Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.472
Filter
1.
Environ Sci Technol ; 58(20): 8610-8630, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38720447

ABSTRACT

Solar desalination, a green, low-cost, and sustainable technology, offers a promising way to get clean water from seawater without relying on electricity and complex infrastructures. However, the main challenge faced in solar desalination is salt accumulation, either on the surface of or inside the solar evaporator, which can impair solar-to-vapor efficiency and even lead to the failure of the evaporator itself. While many ideas have been tried to address this ″salt accumulation″, scientists have not had a clear system for understanding what works best for the enhancement of salt-rejecting ability. Therein, for the first time, we classified the state-of-the-art salt-rejecting designs into isolation strategy (isolating the solar evaporator from brine), dilution strategy (diluting the concentrated brine), and crystallization strategy (regulating the crystallization site into a tiny area). Through the specific equations presented, we have identified key parameters for each strategy and highlighted the corresponding improvements in the solar desalination performance. This Review provides a semiquantitative perspective on salt-rejecting designs and critical parameters for enhancing the salt-rejecting ability of dilution-based, isolation-based, and crystallization-based solar evaporators. Ultimately, this knowledge can help us create reliable solar desalination solutions to provide clean water from even the saltiest sources.


Subject(s)
Seawater , Water Purification , Water Purification/methods , Seawater/chemistry , Sunlight , Salinity , Salts/chemistry , Sodium Chloride/chemistry
2.
Water Sci Technol ; 89(9): 2209-2224, 2024 May.
Article in English | MEDLINE | ID: mdl-38747945

ABSTRACT

The research presented in this paper is to determine the best tracer studies that will give acceptable estimates of longitudinal dispersion coefficient for Orashi river using rhodamine WT dye and sodium chloride as water tracer. Estimated results obtained for longitudinal dispersion coefficient for the case of rhodamine WT experiment ranges between 71 and 104.4 m2s-1 while that of sodium chloride experiment ranges between 20.1 and 34.71 m2s-1. These results revealed lower dispersion coefficient using sodium chloride as water tracer (WT) indicating that for larger rivers, sodium chloride should not be used as water tracer. The usage of sodium chloride as water tracer in the estimation of longitudinal dispersion coefficient is recommended in smaller streams as NaCl is relatively conservative. The established equations for both cases of investigation are proving satisfactory upon validation as degree of accuracy of 100.0% was obtained using discrepancy ratio (Dr). Standard error (SE), normal mean error (NME) and mean multiplication error (MME) of the developed equations is better when compared with other existing equations. However, Equation (17) is satisfactorily recommended.


Subject(s)
Sodium Chloride , Sodium Chloride/chemistry , Water Movements , Rhodamines/chemistry , Rivers/chemistry , Water Pollutants, Chemical/analysis
3.
Environ Sci Technol ; 58(21): 9091-9101, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38709279

ABSTRACT

People of all ages consume salt every day, but is it really just salt? Plastic nanoparticles [nanoplastics (NPs)] pose an increasing environmental threat and have begun to contaminate everyday salt in consumer goods. Herein, we developed a combined surface enhanced Raman scattering (SERS) and stimulated Raman scattering (SRS) approach that can realize the filtration, enrichment, and detection of NPs in commercial salt. The Au-loaded (50 nm) anodic alumina oxide substrate was used as the SERS substrate to explore the potential types of NP contaminants in salts. SRS was used to conduct imaging and quantify the presence of the NPs. SRS detection was successfully established through standard plastics, and NPs were identified through the match of the hydrocarbon group of the nanoparticles. Simultaneously, the NPs were quantified based on the high spatial resolution and rapid imaging of the SRS imaging platform. NPs in sea salts produced in Asia, Australasia, Europe, and the Atlantic were studied. We estimate that, depending on the location, an average person could be ingesting as many as 6 million NPs per year through the consumption of sea salt alone. The potential health hazards associated with NP ingestion should not be underestimated.


