Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59.815
Filter
1.
Physiol Plant ; 176(3): e14356, 2024.
Article in English | MEDLINE | ID: mdl-38828569

ABSTRACT

Halophyte Halogeton glomeratus mostly grows in saline desert areas in arid and semi-arid regions and is able to adapt to adverse conditions such as salinity and drought. Earlier transcriptomic studies revealed activation of the HgS2 gene in the leaf of H. glomeratus seedlings when exposed to saline conditions. To identify the properties of HgS2 in H. glomeratus, we used yeast transformation and overexpression in Arabidopsis. Yeast cells genetically transformed with HgS2 exhibited K+ uptake and Na+ efflux compared with control (empty vector). Stable overexpression of HgS2 in Arabidopsis improved its resistance to salt stress and led to a notable rise in seed germination in salinity conditions compared to the wild type (WT). Transgenic Arabidopsis regulated ion homeostasis in plant cells by increasing Na+ absorption and decreasing K+ efflux in leaves, while reducing Na+ absorption and K+ efflux in roots. In addition, overexpression of HgS2 altered transcription levels of stress response genes and regulated different metabolic pathways in roots and leaves of Arabidopsis. These results offer new insights into the role of HgS2 in plants' salt tolerance.


Subject(s)
Arabidopsis , Gene Expression Regulation, Plant , Plant Proteins , Plants, Genetically Modified , Potassium , Salt Tolerance , Salt-Tolerant Plants , Sodium , Arabidopsis/genetics , Arabidopsis/physiology , Salt Tolerance/genetics , Salt-Tolerant Plants/genetics , Salt-Tolerant Plants/physiology , Salt-Tolerant Plants/metabolism , Sodium/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Potassium/metabolism , Plant Leaves/genetics , Plant Leaves/physiology , Plant Leaves/metabolism , Plant Roots/genetics , Plant Roots/physiology , Plant Roots/metabolism , Sodium Chloride/pharmacology , Germination/genetics , Germination/drug effects , Amaranthaceae/genetics , Amaranthaceae/physiology
2.
Sci Rep ; 14(1): 12705, 2024 06 03.
Article in English | MEDLINE | ID: mdl-38831025

ABSTRACT

Fifty-nine diverse Brassica juncea (Indian mustard) genotypes were used to find an effective screening method to identify salt tolerance at the germination and seedling stages. Salinity stress limits crop productivity and is difficult to simulate on farms, hindering parental selection for hybridization programmes and the development of tolerant cultivars. To estimate an optimum salt concentration for screening, seeds of 15 genotypes were selected randomly and grown in vitro at 0 mM/L, 75 mM/L, 150 mM/L, 225 mM/L, and 300 mM/L concentrations of NaCl in 2 replications in a complete randomized design. Various morphological parameters, viz., length of seedling, root and shoot length, fresh weight, and dry weight, were observed to determine a single concentration using the Salt Injury Index. Then, this optimum concentration (225 mM/L) was used to assess the salt tolerance of all the 59 genotypes in 4 replications while observing the same morphological parameters. With the help of Mean Membership Function Value evaluation criteria, the genotypes were categorized into 5 grades: 4 highly salt-tolerant (HST), 6 salt-tolerant (ST), 19 moderately salt-tolerant (MST), 21 salt-sensitive (SS), and 9 highly salt-sensitive (HSS). Seedling fresh weight (SFW) at 225 mM/L was found to be an ideal trait, which demonstrates the extent to which B. juncea genotypes respond to saline conditions. This is the first report that establishes a highly efficient and reliable method for evaluating the salinity tolerance of Indian mustard at the seedling stage and will facilitate breeders in the development of salt-tolerant cultivars.


Subject(s)
Genotype , Mustard Plant , Salt Stress , Salt Tolerance , Seedlings , Mustard Plant/genetics , Mustard Plant/growth & development , Mustard Plant/drug effects , Mustard Plant/physiology , Seedlings/growth & development , Seedlings/drug effects , Seedlings/genetics , Salt Tolerance/genetics , Germination/drug effects , Sodium Chloride/pharmacology , Plant Roots/growth & development , Plant Roots/drug effects
3.
J Biosci ; 492024.
Article in English | MEDLINE | ID: mdl-38726824

