Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 13.052
Filter
1.
Luminescence ; 39(6): e4793, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38859746

ABSTRACT

The goal of the current research was to establish a quick and practical fluorometric technique for trifluridine analysis. The approach relied on the drug's complex formation with the zinc ion to produce a high-fluorescence product. The fluorescence was further enhanced by adding sodium dodecyl sulfate, and it was observed at 450 nm following excitation at 400 nm. With a determination coefficient of 0.9994, the association between emission intensity and trifluridine concentration was linear between 1 and 125 ng mL-1. The quantitation limit was 0.987 ng mL-1 while 0.333 ng mL-1 was the detection limit. The buffer type, pH and concentration, type of surfactant and concentration, and finally the diluting solvent were among the reaction conditions that were closely examined. With great precision and reliability, the drug in question was quantified using this method in dosage formulations. The proposed method's level of greenness was assessed using two methodologies: the analytical greenness metric (AGREE) and the Green Analytical Procedure Index (GAPI).


Subject(s)
Spectrometry, Fluorescence , Trifluridine , Trifluridine/analysis , Trifluridine/chemistry , Green Chemistry Technology , Hydrogen-Ion Concentration , Zinc/chemistry , Zinc/analysis , Sodium Dodecyl Sulfate/chemistry , Dosage Forms , Limit of Detection
2.
PLoS One ; 19(5): e0303199, 2024.
Article in English | MEDLINE | ID: mdl-38723048

ABSTRACT

This paper presents an optimized preparation process for external ointment using the Definitive Screening Design (DSD) method. The ointment is a Traditional Chinese Medicine (TCM) formula developed by Professor WYH, a renowned TCM practitioner in Jiangsu Province, China, known for its proven clinical efficacy. In this study, a stepwise regression model was employed to analyze the relationship between key process factors (such as mixing speed and time) and rheological parameters. Machine learning techniques, including Monte Carlo simulation, decision tree analysis, and Gaussian process, were used for parameter optimization. Through rigorous experimentation and verification, we have successfully identified the optimal preparation process for WYH ointment. The optimized parameters included drug ratio of 24.5%, mixing time of 8 min, mixing speed of 1175 rpm, petroleum dosage of 79 g, liquid paraffin dosage of 6.7 g. The final ointment formulation was prepared using method B. This research not only contributes to the optimization of the WYH ointment preparation process but also provides valuable insights and practical guidance for designing the preparation processes of other TCM ointments. This advanced DSD method enhances the screening approach for identifying the best preparation process, thereby improving the scientific rigor and quality of TCM ointment preparation processes.


Subject(s)
Machine Learning , Ointments , Rheology , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/administration & dosage , Medicine, Chinese Traditional , Drug Compounding/methods , Sodium Dodecyl Sulfate/chemistry , Monte Carlo Method
3.
J Oleo Sci ; 73(5): 675-681, 2024.
Article in English | MEDLINE | ID: mdl-38692891

ABSTRACT

Protein soils must be removed for both appearance and hygienic reasons. They are denatured by heat treatment or bleaching and cleaned using enzymes. Among the various types of protein soils, blood soils are the most noticeable and known to be denatured by heat and bleaching by oxidation. We verified herein that the detergency of heat and oxidatively denatured hemoglobin is greatly improved by the enzyme immersing treatment in the detergency with SDS and can be analyzed using the probability density functional method. The probability density functional method evaluates the cleaning power by assuming that the adhesion and cleaning force of soils are not uniquely determined, but instead have a distribution in intensity, with a usefulness that had recently been demonstrated. This analytical method showed that the cleaning power of the enzyme immersing treatment improved when the soil adhesive force was decreased due to denatured protein degradation, even though the cleaning power of the SDS remained unchanged, and the values were consistent with those in the cleaning test. In conclusion, the probability density functional method can be used to analyze enzymatic degradation of denatured protein soils and the resulting changes in their detergency.