Subject(s)
Spectrum Analysis, Raman , Plastics , Nanoparticles , Sodium Chloride/chemistry
4.
Food Chem ; 453: 139704, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38788639

ABSTRACT

This study investigated the effects of ultrasound-assisted dry-curing (UADC) on water holding capacity (WHC) and tenderness of pork at different powers and times, and the mechanism was discussed by considering the functional and structural properties of salt-soluble proteins (SSP). The results showed the application of appropriate UADC treatments (300 W, 60 min) have disruptively affected the muscle structure and decreased the size of the SSP particles (P < 0.05), resulting in the increased concentration of active sulfhydryl and surface hydrophobicity (P < 0.05). These modifications facilitated the dissociation of the myofibrillar structure and the dissolution of more connected proteins, which in turn improved the WHC and tenderness of the pork (P < 0.05). Nevertheless, extended periods of high-power UADC treatments negatively affected the WHC and tenderness of dry-cured pork (P < 0.05). In general, using SSP modified by UADC provides a novel strategy for enhancing the WHC and tenderness of dry-cured products.


Subject(s)
Food Handling , Meat Products , Water , Animals , Swine , Water/chemistry , Food Handling/instrumentation , Meat Products/analysis , Hydrophobic and Hydrophilic Interactions , Solubility , Sodium Chloride/chemistry
5.
Crit Rev Biomed Eng ; 52(4): 17-28, 2024.
Article in English | MEDLINE | ID: mdl-38780103

ABSTRACT

In this study, we examine the behavior of articular cartilage equilibrated in a salt (NaCl) solution during non-Newtonian fluid flow that follows an Ostwald-de Waele model. A linearly elastic and isotropic rectangular strip of cartilage is considered for analysis. A continuum theory of mixtures has been employed to develop a coupled system of partial differential equations for the solid displacement and the fluid pressure by considering the important factor of the ion concentration by assuming the cartilage as a deformable porous media. The coupled system of partial differential equations is solved using the numerical method named method of lines. In most cases, shear-thinning fluid is compared to the shear-thickening fluid to magnify the difference. Graphical results show that shear-thickening fluids bring more solid deformation and shows less fluid pressure in comparison to the shear-thinning fluids.


Subject(s)
Cartilage, Articular , Pressure , Cartilage, Articular/physiology , Models, Biological , Humans , Ions , Animals , Rheology/methods , Elasticity , Sodium Chloride/chemistry , Viscosity , Porosity
6.
Int J Biol Macromol ; 268(Pt 2): 131998, 2024 May.
Article in English | MEDLINE | ID: mdl-38697415

ABSTRACT

The potential application of fish oil microcapsules as salt reduction strategies in low-salt myofibrillar protein (MP) gel was investigated by employing soy protein isolates/carboxymethyl cellulose sodium (SPI-CMC) coacervates enriched with 25 mM sodium chloride and exploring their rheological characteristics, taste perception, and microstructure. The results revealed that the SPI-CMC coacervate phase exhibited the highest sodium content under 25 mM sodium level, albeit with uneven distribution. Notably, the hydrophilic and adhesive properties of CMC to sodium facilitated the in vitro release of sodium during oral digestion, as evidenced by the excellent wettability and mucopenetration ability of CMC. Remarkably, the fish oil microcapsules incorporating SPI-CMC as the wall material, prepared at pH 3.5 with a core-to-wall ratio of 1:1, demonstrated the highest encapsulation efficiency, which was supported by the strong hydrogen bonding. Interestingly, the presence of SPI-CMC coacervates and fish oil microcapsules enhanced the interaction between MPs and strengthened the low-salt MP gel network. Coupled with electronic tongue analysis, the incorporation of fish oil microcapsules slightly exacerbated the non-uniformity of sodium distribution. This ultimately contributed to an enhanced perception of saltiness, richness, and aftertaste in low-salt protein gels. Overall, the incorporation of fish oil microcapsules emerged as an effective salt reduction strategy in low-salt MP gel.