ABSTRACT

Mitochondrial alternative oxidase (AOX) is an important protein that can help in regulating reactive oxygen species and nitric oxide in plants. The role of AOX in regulation of nitro-oxidative stress in chickpea is not known. Using germinating chickpea as a model system, we investigated the role of AOX in nitro-oxidative stress tolerance. NaCl treatment was used as an inducer of nitro-oxidative stress. Treatment of germinating seeds with 150 mM NaCl led to reduced germination and radicle growth. The AOX inhibitor SHAM caused further inhibition of germination, and the AOX inducer pyruvate improved growth of the radicle under NaCl stress. Isolated mitochondria from germinated seeds under salt stress not only increased AOX capacity but also enhanced AOX protein expression. Measurement of superoxide levels revealed that AOX inhibition by SHAM can enhance superoxide levels, whereas the AOX inducer pyruvate reduced superoxide levels. Measurement of NO by gas phase chemiluminescence revealed enhanced NO generation in response to NaCl treatment. Upon NaCl treatment there was enhanced tyrosine nitration, which is an indicator of nitrosative stress response. Taken together, our results revealed that AOX induced under salinity stress in germinating chickpea can help in mitigating nitro-oxidative stress, thereby improving germination.


Subject(s)
Cicer , Germination , Mitochondria , Mitochondrial Proteins , Nitric Oxide , Oxidative Stress , Oxidoreductases , Plant Proteins , Superoxides , Cicer/growth & development , Cicer/drug effects , Cicer/metabolism , Plant Proteins/metabolism , Germination/drug effects , Mitochondrial Proteins/metabolism , Mitochondria/metabolism , Mitochondria/drug effects , Oxidative Stress/drug effects , Nitric Oxide/metabolism , Oxidoreductases/metabolism , Superoxides/metabolism , Seeds/growth & development , Seeds/drug effects , Seeds/metabolism , Reactive Oxygen Species/metabolism , Sodium Chloride/pharmacology , Gene Expression Regulation, Plant/drug effects , Pyruvic Acid/metabolism
4.
Antonie Van Leeuwenhoek ; 117(1): 74, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691182

ABSTRACT

A Gram-stain positive, aerobic, alkalitolerant and halotolerant bacterium, designated HH7-29 T, was isolated from the confluence of the Fenhe River and the Yellow River in Shanxi Province, PR China. Growth occurred at pH 6.0-12.0 (optimum, pH 8.0-8.5) and 15-40℃ (optimum, 32℃) with 0.5-24% NaCl (optimum, 2-9%). The predominant fatty acids (> 10.0%) were iso-C15:0 and anteiso-C15:0. The major menaquinones were MK-7 and MK-8. The polar lipids were phosphatidylglycerol, diphosphatidylglycerol and two unidentified phospholipids. Phylogenetic analyses based on the 16S rRNA gene sequence revealed that strain HH7-29 T was a member of the genus Jeotgalibacillus, exhibiting high sequence similarity to the 16S rRNA gene sequences of Jeotgalibacillus alkaliphilus JC303T (98.4%), Jeotgalibacillus salarius ASL-1 T (98.1%) and Jeotgalibacillus alimentarius YKJ-13 T (98.1%). The genomic DNA G + C content was 43.0%. Gene annotation showed that strain HH7-29 T had lower protein isoelectric points (pIs) and possessed genes related to ion transport and organic osmoprotectant uptake, implying its potential tolerance to salt and alkali. The average nucleotide identity, digital DNA-DNA hybridization values, amino acid identity values, and percentage of conserved proteins values between strain HH7-29 T and its related species were 71.1-83.8%, 19.5-27.4%, 66.5-88.4% and 59.8-76.6%, respectively. Based on the analyses of phenotypic, chemotaxonomic, phylogenetic and genomic features, strain HH7-29 T represents a novel species of the genus Jeotgalibacillus, for which the name Jeotgalibacillus haloalkalitolerans sp. nov. is proposed. The type strain is HH7-29 T (= KCTC 43417 T = MCCC 1K07541T).


Subject(s)
Base Composition , DNA, Bacterial , Fatty Acids , Phylogeny , RNA, Ribosomal, 16S , Rivers , RNA, Ribosomal, 16S/genetics , China , Rivers/microbiology , DNA, Bacterial/genetics , Fatty Acids/analysis , Sodium Chloride/metabolism , Bacterial Typing Techniques , Phospholipids/analysis , Sequence Analysis, DNA , Nucleic Acid Hybridization
5.
Article in English | MEDLINE | ID: mdl-38695865