Subject(s)
Protein Denaturation , Sodium Dodecyl Sulfate/chemistry , Oxidation-Reduction , Hot Temperature , Hemoglobins/chemistry , Soil/chemistry , Probability
4.
Sci Rep ; 14(1): 10270, 2024 05 04.
Article in English | MEDLINE | ID: mdl-38704438

ABSTRACT

Biosurfactants, as microbial bioproducts, have significant potential in the field of microbial enhanced oil recovery (MEOR). Biosurfactants are microbial bioproducts with the potential to reduce the interfacial tension (IFT) between crude oil and water, thus enhancing oil recovery. This study aims to investigate the production and characterization of biosurfactants and evaluate their effectiveness in increasing oil recovery. Pseudoxanthomonas taiwanensis was cultured on SMSS medium to produce biosurfactants. Crude oil was found to be the most effective carbon source for biosurfactant production. The biosurfactants exhibited comparable activity to sodium dodecyl sulfate (SDS) at a concentration of 400 ppm in reducing IFT. It was characterized as glycolipids, showing stability in emulsions at high temperatures (up to 120 °C), pH levels ranging from 3 to 9, and NaCl concentrations up to 10% (w/v). Response surface methodology revealed the optimized conditions for the most stable biosurfactants (pH 7, temperature of 40 °C, and salinity of 2%), resulting in an EI24 value of 64.45%. Experimental evaluations included sand pack column and core flooding studies, which demonstrated additional oil recovery of 36.04% and 12.92%, respectively. These results indicate the potential application of P. taiwanensis biosurfactants as sustainable and environmentally friendly approaches to enhance oil recovery in MEOR processes.


Subject(s)
Petroleum , Surface-Active Agents , Surface-Active Agents/metabolism , Surface-Active Agents/chemistry , Petroleum/metabolism , Xanthomonadaceae/metabolism , Hydrogen-Ion Concentration , Surface Tension , Temperature , Green Chemistry Technology/methods , Sodium Dodecyl Sulfate/chemistry , Emulsions
5.
Biol Pharm Bull ; 47(5): 997-999, 2024.
Article in English | MEDLINE | ID: mdl-38777759

ABSTRACT

Patch tests are often used in safety evaluations to identify the substance causing skin irritation, but the same substance can sometimes give positive or negative results depending on the test conditions. Here, we investigated differences in the skin penetration of two test compounds under different application conditions. We studied the effects of the anionic surfactant sodium dodecyl sulfate (SDS) and the nonionic surfactant polysorbate 80 (PS) on skin penetration of the preservatives methylisothiazolinone (MT) and methylchloroisothiazolinone (MCT), which are used in cosmetics such as shampoos. The skin permeation of MT was enhanced by SDS but was unchanged by PS. Skin impedance decreased in the presence of SDS whereas PS had the same effect as the control aqueous solution, suggesting that SDS reduction of the barrier function of skin affects the permeation of MT, a hydrophilic drug. Application of a mixture of MCT and MT in the presence of SDS did not affect the skin permeation of MCT whereas the permeation of MT was enhanced by SDS, indicating that the skin permeation of MCT is less affected by SDS than is MT. Thus, attention should be paid to the possible effect of co-solutes, especially hydrophilic drugs.


Subject(s)
Polysorbates , Skin Absorption , Skin , Sodium Dodecyl Sulfate , Surface-Active Agents , Thiazoles , Thiazoles/pharmacokinetics , Surface-Active Agents/pharmacology , Skin Absorption/drug effects , Polysorbates/pharmacology , Skin/metabolism , Skin/drug effects , Animals , Preservatives, Pharmaceutical , Swine , Cosmetics/pharmacokinetics , Electric Impedance , Permeability/drug effects
6.
Int J Pharm ; 657: 124190, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38701910

ABSTRACT

Lubricants are essential for most tablet formulations as they assist powder flow, prevent adhesion to tableting tools and facilitate tablet ejection. Magnesium stearate (MgSt) is an effective lubricant but may compromise tablet strength and disintegratability. In the design of orodispersible tablets, tablet strength and disintegratability are critical attributes of the dosage form. Hence, this study aimed to conduct an in-depth comparative study of MgSt with alternative lubricants, namely sodium lauryl sulphate (SLS), stearic acid (SA) and hydrogenated castor oil (HCO), for their effects on the tableting process as well as tablet properties. Powder blends were prepared with lactose, sodium starch glycolate or crospovidone as the disintegrant, and a lubricant at different concentrations. Angle of repose was determined for the mixtures. Comparative evaluation was carried out based on the ejection force, tensile strength, liquid penetration and disintegratability of the tablets produced. As the lubricant concentration increased, powder flow and tablet ejection improved. The lubrication efficiency generally decreased as follows: MgSt > HCO > SA > SLS. Despite its superior lubrication efficacy, MgSt is the only lubricant of four evaluated that reduced tablet tensile strength. Tablet disintegration time was strongly determined by tensile strength and liquid penetration, which were in turn affected by the lubricant type and concentration. All the above factors should be taken into consideration when deciding the type and concentration of lubricant for an orodispersible tablet formulation.