Subject(s)
Carboxymethylcellulose Sodium , Fish Oils , Gels , Fish Oils/chemistry , Carboxymethylcellulose Sodium/chemistry , Gels/chemistry , Soybean Proteins/chemistry , Rheology , Capsules , Sodium Chloride/chemistry , Muscle Proteins/chemistry , Myofibrils/chemistry , Myofibrils/metabolism
7.
Int J Biol Macromol ; 268(Pt 2): 131972, 2024 May.
Article in English | MEDLINE | ID: mdl-38697436

ABSTRACT

Photochromic hydrogels have promising prospects in areas such as wearable device, information encryption technology, optoelectronic display technology, and electronic skin. However, there are strict requirements for the properties of photochromic hydrogels in practical engineering applications, especially in some extreme application environments. The preparation of photochromic hydrogels with high transparency, high toughness, fast response, colour reversibility, excellent electrical conductivity, and anti-freezing property remains a challenge. In this study, a novel photochromic hydrogel (PAAm/SA/NaCl-Mo7) was prepared by loading ammonium molybdate (Mo7) and sodium chloride (NaCl) into a dual-network hydrogel of polyacrylamide (PAAm) and sodium alginate (SA) using a simple one-pot method. PAAm/SA/NaCl-Mo7 hydrogel has excellent conductivity (175.9 S/cm), water retention capacity and anti-freezing properties, which can work normally at a low temperature of -28.4 °C. In addition, the prepared PAAm/SA/NaCl-Mo7 hydrogel exhibits fast response (<15 s), high transparency (>70 %), good toughness (maximum elongation up to 1500 %), good cyclic compression properties at high compressive strains (60 %), good biocompatibility (78.5 %), stable reversible discolouration and excellent sensing properties, which can be used for photoelectric display, information storage and motion monitoring. This work provides a new inspiration for the development of flexible electronic skin devices.


Subject(s)
Acrylic Resins , Alginates , Electric Conductivity , Hydrogels , Sodium Chloride , Alginates/chemistry , Acrylic Resins/chemistry , Hydrogels/chemistry , Sodium Chloride/chemistry , Wearable Electronic Devices , Freezing , Biocompatible Materials/chemistry , Humans
8.
J Phys Chem Lett ; 15(20): 5428-5435, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38743920

ABSTRACT

Nanoplastic-lipid interaction is vital to understanding the nanoscale mechanism of plastic adsorption and aggregation on a lipid membrane surface. However, a single-particle mechanistic picture of the nanoplastic transport process on a lipid surface remains unclear. Here, we report a salt-dependent non-Gaussian transport mechanism of polystyrene particles on a supported 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) lipid bilayer surface. Particle stickiness on the POPC surface increases with salt concentration, where the particles stay longer at the surface and diffuse to shorter distances. Additionally, a non-Gaussian diffusion state dominates the transport process at high salt concentrations. Our current study provides insight into the transport mechanism of polystyrene (PS) particles on supported lipid membranes, which is essential to understanding fundamental questions regarding the adsorption mechanisms of nanoplastics on lipid surfaces.


Subject(s)
Lipid Bilayers , Phosphatidylcholines , Polystyrenes , Sodium Chloride , Lipid Bilayers/chemistry , Phosphatidylcholines/chemistry , Polystyrenes/chemistry , Sodium Chloride/chemistry , Surface Properties , Adsorption , Diffusion
9.
Sci Rep ; 14(1): 11408, 2024 05 18.
Article in English | MEDLINE | ID: mdl-38762671

ABSTRACT

In the enhanced oil recovery (EOR) process, interfacial tension (IFT) has become a crucial factor because of its impact on the recovery of residual oil. The use of surfactants and biosurfactants can reduce IFT and enhance oil recovery by decreasing it. Asphaltene in crude oil has the structural ability to act as a surface-active material. In microbial-enhanced oil recovery (MEOR), biosurfactant production, even in small amounts, is a significant mechanism that reduces IFT. This study aimed to investigate fluid/fluid interaction by combining low biosurfactant values and low-salinity water using NaCl, MgCl2, and CaCl2 salts at concentrations of 0, 1000, and 5000 ppm, along with Geobacillus stearothermophilus. By evaluating the IFT, this study investigated different percentages of 0, 1, and 5 wt.% of varying asphaltene with aqueous bulk containing low-salinity water and its combination with bacteria. The results indicated G. Stearothermophilus led to the formation of biosurfactants, resulting in a reduction in IFT for both acidic and basic asphaltene. Moreover, the interaction between asphaltene and G. Stearothermophilus with higher asphaltene percentages showed a decrease in IFT under both acidic and basic conditions. Additionally, the study found that the interaction between acidic asphaltene and G. stearothermophilus, in the presence of CaCl2, NaCl, and MgCl2 salts, resulted in a higher formation of biosurfactants and intrinsic surfactants at the interface of the two phases, in contrast to the interaction involving basic asphaltene. These findings emphasize the dependence of the interactions between asphaltene and G. Stearothermophilus, salt, and bacteria on the specific type and concentration of asphaltene.