ABSTRACT

A novel Gram-staining-positive actinobacterium with antimicrobial activity, designated CFH 90308T, was isolated from the sediment of a salt lake in Yuncheng, Shanxi, south-western China. The isolate exhibited the highest 16S rRNA gene sequence similarities to Microbacterium yannicii G72T, Microbacterium hominis NBRC 15708T and Microbacterium xylanilyticum S3-ET (98.5, 98.4 and 98.2 %, respectively), and formed a separate clade with M. xylanilyticum S3-ET in phylogenetic trees. The strain grew at 15-40 ºC, pH 6.0-8.0 and could tolerate NaCl up to a concentration of 15 % (w/v). The whole genome of strain CFH 90308T consisted of 4.33 Mbp and the DNA G+C content was 69.6 mol%. The acyl type of the peptidoglycan was glycolyl and the whole-cell sugars were galactose and mannose. The cell-wall peptidoglycan mainly contained alanine, glycine and lysine. The menaquinones of strain CFH 90308T were MK-12, MK-13 and MK-11. Strain CFH 90308T contained anteiso-C15:0, anteiso-C17:0, iso-C16:0 and iso-C15:0 as the predominant fatty acids. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between CFH 90308T and the other species of the genus Microbacterium were found to be low (ANIb <81.3 %, dDDH <25.6 %). The secondary metabolite produced by strain CFH 90308T showed antibacterial activities against Bacillus subtilis, Pseudomonas syringae, Aeromonas hydrophila and methicillin-resistant Staphylococcus aureus. Based on genotypic, phenotypic and chemotaxonomic results, the isolate is considered to represent a novel species of the genus Microbacterium, for which the name Microbacterium salsuginis sp. nov. is proposed. The type strain is CFH 90308T (=DSM 105964T=KCTC 49052T).


Subject(s)
Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Geologic Sediments , Microbacterium , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Vitamin K 2 , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , China , Vitamin K 2/analogs & derivatives , Geologic Sediments/microbiology , Peptidoglycan , Lakes/microbiology , Nucleic Acid Hybridization , Sodium Chloride/metabolism , Genome, Bacterial
6.
Water Sci Technol ; 89(9): 2209-2224, 2024 May.
Article in English | MEDLINE | ID: mdl-38747945

ABSTRACT

The research presented in this paper is to determine the best tracer studies that will give acceptable estimates of longitudinal dispersion coefficient for Orashi river using rhodamine WT dye and sodium chloride as water tracer. Estimated results obtained for longitudinal dispersion coefficient for the case of rhodamine WT experiment ranges between 71 and 104.4 m2s-1 while that of sodium chloride experiment ranges between 20.1 and 34.71 m2s-1. These results revealed lower dispersion coefficient using sodium chloride as water tracer (WT) indicating that for larger rivers, sodium chloride should not be used as water tracer. The usage of sodium chloride as water tracer in the estimation of longitudinal dispersion coefficient is recommended in smaller streams as NaCl is relatively conservative. The established equations for both cases of investigation are proving satisfactory upon validation as degree of accuracy of 100.0% was obtained using discrepancy ratio (Dr). Standard error (SE), normal mean error (NME) and mean multiplication error (MME) of the developed equations is better when compared with other existing equations. However, Equation (17) is satisfactorily recommended.


Subject(s)
Sodium Chloride , Sodium Chloride/chemistry , Water Movements , Rhodamines/chemistry , Rivers/chemistry , Water Pollutants, Chemical/analysis
7.
Environ Microbiol ; 26(5): e16628, 2024 May.
Article in English | MEDLINE | ID: mdl-38757470

ABSTRACT

The degradation of freshwater systems by salt pollution is a threat to global freshwater resources. Salinization is commonly identified by increased specific conductance (conductivity), a proxy for salt concentrations. However, conductivity fails to account for the diversity of salts entering freshwaters and the potential implications this has on microbial communities and functions. We tested 4 types of salt pollution-MgCl2, MgSO4, NaCl, and Na2SO4-on bacterial taxonomic and functional α-, ß-diversity of communities originating from streams in two distinct localities (Nebraska [NE] and Ohio [OH], USA). Community responses depended on the site of origin, with NE and OH exhibiting more pronounced decreases in community diversity in response to Na2SO4 and MgCl2 than other salt amendments. A closer examination of taxonomic and functional diversity metrics suggests that core features of communities are more resistant to induced salt stress and that marginal features at both a population and functional level are more likely to exhibit significant structural shifts based on salt specificity. The lack of uniformity in community response highlights the need to consider the compositional complexities of salinization to accurately identify the ecological consequences of instances of salt pollution.


