regression demonstrated that the people living in CUA and Non-CUA consumed less salt compared with those in Non-CRA. Except for Non-CUA, the DII was lower (< 150 µg/d) among women of childbearing age in the low-salt intake group (< 5 g/d) compared with the high-salt intake group (≥ 5 g/d) (P < 0.05). Iodine nutrition in Chinese adults aged 18-59 years was sufficient, but the salt intake was substantially higher than the WHO and Chinese recommendations. Further policy implementation is needed to reduce salt intake and improve the monitoring of iodine levels in Chinese adults, especially in women of childbearing age.


Subject(s)
Iodine , Sodium Chloride, Dietary , Adolescent , Adult , Female , Humans , Male , Middle Aged , Young Adult , China , Iodine/urine , Nutritional Status , Sodium/urine , Sodium Chloride, Dietary/adverse effects , Sodium Chloride, Dietary/analysis
14.
Clin Pharmacol Ther ; 115(6): 1408-1417, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38425181

ABSTRACT

Thiazide diuretics, widely used in hypertension, cause a variety of adverse reactions, including hyperglycemia, hyperuricemia, and electrolyte abnormalities. In this study, we aimed to identify genetic variants that interact with thiazide-use to increase the risk of these adverse reactions. Using UK Biobank data, we first performed genomewide variance quantitative trait locus (vQTL) analysis of ~ 6.2 million SNPs on 95,493 unrelated hypertensive White British participants (24,313 on self-reported bendroflumethiazide treatment at recruitment) for 2 blood (glucose and urate) and 2 urine (potassium and sodium) biomarkers. Second, we conducted direct gene-environment interaction (GEI) tests on the significant (P < 2.5 × 10-9) vQTLs, included a second UK Biobank cohort comprising 13,647 unrelated hypertensive White British participants (3,478 on thiazides other than bendroflumethiazide) and set significance at P = 0.05 divided by the number of vQTL SNPs tested for GEIs. The vQTL analysis identified eight statistically significant SNPs for blood glucose (5 SNPs) and serum urate (3 SNPs), with none being identified for the urinary biomarkers. Two of the SNPs (1 glucose SNP: CDKAL1 intron rs35612982, GEI P = 6.24 × 10-3; and 1 serum urate SNP: SLC2A9 intron rs938564, GEI P = 4.51 × 10-4) demonstrated significant GEI effects in the first, but not the second, cohort. Both genes are biologically plausible candidates, with the SLC2A9-mediated interaction having been previously reported. In conclusion, we used a two-stage approach to detect two biologically plausible genetic loci that can interact with thiazides to increase the risk of thiazide-associated biochemical abnormalities. Understanding how environmental exposures (including medications such as thiazides) and genetics interact, is an important step toward precision medicine and improved patient outcomes.


Subject(s)
Biological Specimen Banks , Genome-Wide Association Study , Hyperglycemia , Hyperuricemia , Polymorphism, Single Nucleotide , Sodium Chloride Symporter Inhibitors , Humans , United Kingdom/epidemiology , Female , Hyperuricemia/genetics , Hyperuricemia/urine , Hyperuricemia/chemically induced , Male , Middle Aged , Hyperglycemia/genetics , Hyperglycemia/chemically induced , Hyperglycemia/urine , Hyperglycemia/epidemiology , Aged , Sodium Chloride Symporter Inhibitors/adverse effects , Uric Acid/urine , Uric Acid/blood , Quantitative Trait Loci , Gene-Environment Interaction , Hypertension/genetics , Hypertension/chemically induced , Blood Glucose/drug effects , Blood Glucose/metabolism , Potassium/urine , Potassium/blood , Sodium/urine , Adult , Biomarkers/urine , Biomarkers/blood , UK Biobank
15.
J Hum Hypertens ; 38(4): 298-306, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38379029

ABSTRACT

The Salt Substitute and Stroke Study (SSaSS) demonstrated significant reductions in systolic blood pressure (SBP), and the risk of stroke, major cardiovascular events and total mortality with the use of potassium-enriched salt. The contribution of sodium reduction versus potassium increase to these effects is unknown. We identified four different data sources describing the association between sodium reduction, potassium supplementation and change in SBP. We then fitted a series of models to estimate the SBP reductions expected for the differences in sodium and potassium intake in SSaSS, derived from 24-h urine collections. The proportions of the SBP reduction separately attributable to sodium reduction and potassium supplementation were calculated. The observed SBP reduction in SSaSS was -3.3 mmHg with a corresponding mean 15.2 mmol reduction in 24-h sodium excretion and a mean 20.6 mmol increase in 24-h potassium excretion. Assuming 90% of dietary sodium intake and 70% of dietary potassium intake were excreted through urine, the models projected falls in SBP of between -1.67 (95% confidence interval: -4.06 to +0.73) mmHg and -5.33 (95% confidence interval: -8.58 to -2.08) mmHg. The estimated proportional contribution of sodium reduction to the SBP fall ranged between 12 and 39% for the different models fitted. Sensitivity analyses assuming different proportional urinary excretion of dietary sodium and potassium intake showed similar results. In every model, the majority of the SBP lowering effect in SSaSS was estimated to be attributable to the increase in dietary potassium rather than the fall in dietary sodium.