Subject(s)
Salinity , Surface Tension , Surface-Active Agents , Surface-Active Agents/chemistry , Surface-Active Agents/pharmacology , Water/chemistry , Geobacillus stearothermophilus , Sodium Chloride/chemistry , Petroleum , Calcium Chloride/chemistry
10.
Mol Pharm ; 21(5): 2484-2500, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38647432

ABSTRACT

Excipients are ubiquitous in pharmaceutical products, and often, they can also play a critical role in maintaining product quality. For a product containing a moisture-sensitive drug, moisture can be deleterious to the product stability during storage. Therefore, using excipients that interact with moisture in situ can potentially alleviate product stability issues. In this study, the interactive behavior of starch with moisture was augmented by coprocessing maize starch with sodium chloride (NaCl) or magnesium nitrate hexahydrate [Mg(NO3)2·6H2O] at different concentrations (5 and 10%, w/w). The effect of the formulation on drug stability was assessed through the degradation of acetylsalicylic acid, which was used as the model drug. The results showed that coprocessing of the starch with either NaCl or Mg(NO3)2·6H2O impacted the number of water molecule binding sites on the starch and how the sorbed moisture was distributed. The coprocessed excipients also resulted in lower drug degradation and lesser changes in tablet tensile strength during post-compaction storage. However, corresponding tablet formulations containing physical mixtures of starch and salts did not yield promising outcomes. This study demonstrated the advantageous concomitant use of common excipients by coprocessing to synergistically mitigate the adverse effects of moisture and promote product stability when formulating a moisture-sensitive drug. In addition, the findings could help to improve the understanding of moisture-excipient interactions and allow for the judicious choice of excipients when designing formulations containing moisture-sensitive drugs.


Subject(s)
Drug Stability , Excipients , Starch , Tablets , Tensile Strength , Excipients/chemistry , Starch/chemistry , Tablets/chemistry , Water/chemistry , Chemistry, Pharmaceutical/methods , Sodium Chloride/chemistry , Drug Compounding/methods , Aspirin/chemistry
11.
Analyst ; 149(11): 3186-3194, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38639484

ABSTRACT

The conformation of proteins is closely related to their biological functions, and it is affected by many factors, including the type of cations in solution. However, it is difficult to detect the conformational changes of a protein in situ. As a single-molecule sensing technology, nanopores can convert molecular structural information into analyzable current signals within a reasonable time range. Herein, we detect and analyze the effects of two different types of monovalent cations (Na+ and Li+) on a model protein bovine serum albumin (BSA) conformation using SiNx nanopores with different diameters. The quantitative analysis results show that the excluded volume of BSA in LiCl salt solutions is larger than the value in NaCl solution, indicating that Li+ is more prone to unfolding the proteins and making them unstable. This study demonstrated that nanopores enable the in situ detection of the structure of proteins at the single-molecule level and provide a new approach for the quantitative analysis of proteins.


Subject(s)
Nanopores , Serum Albumin, Bovine , Serum Albumin, Bovine/chemistry , Cattle , Protein Stability , Animals , Protein Conformation , Lithium Chloride/chemistry , Sodium Chloride/chemistry , Silicon Compounds/chemistry , Cations/chemistry
12.
Food Chem ; 449: 139216, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38604031

ABSTRACT

This study aimed to identify saltiness-enhancing peptides from yeast protein and elucidate their mechanisms by molecular docking. Yeast protein hydrolysates with optimal saltiness-enhancing effects were prepared under conditions determined using an orthogonal test. Ten saltiness-enhancing peptide candidates were screened using an integrated virtual screening strategy. Sensory evaluation demonstrated that these peptides exhibited diverse taste characteristics (detection thresholds: 0.13-0.50 mmol/L). Peptides NKF, LGLR, WDL, NMKF, FDSL and FDGK synergistically or additively enhanced the saltiness of a 0.30% NaCl solution. Molecular docking revealed that these peptides predominantly interacted with TMC4 by hydrogen bonding, with hydrophilic amino acids from both peptides and TMC4 playing a pivotal role in their binding. Furthermore, Leu217, Gln377, Glu378, Pro474 and Cys475 were postulated as the key binding sites of TMC4. These findings establish a robust theoretical foundation for salt reduction strategies in food and provide novel insights into the potential applications of yeast proteins.