Subject(s)
Bacteria , Fresh Water , Microbiota , Salinity , Sodium Chloride , Fresh Water/microbiology , Bacteria/drug effects , Bacteria/classification , Bacteria/genetics , Microbiota/drug effects , Ohio , Sulfates/metabolism , Biodiversity , Magnesium Sulfate/pharmacology , Magnesium Chloride/pharmacology
8.
Crit Rev Biomed Eng ; 52(4): 17-28, 2024.
Article in English | MEDLINE | ID: mdl-38780103

ABSTRACT

In this study, we examine the behavior of articular cartilage equilibrated in a salt (NaCl) solution during non-Newtonian fluid flow that follows an Ostwald-de Waele model. A linearly elastic and isotropic rectangular strip of cartilage is considered for analysis. A continuum theory of mixtures has been employed to develop a coupled system of partial differential equations for the solid displacement and the fluid pressure by considering the important factor of the ion concentration by assuming the cartilage as a deformable porous media. The coupled system of partial differential equations is solved using the numerical method named method of lines. In most cases, shear-thinning fluid is compared to the shear-thickening fluid to magnify the difference. Graphical results show that shear-thickening fluids bring more solid deformation and shows less fluid pressure in comparison to the shear-thinning fluids.


Subject(s)
Cartilage, Articular , Pressure , Cartilage, Articular/physiology , Models, Biological , Humans , Ions , Animals , Rheology/methods , Elasticity , Sodium Chloride/chemistry , Viscosity , Porosity
9.
Int J Biol Macromol ; 268(Pt 2): 131998, 2024 May.
Article in English | MEDLINE | ID: mdl-38697415

ABSTRACT

The potential application of fish oil microcapsules as salt reduction strategies in low-salt myofibrillar protein (MP) gel was investigated by employing soy protein isolates/carboxymethyl cellulose sodium (SPI-CMC) coacervates enriched with 25 mM sodium chloride and exploring their rheological characteristics, taste perception, and microstructure. The results revealed that the SPI-CMC coacervate phase exhibited the highest sodium content under 25 mM sodium level, albeit with uneven distribution. Notably, the hydrophilic and adhesive properties of CMC to sodium facilitated the in vitro release of sodium during oral digestion, as evidenced by the excellent wettability and mucopenetration ability of CMC. Remarkably, the fish oil microcapsules incorporating SPI-CMC as the wall material, prepared at pH 3.5 with a core-to-wall ratio of 1:1, demonstrated the highest encapsulation efficiency, which was supported by the strong hydrogen bonding. Interestingly, the presence of SPI-CMC coacervates and fish oil microcapsules enhanced the interaction between MPs and strengthened the low-salt MP gel network. Coupled with electronic tongue analysis, the incorporation of fish oil microcapsules slightly exacerbated the non-uniformity of sodium distribution. This ultimately contributed to an enhanced perception of saltiness, richness, and aftertaste in low-salt protein gels. Overall, the incorporation of fish oil microcapsules emerged as an effective salt reduction strategy in low-salt MP gel.


Subject(s)
Carboxymethylcellulose Sodium , Fish Oils , Gels , Fish Oils/chemistry , Carboxymethylcellulose Sodium/chemistry , Gels/chemistry , Soybean Proteins/chemistry , Rheology , Capsules , Sodium Chloride/chemistry , Muscle Proteins/chemistry , Myofibrils/chemistry , Myofibrils/metabolism
10.
Int J Biol Macromol ; 268(Pt 2): 131972, 2024 May.
Article in English | MEDLINE | ID: mdl-38697436

ABSTRACT

Photochromic hydrogels have promising prospects in areas such as wearable device, information encryption technology, optoelectronic display technology, and electronic skin. However, there are strict requirements for the properties of photochromic hydrogels in practical engineering applications, especially in some extreme application environments. The preparation of photochromic hydrogels with high transparency, high toughness, fast response, colour reversibility, excellent electrical conductivity, and anti-freezing property remains a challenge. In this study, a novel photochromic hydrogel (PAAm/SA/NaCl-Mo7) was prepared by loading ammonium molybdate (Mo7) and sodium chloride (NaCl) into a dual-network hydrogel of polyacrylamide (PAAm) and sodium alginate (SA) using a simple one-pot method. PAAm/SA/NaCl-Mo7 hydrogel has excellent conductivity (175.9 S/cm), water retention capacity and anti-freezing properties, which can work normally at a low temperature of -28.4 °C. In addition, the prepared PAAm/SA/NaCl-Mo7 hydrogel exhibits fast response (<15 s), high transparency (>70 %), good toughness (maximum elongation up to 1500 %), good cyclic compression properties at high compressive strains (60 %), good biocompatibility (78.5 %), stable reversible discolouration and excellent sensing properties, which can be used for photoelectric display, information storage and motion monitoring. This work provides a new inspiration for the development of flexible electronic skin devices.