Subject(s)
Hypertension , Hypotension , Sodium Radioisotopes , Sodium, Dietary , Stroke , Humans , Blood Pressure/physiology , Potassium/urine , Potassium, Dietary , Sodium/urine , Sodium, Dietary/adverse effects , Sodium Chloride, Dietary/adverse effects , Stroke/prevention & control
16.
Public Health Nutr ; 27(1): e71, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38305112

ABSTRACT

OBJECTIVE: To determine the appropriateness of three widely used formulas estimating 24-h urinary Na (24hUNa) from spot urine samples in the Chinese population. DESIGN: Systematic review and meta-analysis. SETTING: Literature review was conducted to identify studies for estimating 24hUNa using the Kawasaki, Tanaka and INTERSALT formulas simultaneously in PubMed, Embase and the Cochrane library databases. The mean difference (MD) and correlation coefficients (r) between measures and estimates from different formulas were assessed. PARTICIPANTS: Information extraction and quality assessment were performed in thirteen studies involving 8369 subjects. RESULTS: Two studies which affected the overall robustness were excluded in the 'leave-one-out' sensitivity analyses. Within the final meta-analysis included eleven studies and 7197 participants, 36·07 mmol/d (95 %CI 16·89, 55·25) of MD was observed in the Kawasaki formula, and -19·62 mmol/d (95 %CI -37·37, -1·87) in the Tanaka formula and -35·78 mmol/d (95 %CI -50·76, -20·80) in the INTERSALT formula; a pooled r-Fisher's Z of 0·39 (95 %CI 0·32, 0·45) in the Kawasaki formula, 0·43 (95 %CI 0·37, 0·49) in the Tanaka formula and 0·36 (95 %CI 0·31, 0·42) in the INTERSALT formula. Subgroup analyses were conducted to explore the possible factors affecting the accuracy of the formula estimation from three mainly aspects: population types, Na intake levels and urine specimen types. CONCLUSIONS: The meta-analysis suggested that the Tanaka formula performed a more accurate estimate in Chinese population. Time of collecting spot urine specimens and Na intake level of the sample population might be the main factors affecting the accuracy of the formula estimation.


Subject(s)
Sodium, Dietary , Urinalysis , Humans , China , Sodium/urine , Sodium, Dietary/urine
17.
Kidney Blood Press Res ; 49(1): 184-195, 2024.
Article in English | MEDLINE | ID: mdl-38382490

ABSTRACT

INTRODUCTION: Subclinical kidney dysfunction may contribute to salt-sensitive hypertension. We assessed the association between the urinary sodium-potassium ratio (Na/K ratio) and blood pressure (BP) in a general population cohort without diabetes, chronic kidney disease, cardiovascular disease, or treated hypertension. We investigated whether any such association was mediated by the kidney function markers measured glomerular filtration rate (mGFR), urinary albumin-creatinine ratio (ACR), and urinary epidermal growth factor-creatinine ratio (EGF-Cr). METHODS: The Tromsø Study is a population-based study of inhabitants of the municipality of Tromsø, Northern Norway. Participants aged 50-62 years, without diabetes, chronic kidney disease, or cardiovascular disease, were invited to the substudy Renal Iohexol Clearance Survey in Tromsø 6 (RENIS-T6; 2007-09). For the present study, we excluded participants reporting the use of 1 or more antihypertensive agents, leaving 1,311 RENIS-T6 participants for a cross-sectional analysis. We measured office BP, 24-h ambulatory blood pressure (ABP), and mGFR using iohexol clearance. Na/K ratio, ACR, and EGF-Cr were measured in morning urine samples. RESULTS: Urinary Na/K ratio was significantly associated with systolic office BP and ABP independently of cardiovascular risk factors and kidney function markers. A one-standard deviation unit increase in the Na/K ratio was associated with increased systolic ABP by 1.0 (0.3-1.6) mm Hg. Urinary Na/K ratio showed a stronger association with office BP than ABP. EGF-Cr, ACR, and mGFR did not mediate the relationship between urinary Na/K ratio and systolic BP. CONCLUSIONS: In a representative sample of the middle-aged North-European population without diabetes, chronic kidney disease, cardiovascular disease, or treated hypertension, there was a consistent association between urinary Na/K ratio and BP. The association with BP was not mediated through kidney function measures, suggesting a relationship between a diet with high sodium and low potassium and higher BP regardless of kidney function.