Subject(s)
Molecular Docking Simulation , Peptides , Taste , Peptides/chemistry , Peptides/metabolism , Humans , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/metabolism , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Sodium Chloride/chemistry
13.
Food Chem ; 450: 139269, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38613961

ABSTRACT

The purpose of this study was to determine the effect of pre-rigor salting on the quality characteristics of surimi gels prepared from snakehead fish muscle. Pre-rigor and post-rigor muscle were mixed with 0.3% or 3% NaCl (w/w) and made into surimi gels, respectively. Results showed that pre-rigor muscle had a higher content of ATP, longer sarcomere, higher pH and greater protein solubility. Metabolic profile suggested that pre-rigor muscle had higher content (a 28-fold increase) of antioxidants such as butyryl-l-carnitine. Transmission electron microscopy showed more damage of mitochondria in post-rigor muscle. Surimi paste from pre-rigor meat chopped with 3% NaCl generally showed greater radical scavenging ability and had higher content of free sulfhydryl. Surimi gel made from pre-rigor muscle salted with 3% NaCl showed a larger gel strength (3.18 kg*mm vs. 2.22 kg*mm) and better water-holding (86% vs. 80%) than that of post-rigor group. Based on these findings, we hypothesized that: In addition to other factors such as pH, degree of denaturation, etc., less protein oxidation in pre-rigor salted surimi also contributes to the improved gel properties.


Subject(s)
Fish Products , Fish Proteins , Gels , Oxidation-Reduction , Animals , Gels/chemistry , Fish Products/analysis , Fish Proteins/chemistry , Sodium Chloride/chemistry , Sodium Chloride/analysis , Fishes , Food Handling , Water/chemistry , Perciformes/metabolism , Hydrogen-Ion Concentration
14.
Int J Biol Macromol ; 268(Pt 1): 131639, 2024 May.
Article in English | MEDLINE | ID: mdl-38641278

ABSTRACT

The phenomenon of overlapping double layers due to micropores inhibits capacitive deionization performance, which is improved by increasing the pore size. In this study, a novel ternary composite electrode (sodium lignosulfonate/reduced graphene oxide/cobalt sulfide, LGC) was designed using a two-step hydrothermal method. CoS with high pseudocapacitance modifies sodium lignosulfonate and graphene connected by hydrogen bonding, benefiting from the constitutive steric structure. The electrochemical performance was significantly enhanced, and the desalination capacity substantially improved. The LGC electrode specific capacitance was as high as 354.47 F g-1 at a 1 A g-1 current density. The desalination capacity of the capacitive deionization device comprising LGC and activated carbon in 1 M NaCl electrolyte reached 28.04 mg g-1 at an operating condition of 1.2 V, 7 mL min-1. Additionally, the LGC electrodes degraded naturally post the experiment by simply removing the CoS, suggesting that the LGC composites are promising material for capacitive deionization electrodes.


Subject(s)
Cobalt , Electrodes , Graphite , Lignin , Graphite/chemistry , Lignin/chemistry , Lignin/analogs & derivatives , Cobalt/chemistry , Porosity , Water Purification/methods , Electric Capacitance , Sodium Chloride/chemistry
15.
Meat Sci ; 213: 109507, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38583336

ABSTRACT

The impact of various field strength (2, 3, 4 kV/cm) and treatment time (60s and 90s) combinations on NaCl content and diffusion coefficient of beef were evaluated in the current study. Weight change, water content, water holding capacity, and texture of beef after brining were also explored. The results demonstrated pulsed electric field (PEF) pre-treatment significantly increased NaCl uptake when the brining time was 150 min (P < 0.05). The maximum NaCl content increased by 19.50% and the diffusion coefficient increased by 58.50%. Relatively mild PEF (60s) could improve beef qualities, but longer treatment time (90s) was detrimental to these qualities. Meanwhile, more complete myofibrillar structure and lower lipid oxidation extent were observed in the samples treated by PEF, contributing to the higher a* values. In conclusion, short processing time (60s) and high field strength (4 kV/cm) treatment is a potential strategy for meat brining acceleration and quality improvement in practical industrial production.