Subject(s)
Acrylic Resins , Alginates , Electric Conductivity , Hydrogels , Sodium Chloride , Alginates/chemistry , Acrylic Resins/chemistry , Hydrogels/chemistry , Sodium Chloride/chemistry , Wearable Electronic Devices , Freezing , Biocompatible Materials/chemistry , Humans
11.
Plant Cell Rep ; 43(6): 154, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809335

ABSTRACT

KEY MESSAGE: Integrated omics analyses outline the cellular and metabolic events of hemp plants in response to salt stress and highlight several photosynthesis and energy metabolism related pathways as key regulatory points. Soil salinity affects many physiological processes of plants and leads to crop yield losses worldwide. For hemp, a crop that is valued for multiple aspects, such as its medical compounds, fibre, and seed, a comprehensive understanding of its salt stress responses is a prerequisite for resistance breeding and tailoring its agronomic performance to suit certain industrial applications. Here, we first observed the phenotype of salt-stressed hemp plants and found that under NaCl treatment, hemp plants displayed pronounced growth defects, as indicated by the significantly reduced average height, number of leaves, and chlorophyll content. Next, we conducted comparative proteomics and metabolomics to dissect the complex salt-stress response mechanisms. A total of 314 proteins and 649 metabolites were identified to be differentially behaving upon NaCl treatment. Functional classification and enrichment analysis unravelled that many differential proteins were proteases associated with photosynthesis. Through metabolic pathway enrichment, several energy-related pathways were found to be altered, such as the biosynthesis and degradation of branched-chain amino acids, and our network analysis showed that many ribosomal proteins were involved in these metabolic adaptations. Taken together, for hemp plants, influences on chloroplast function probably represent a major toxic effect of salinity, and modulating several energy-producing pathways possibly through translational regulation is presumably a key protective mechanism against the negative impacts. Our data and analyses provide insights into our understanding of hemp's stress biology and may lay a foundation for future functional genomics studies.


Subject(s)
Cannabis , Metabolomics , Plant Proteins , Proteomics , Salinity , Cannabis/metabolism , Cannabis/genetics , Cannabis/physiology , Cannabis/drug effects , Proteomics/methods , Metabolomics/methods , Plant Proteins/metabolism , Plant Proteins/genetics , Salt Stress , Photosynthesis/drug effects , Gene Expression Regulation, Plant/drug effects , Stress, Physiological , Plant Leaves/metabolism , Plant Leaves/drug effects , Plant Leaves/genetics , Sodium Chloride/pharmacology , Chlorophyll/metabolism , Metabolome/drug effects , Phenotype
12.
Genes (Basel) ; 15(5)2024 May 18.
Article in English | MEDLINE | ID: mdl-38790270

ABSTRACT

BACKGROUND: Diagnosing imprinting defects in neonates and young children presents challenges, often necessitating molecular analysis for a conclusive diagnosis. The isolation of genetic material from oral swabs becomes crucial, especially in settings where blood sample collection is impractical or for vulnerable populations like newborns, who possess limited blood volumes and are often too fragile for invasive procedures. Oral swab samples emerge as an excellent source of DNA, effectively overcoming obstacles associated with rare diseases. METHODS: In our study, we specifically addressed the determination of the quality and quantity of DNA extracted from oral swab samples using NaCl procedures. RESULTS: We compared these results with extractions performed using a commercial kit. Subsequently, the obtained material underwent MS-HRM analysis for loci associated with imprinting diseases such as Prader-Willi and Angelman syndromes. CONCLUSIONS: Our study emphasizes the significance of oral swab samples as a reliable source for obtaining DNA for MS-HRM analysis. NaCl extraction stands out as a practical and cost-effective method for genetic studies, contributing to a molecular diagnosis that proves particularly beneficial for patients facing delays in characterization, ultimately influencing their treatment.


Subject(s)
Angelman Syndrome , DNA , Genomic Imprinting , Mouth Mucosa , Prader-Willi Syndrome , Humans , Mouth Mucosa/cytology , Mouth Mucosa/pathology , Angelman Syndrome/genetics , Angelman Syndrome/diagnosis , Prader-Willi Syndrome/genetics , Prader-Willi Syndrome/diagnosis , DNA/genetics , DNA/isolation & purification , Sodium Chloride , Infant, Newborn , Male , Imprinting Disorders
13.
Int J Mol Sci ; 25(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38791475