Subject(s)
Blood Pressure , Potassium , Sodium , Humans , Middle Aged , Male , Female , Sodium/urine , Potassium/urine , Cross-Sectional Studies , Cohort Studies , Hypertension/urine , Glomerular Filtration Rate , Kidney/physiopathology , Norway/epidemiology
18.
Endocr J ; 71(4): 345-355, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38311418

ABSTRACT

Hyponatremia leads to severe central nervous system disorders and requires immediate treatment in some cases. However, a rapid increase in serum sodium (s-Na) concentration could cause osmotic demyelination syndrome. To achieve a safety hyponatremia treatment, we develop a prediction model of s-Na concentration using a machine learning. Among the 341 and 47 patients admitted to two tertiary hospitals for hyponatremia treatment (s-Na <130 mEq/L), those who were admitted to the general unit with urine sodium <20 mEq/L or treated with desmopressin were excluded. Ultimately, 74 and 15 patients (342 and 146 6-hourly datasets) were included in the learning and validation data, respectively. We trained the prediction model using three regression algorithms for shallow machine learning to predict s-Na every 6 h during treatment with the data of patients with hyponatremia (median s-Na: 112.5 mEq/L; range: 110.0-116.8 mEq/L) from one hospital. The model was validated externally using the data of patients with hyponatremia (median s-Na: 117.0 mEq/L; range: 112.9-120.0 mEq/L) from another hospital. Using 5-7 predictors (water intake, sodium intake, potassium intake, urine volume, s-Na concentration, serum potassium concentration, serum chloride concentration), the support vector regression model showed the best performance overall (root mean square error = 0.05396; R2 = 0.92), followed by the linear regression and regression tree models. The predicted s-Na levels, using explainable machine learning algorithms and clinically accessible parameters, correlated well with the actual levels. Thus, our model could be applied to the treatment of hyponatremia in clinical practice.


Subject(s)
Hyponatremia , Machine Learning , Sodium , Hyponatremia/therapy , Hyponatremia/blood , Humans , Male , Female , Aged , Sodium/blood , Sodium/urine , Middle Aged , Adult , Aged, 80 and over , Treatment Outcome , Algorithms
19.
Nutrients ; 16(3)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38337726

ABSTRACT

Because of within-individual variation, surveys to estimate an individual's usual food intake must be conducted over many days, in general. Here, using non-invasive biomarkers, we examined the number of measurements required to screen for the usual intake of fruit and vegetables, in addition to sodium, potassium, and the sodium-to-potassium (Na/K) ratio. Participants were 202 subjects aged 40-74 years from five areas of Japan who completed weighed food records (WFR) and five 24-hour urinary collections (24-h UCs) between 2012 and 2013. The number of 24-h UCs required to screen for intake that deviated from guidelines estimated by the WFR and their accuracies were assessed by the area under the curve (AUC) in a receiver-operating characteristics (ROC) analysis. The single urinary excretion of sodium, potassium, and the Na/K ratio showed moderate performance (AUC value: >0.7) in discriminating deviations from their criteria by respective intake based on the WFR. Urinary potassium excretion also showed moderate performance (AUC value: >0.7) in estimating the intake of vegetables but could not be used to estimate fruit intake even after five collections. The non-invasive measurement of biomarkers in a single 24-h UC showed moderate performance in screening the usual intake of vegetables, as measured based on the 12-day WFR, as well as of sodium, potassium, and the Na/K ratio.


Subject(s)
Fruit , Vegetables , Humans , Sodium/urine , Diet , Potassium/urine , Biomarkers
20.
Appl Physiol Nutr Metab ; 49(5): 667-679, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38377479

ABSTRACT

We evaluated changes in hyperhydration and beverage hydration index (BHI, a composite measure of fluid balance after consuming a test beverage relative to water) during resting, induced by the consumption of beverages containing glycerol and sodium supplemented with fast-absorbing sucrose or slow-absorbing isomaltulose. In a randomized crossover, single-blinded protocol (clinical trials registry: UMIN000042644), 14 young physically active adults (three women) consumed 1 L of beverage containing either 7% glycerol + 0.5% sodium (Gly + Na), Gly + Na plus 7% sucrose (Gly + Na + Suc), Gly + Na plus 7% isomaltulose (Gly + Na + Iso), or water (CON) over a 40 min period. We assessed the change in plasma volume (ΔPV), BHI (calculated from cumulative urine output following consumption of water relative to that of the beverage), and blood glucose and sodium for 180 min after initiating ingestion. Total urine volume was reduced in all beverages containing glycerol and sodium compared to CON (all P ≤ 0.002). The addition of isomaltulose increased BHI by ∼45% (3.43 ± 1.0 vs. 2.50 ± 0.7 for Gly + Na, P = 0.011) whereas sucrose did not (2.6 ± 0.6, P = 0.826). The PV expansion was earliest for Gly + Na (30 min), slower for Gly + Na + Suc (90 min), and slowest for Gly + Na + Iso (120 min) with a concomitant lag in the increase of blood glucose and sodium concentrations. Supplementation of beverages containing glycerol and sodium with isomaltulose but not sucrose enhances BHI from those of glycerol and sodium only under a resting state, likely due to the slow absorption of isomaltulose-derived monosaccharides (i.e., glucose and fructose).


Subject(s)
Cross-Over Studies , Glycerol , Isomaltose , Isomaltose/analogs & derivatives , Humans , Isomaltose/administration & dosage , Male , Female , Single-Blind Method , Young Adult , Glycerol/blood , Adult , Sucrose/administration & dosage , Water-Electrolyte Balance/drug effects , Beverages , Blood Glucose/metabolism , Sodium/urine , Sodium/blood , Plasma Volume
SELECTION OF CITATIONS
SEARCH DETAIL
...