Subject(s)
Food Handling , Red Meat , Sodium Chloride , Animals , Cattle , Red Meat/analysis , Food Handling/methods , Sodium Chloride/chemistry , Electricity , Diffusion , Water , Myofibrils/chemistry , Muscle, Skeletal/chemistry , Food Quality
16.
Environ Res ; 251(Pt 1): 118589, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38428560

ABSTRACT

The use of graphene sheets in water treatment is increasing due to its adsorption capacity, reactivity, catalytic action and surface area. The challenges linked to wastewater treatment are vast due to the constant influx of various pollutants. Can the challenges of water desalination and purification be encountered by graphene-based composites and membranes?.The current work describes the synthesis of graphene oxide (GO) using modified Hummers' method. GO was functionalized with chitosan and used as adsorbents. On the other hand, it was reported that the surface of thin-film-composite (TFC) polyamide membranes was modified in order to desalinate highly saline water using pervaporation. The findings showed that GO synthesized by modified Hummers' method has a greater capacity for the adsorption of sodium ion and have better regeneration performance. Functionalization with chitosan increased adsorption capacity from 680.2 to 740.5 mg/g at the initial concentration of 45,000 mg/l of Na+ ions. On the other hand, modification in membrane comprises the chlorine treatment of surface of polyamide membrane. Layer-by-layer (LbL) deposition of positively charged polyethyleneimine (PEI) and negatively charged graphene oxide (GO) was followed. The PEI/GO LbL membrane's pure water flux was twice as high as compare to the original membrane. The synthesized membrane was tested against the aqueous solutions containing Na2SO4, MgSO4, NaCl and MgCl2 salts for their desalination. At different concentrations, a water flux of 8.9 kg/m2h with a huge salt rejection (>99.9%) was attained for every tested salt. It was observed that CS functionalized GO and GO membrane showed higher adsorption capacity and improved regeneration performance can be measured as an operational and active adsorbent for sea water desalination.


Subject(s)
Chitosan , Graphite , Membranes, Artificial , Water Purification , Graphite/chemistry , Chitosan/chemistry , Water Purification/methods , Adsorption , Salinity , Sodium Chloride/chemistry
17.
Int J Biol Macromol ; 265(Pt 2): 131037, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38521300

ABSTRACT

A growing interest has arisen in recreating real meat by mimicking its texture characteristics and muscle fiber structure. Our previous work successfully created meat analog fiber based on soybean protein isolate (SPI) and sodium alginate (SA) with the wet-spinning method. In this work, we analyzed the microstructure, texture profile, and water retainability of the assembled plant-based whole muscle meat analog (PMA) made of SPI/SA-based meat analog fiber and systematically studied the effect of different combinations and contents of transglutaminase (TG), salt, and soybean oil on the rheological behavior of the formulated adhesive. The estimated optimal condition that has the most similar texture characteristic with real chicken breast meat is: for every 1:1 mass ratio of simulated plant meat fibers to the adhesive, add 0.1 % TG enzyme addition in the adhesive and 100 mM NaCl addition. The physical behavior of PMA during cryopreservation was investigated through freeze-thaw cycles and freezing times. The addition of a small amount of oil and salt can efficiently prevent the PMA through freezing conditions which is comparable with the addition of D-Trehalose (TD). Overall, this study not only created a plant-based whole muscle meat analog product that is similar in texture to real chicken breast meat but also provided a new direction for constructing fiber-rich structure protein-based muscle meat analogs and their further commercialization.


Subject(s)
Meat Substitutes , Soybean Proteins , Freezing , Muscles , Meat/analysis , Muscle Proteins , Alginates , Sodium Chloride/chemistry
18.
Food Chem ; 447: 138950, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38492292

ABSTRACT

To better understanding the effects of ultrasonic marination on the porcine tissue, the moisture migration and microstructure were investigated in this study. Additionally, the acoustic field distribution was analysis using COMSOL Multiphysics. The low-filed NMR results demonstrated that ultrasonic curing induced a leftward shift in T21 and a rightward shift in T22, accompanied by a significant reduction in A22, thereby enhancing the water-holding capacity of pork. The SEM and TEM observation showed that the presence of larger interstitial gaps between muscle fibers facilitated the diffusion of NaCl. The simulation analysis revealed that the acoustic field at 26.8 kHz showed minimal standing wave effects and more pronounced cavitation, which was the main reason for the best curing effect at this frequency. The scale-up test showed the NaCl content in pork reached 1% after ultrasound curing, indicating the potential application of ultrasonic marination technology in domestic refrigerators.