ABSTRACT

Amaranth species are C4 plants that are rich in betalains, and they are tolerant to salinity stress. A small family of plant-specific TCP transcription factors are involved in the response to salt stress. However, it has not been investigated whether amaranth TCP1 is involved in salt stress. We elucidated that the growth and physiology of amaranth were affected by salt concentrations of 50-200 mmol·L-1 NaCl. The data showed that shoot and root growth was inhibited at 200 mmol·L-1, while it was promoted at 50 mmol·L-1. Meanwhile, the plants also showed physiological responses, which indicated salt-induced injuries and adaptation to the salt stress. Moreover, AtrTCP1 promoted Arabidopsis seed germination. The germination rate of wild-type (WT) and 35S::AtrTCP1-GUS Arabidopsis seeds reached around 92% by the seventh day and 94.5% by the second day under normal conditions, respectively. With 150 mmol·L-1 NaCl treatment, the germination rate of the WT and 35S::AtrTCP1-GUS plant seeds was 27.0% by the seventh day and 93.0% by the fourth day, respectively. Under salt stress, the transformed 35S::AtrTCP1 plants bloomed when they grew 21.8 leaves after 16.2 days of treatment, which was earlier than the WT plants. The transformed Arabidopsis plants flowered early to resist salt stress. These results reveal amaranth's growth and physiological responses to salt stress, and provide valuable information on the AtrTCP1 gene.


Subject(s)
Amaranthus , Arabidopsis , Gene Expression Regulation, Plant , Germination , Plant Proteins , Salt Stress , Gene Expression Regulation, Plant/drug effects , Amaranthus/drug effects , Amaranthus/genetics , Amaranthus/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Germination/drug effects , Germination/genetics , Arabidopsis/genetics , Arabidopsis/drug effects , Arabidopsis/growth & development , Arabidopsis/physiology , Transcription Factors/genetics , Transcription Factors/metabolism , Plants, Genetically Modified , Plant Roots/growth & development , Plant Roots/drug effects , Plant Roots/genetics , Seeds/drug effects , Seeds/growth & development , Seeds/genetics , Salt Tolerance/genetics , Sodium Chloride/pharmacology
14.
Nat Commun ; 15(1): 4438, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806462

ABSTRACT

Various microbes isolated from healthy plants are detrimental under laboratory conditions, indicating the existence of molecular mechanisms preventing disease in nature. Here, we demonstrated that application of sodium chloride (NaCl) in natural and gnotobiotic soil systems is sufficient to induce plant disease caused by an otherwise non-pathogenic root-derived Pseudomonas brassicacearum isolate (R401). Disease caused by combinatorial treatment of NaCl and R401 triggered extensive, root-specific transcriptional reprogramming that did not involve down-regulation of host innate immune genes, nor dampening of ROS-mediated immunity. Instead, we identified and structurally characterized the R401 lipopeptide brassicapeptin A as necessary and sufficient to promote disease on salt-treated plants. Brassicapeptin A production is salt-inducible, promotes root colonization and transitions R401 from being beneficial to being detrimental on salt-treated plants by disturbing host ion homeostasis, thereby bolstering susceptibility to osmolytes. We conclude that the interaction between a global change stressor and a single exometabolite from a member of the root microbiome promotes plant disease in complex soil systems.


Subject(s)
Osmotic Pressure , Plant Diseases , Plant Roots , Pseudomonas , Plant Diseases/microbiology , Pseudomonas/metabolism , Pseudomonas/genetics , Plant Roots/microbiology , Plant Roots/metabolism , Sodium Chloride/pharmacology , Sodium Chloride/metabolism , Soil Microbiology , Lipopeptides/pharmacology , Lipopeptides/metabolism , Arabidopsis/microbiology , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis/drug effects
15.
Curr Microbiol ; 81(6): 160, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38695903

ABSTRACT

Salt stress can adversely affect plant seed germination, growth and development, and eventually lead to slow growth and even death of plants. The purpose of this study was to investigate the effects of different concentrations of NaCl and Na2SO4 stress on the physicochemical properties, enzyme activities, rhizosphere microbial community and seven active components (L-phenylalanine, Protocatechuic acid, Eleutheroside B, Chlorogenic acid, Caffeic acid, Eleutheroside E, Isofraxidin) of Acanthopanax senticosus rhizosphere soil. Statistical analysis was used to explore the correlation between the rhizosphere ecological factors of Acanthopanax senticosus and its active components. Compared with Acanthopanax senticosus under NaCl stress, Na2SO4 generally had a greater effect on Acanthopanax senticosus, which reduced the richness of fungi in rhizosphere soil and adversely affected the content of multiple active components. Pearson analysis showed that pH, organic matter, ammonium nitrogen, available phosphorus, available potassium, catalase and urease were significantly correlated with active components such as Caffeic acid and Isofraxidin. There were 11 known bacterial genera, 12 unknown bacterial genera, 9 known fungal genera and 1 unknown fungal genus significantly associated with the active ingredient. Salt stress had great changes in the physicochemical properties, enzyme activities and microorganisms of the rhizosphere soil of Acanthopanax senticosus. In conclusion, different types and concentrations of salts had different effects on Acanthopanax senticosus, and the active components of Acanthopanax senticosus were regulated by rhizosphere soil ecological factors.


Subject(s)
Bacteria , Eleutherococcus , Fungi , Rhizosphere , Salt Stress , Soil Microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/drug effects , Bacteria/isolation & purification , Bacteria/metabolism , Fungi/classification , Fungi/drug effects , Fungi/genetics , Fungi/isolation & purification , Eleutherococcus/metabolism , Microbiota/drug effects , Soil/chemistry , Sodium Chloride/metabolism , Plant Roots/microbiology
16.
Nat Commun ; 15(1): 3978, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38729926

ABSTRACT

A key mechanism employed by plants to adapt to salinity stress involves maintaining ion homeostasis via the actions of ion transporters. While the function of cation transporters in maintaining ion homeostasis in plants has been extensively studied, little is known about the roles of their anion counterparts in this process. Here, we describe a mechanism of salt adaptation in plants. We characterized the chloride channel (CLC) gene AtCLCf, whose expression is regulated by WRKY transcription factor under salt stress in Arabidopsis thaliana. Loss-of-function atclcf seedlings show increased sensitivity to salt, whereas AtCLCf overexpression confers enhanced resistance to salt stress. Salt stress induces the translocation of GFP-AtCLCf fusion protein to the plasma membrane (PM). Blocking AtCLCf translocation using the exocytosis inhibitor brefeldin-A or mutating the small GTPase gene AtRABA1b/BEX5 (RAS GENES FROM RAT BRAINA1b homolog) increases salt sensitivity in plants. Electrophysiology and liposome-based assays confirm the Cl-/H+ antiport function of AtCLCf. Therefore, we have uncovered a mechanism of plant adaptation to salt stress involving the NaCl-induced translocation of AtCLCf to the PM, thus facilitating Cl- removal at the roots, and increasing the plant's salinity tolerance.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Cell Membrane , Chloride Channels , Golgi Apparatus , Salt Stress , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/physiology , Arabidopsis/drug effects , Cell Membrane/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Golgi Apparatus/metabolism , Chloride Channels/metabolism , Chloride Channels/genetics , Gene Expression Regulation, Plant , Protein Transport/drug effects , Salt Tolerance/genetics , Sodium Chloride/pharmacology , Plants, Genetically Modified
17.
Int J Mol Sci ; 25(9)2024 May 06.
Article in English | MEDLINE | ID: mdl-38732273

ABSTRACT

Drought and salinity stress reduce root hydraulic conductivity of plant seedlings, and melatonin application positively mitigates stress-induced damage. However, the underlying effect of melatonin priming on root hydraulic conductivity of seedlings under drought-salinity combined remains greatly unclear. In the current report, we investigated the influence of seeds of three wheat lines' 12 h priming with 100 µM of melatonin on root hydraulic conductivity (Lpr) and relevant physiological indicators of seedlings under PEG, NaCl, and PEG + NaCl combined stress. A previous study found that the combined PEG and NaCl stress remarkably reduced the Lpr of three wheat varieties, and its value could not be detected. Melatonin priming mitigated the adverse effects of combined PEG + NaCl stress on Lpr of H4399, Y1212, and X19 to 0.0071 mL·h-1·MPa-1, 0.2477 mL·h-1·MPa-1, and 0.4444 mL·h-1·MPa-1, respectively, by modulating translation levels of aquaporin genes and contributed root elongation and seedlings growth. The root length of H4399, Y1212, and X19 was increased by 129.07%, 141.64%, and 497.58%, respectively, after seeds pre-treatment with melatonin under PEG + NaCl combined stress. Melatonin -priming appreciably regulated antioxidant enzyme activities, reduced accumulation of osmotic regulators, decreased levels of malondialdehyde (MDA), and increased K+ content in stems and root of H4399, Y1212, and X19 under PEG + NaCl stress. The path investigation displayed that seeds primed with melatonin altered the modification of the path relationship between Lpr and leaf area under stress. The present study suggested that melatonin priming was a strategy as regards the enhancement of root hydraulic conductivity under PEG, NaCl, and PEG + NaCl stress, which efficiently enhanced wheat resistant to drought-salinity stress.