Subject(s)
Pork Meat , Red Meat , Animals , Swine , Sodium Chloride/chemistry , Chemical Phenomena , Diffusion , Water/chemistry
19.
J Food Sci ; 89(5): 2684-2700, 2024 May.
Article in English | MEDLINE | ID: mdl-38551186

ABSTRACT

Salted egg yolks have a tender, loose, gritty, and oily texture and are commonly employed as fillings in baked goods. This study investigated the formation mechanism of egg yolk gels using three different pickling methods: NaCl, sucrose, and mixed groups. The results revealed that of these pickling methods, egg yolks pickled with the mixture had the lowest moisture content (11.59% at 25°C and 10.21% at 45°C), almost no free water content, and the highest hardness (19.11 N at 25°C and 31.01 N at 45°C). Intermolecular force measurements indicated that pickling with the mixture mitigated the surface hardening effect of sucrose and facilitated protein cross-linking. Moreover, confocal laser scanning microscopy of the egg yolk gels pickled with the mixture displayed macromolecular aggregates and oil exudation, suggesting that this method partially disrupted the lipoprotein structure and notably promoted yolk protein aggregation and lipid release. Overall, egg yolks formed a dense gel via the mixed pickling method owing to the ionic concentration and dehydration effects. These findings show the impact of NaCl and sucrose in pickling egg yolks, providing a crucial foundation for developing innovative and desirable egg yolk products. PRACTICAL APPLICATION: This study introduces a novel pickling strategy that combines sucrose and NaCl for egg yolk processing. The egg yolk pickled using this method exhibited improved quality according to the evaluated textural characteristics, moisture distribution, and protein aggregation behavior. The findings may broaden the use of sucrose as a pickling agent for egg yolk processing and provide new ideas for developing and producing pickled eggs and other food products.


Subject(s)
Egg Proteins , Egg Yolk , Food Handling , Sodium Chloride , Sucrose , Water , Egg Yolk/chemistry , Sucrose/chemistry , Sodium Chloride/chemistry , Water/chemistry , Egg Proteins/chemistry , Food Handling/methods , Protein Aggregates , Gels/chemistry , Animals , Chickens
20.
Fitoterapia ; 175: 105901, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38467281

ABSTRACT

To compare the bioactive compounds in agarwood induced by different methods in Aquilaria sinensis(Lour.) Gilg trees, a two dimensional thin layer chromatograph(2D-TLC) combined with effect directive analysis(EDA) was developed. Three antioxidants were found by 2D-TLC-DPPH and further identified as 2-(2-phenylethyl) chromones(PECs) with LC-MS/MS. The 3 antioxidants decreased along agarwood formation and their compositions in drilling induced agarwood differed with those in microbe culture induced agarwood. Further study showed NaCl treatment promoted antioxidants accumulation in agarwood induced by drilling or hot drilling. Hot drilling combined with salty stimulation was most efficient in some chemicals accumulation, which were identified as PECs with antioxidant, tyrosinase or ß-glucosidase inhibiting activities by 2D-TLC-EDA-LC-MS/MS. This study provided a 2D-TLC-EDA-LC-MS/MS method for bioactive compounds screen and qualification of agarwood. Based on this method, non-conventional methods were found to accelerate the accumulation of some bioactive PECs in A. sinensis trees.


Subject(s)
Antioxidants , Tandem Mass Spectrometry , Thymelaeaceae , Thymelaeaceae/chemistry , Antioxidants/pharmacology , Chromatography, Thin Layer , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Wood/chemistry , Sodium Chloride/pharmacology , Sodium Chloride/chemistry , Chromatography, Liquid , Monophenol Monooxygenase/antagonists & inhibitors , Molecular Structure , Flavonoids
SELECTION OF CITATIONS
SEARCH DETAIL
...