Subject(s)
Droughts , Melatonin , Plant Roots , Salinity , Seedlings , Seeds , Triticum , Melatonin/pharmacology , Triticum/drug effects , Triticum/genetics , Triticum/physiology , Triticum/growth & development , Triticum/metabolism , Plant Roots/drug effects , Plant Roots/metabolism , Plant Roots/growth & development , Seeds/drug effects , Seedlings/drug effects , Seedlings/metabolism , Seedlings/genetics , Stress, Physiological/drug effects , Gene Expression Regulation, Plant/drug effects , Salt Stress , Sodium Chloride/pharmacology , Antioxidants/metabolism , Water/metabolism
18.
Environ Sci Technol ; 58(20): 8610-8630, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38720447

ABSTRACT

Solar desalination, a green, low-cost, and sustainable technology, offers a promising way to get clean water from seawater without relying on electricity and complex infrastructures. However, the main challenge faced in solar desalination is salt accumulation, either on the surface of or inside the solar evaporator, which can impair solar-to-vapor efficiency and even lead to the failure of the evaporator itself. While many ideas have been tried to address this ″salt accumulation″, scientists have not had a clear system for understanding what works best for the enhancement of salt-rejecting ability. Therein, for the first time, we classified the state-of-the-art salt-rejecting designs into isolation strategy (isolating the solar evaporator from brine), dilution strategy (diluting the concentrated brine), and crystallization strategy (regulating the crystallization site into a tiny area). Through the specific equations presented, we have identified key parameters for each strategy and highlighted the corresponding improvements in the solar desalination performance. This Review provides a semiquantitative perspective on salt-rejecting designs and critical parameters for enhancing the salt-rejecting ability of dilution-based, isolation-based, and crystallization-based solar evaporators. Ultimately, this knowledge can help us create reliable solar desalination solutions to provide clean water from even the saltiest sources.


Subject(s)
Seawater , Water Purification , Water Purification/methods , Seawater/chemistry , Sunlight , Salinity , Salts/chemistry , Sodium Chloride/chemistry
19.
Sci Total Environ ; 931: 172948, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38703853

ABSTRACT

Anthropogenic activities such as the over-application of road deicers are causing an increase in the concentration of salts in historically fresh waters. Experimental and field investigations demonstrate that freshwater salinization disrupts ecosystem functions and services, causing the death of freshwater organisms and changes to nutrient conditions. Wetland habitats are one system negatively affected by salt pollution, including ephemeral wetlands (vernal pools) that fill with salt-polluted water after snowmelt. In urbanized areas, the degradation of these ecosystems could result in irreversible ecological damage including reduced water quality and a reduction in biodiversity. To investigate the effects of freshwater salinization on vernal pool communities, we exposed soils from vernal pools to water containing no salt (control), or four concentrations of three salts standardized by chloride concentration (50 mg Cl- L-1, 100 mg Cl- L-1, 200 mg Cl- L-1, and 400 mg Cl- L-1; magnesium chloride, calcium chloride, and sodium chloride). The results of this experiment suggest that emerging zooplankton communities in vernal pools are sensitive to low concentrations of salt pollution, and that alternative salts such as magnesium chloride and calcium chloride are more toxic than sodium chloride. We did not find positive or negative changes in the abundance of eukaryotic phytoplankton but did find negative effects of salt on cyanobacteria abundance, possibly due to corresponding reductions in turbidity which might be needed as a fixation site for cyanobacteria to form heterocysts. Finally, we found that salt pollution likely caused flocculation of Dissolved Organic Matter (DOM), resulting in reduced concentrations of DOM which could alter the buffering capacity of freshwater systems, light attenuation, and the populations of planktonic heterotrophs.


Subject(s)
Cyanobacteria , Wetlands , Water Pollutants, Chemical/analysis , Fresh Water/chemistry , Environmental Monitoring , Sodium Chloride , Salinity , Phytoplankton/drug effects
20.
Food Chem ; 453: 139704, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38788639

ABSTRACT

This study investigated the effects of ultrasound-assisted dry-curing (UADC) on water holding capacity (WHC) and tenderness of pork at different powers and times, and the mechanism was discussed by considering the functional and structural properties of salt-soluble proteins (SSP). The results showed the application of appropriate UADC treatments (300 W, 60 min) have disruptively affected the muscle structure and decreased the size of the SSP particles (P < 0.05), resulting in the increased concentration of active sulfhydryl and surface hydrophobicity (P < 0.05). These modifications facilitated the dissociation of the myofibrillar structure and the dissolution of more connected proteins, which in turn improved the WHC and tenderness of the pork (P < 0.05). Nevertheless, extended periods of high-power UADC treatments negatively affected the WHC and tenderness of dry-cured pork (P < 0.05). In general, using SSP modified by UADC provides a novel strategy for enhancing the WHC and tenderness of dry-cured products.


Subject(s)
Food Handling , Meat Products , Water , Animals , Swine , Water/chemistry , Food Handling/instrumentation , Meat Products/analysis , Hydrophobic and Hydrophilic Interactions , Solubility , Sodium Chloride/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...