Subject(s)
Excipients , Lubricants , Stearic Acids , Tablets , Tensile Strength , Lubricants/chemistry , Stearic Acids/chemistry , Excipients/chemistry , Drug Compounding/methods , Powders/chemistry , Sodium Dodecyl Sulfate/chemistry , Castor Oil/chemistry , Povidone/chemistry , Starch/chemistry , Starch/analogs & derivatives , Lactose/chemistry , Administration, Oral , Solubility , Chemistry, Pharmaceutical/methods
7.
Anal Chim Acta ; 1311: 342736, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38816165

ABSTRACT

BACKGROUND: Capillary electrophoresis is a powerful analytical method featured with high separation efficiency, minimal sample requirements, and reduced organic solvents consumption. However, its low sensitivity hinders its wide application in determination of trace analytes especially for the weakly ionized hydrophobic compounds. Offline and Online capillary electrophoresis stacking methods are more favored to enhance detection sensitivity of analytes. The determination of two sesquiterpenes and an alkaloid from the dried root of Lindera aggregata merged as an example for developing a simple, sensitive and green method for the simultaneous determination of two hydrophobic compounds in complicated matrix samples. RESULTS: An offline-online capillary electrophoresis stacking strategy by integrating micro matrix solid phase dispersion with field-amplified sample stacking and micelle to cyclodextrin stacking has been developed for the simultaneous determination of dehydrocostus lactone, linderane, norisoboldine in complex matrices. The optimized parameters were set at 65 mM sodium dihydrogen phosphate, 35 % methanol, 180 s for sample injection and 210 s for cyclodextrin injection, 20 mM sodium dodecyl sulfate of sample matrix for online stacking; 1:1 sample to MCM-48, 180 s grinding time, and 1000 µL of 20 mM sodium dodecyl sulfate elution for offline procedure. Under the optimum conditions, the method showed good linearity with correlation coefficients (R2 ≥ 0.9927), low limits of detection within the range of 25-50 ng mL-1, satisfactory repeatability and reproducibility below 3.98 %, and acceptable recoveries between 94 % and 97 %. The developed method was successfully applied to two real samples, the root of L. aggregata and rat feces. SIGNIFICANCE: Sodium dodecyl sulfate is firstly used as an eluent in micro matrix solid phase dispersion and plays a dual role throughout the analytical procedure, including extraction solvent in sample preparation and micelle pseudophase during online stacking. It brings great procedure convenience to the method. The sensitivity of this method can improve up to 1283-folds compared with the normal mode. Moreover, the overall strategy indicates satisfied green potential evaluated by greenness assessment tools.


Subject(s)
Electrophoresis, Capillary , Hydrophobic and Hydrophilic Interactions , Sodium Dodecyl Sulfate , Electrophoresis, Capillary/methods , Sodium Dodecyl Sulfate/chemistry , Animals , Rats , Green Chemistry Technology , Limit of Detection , Cyclodextrins/chemistry , Sesquiterpenes/analysis , Alkaloids/analysis , Plant Roots/chemistry
8.
J Environ Manage ; 360: 121232, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38801804

ABSTRACT

Surfactant pollution is escalatitheng in eutrophic waters, but the effect of surfactant charge properties on the physiological and biochemical properties of toxin-producing microalgae remains inadequately explored. To address this gap, this study explores the effects and mechanisms of three common surfactants-cetyltrimethylammonium bromide (CTAB, cationic), sodium dodecyl sulfate (SDS, anionic), and Triton X-100 (nonionic)-found in surface waters, on the agglomeration behavior, physiological indicators, and Microcystin-LR (MC-LR) release of Microcystis aeruginosa (M. aeruginosa) by using UV-visible spectroscope, Malvern Zetasizer, fluorescence spectrometer, etc. Results suggest that charge properties significantly affect cyanobacterial aggregation and cellular metabolism. The CTAB-treated group demonstrates a ∼5.74 and ∼9.74 times higher aggregation effect compared to Triton X-100 and SDS (300 mg/L for 180 min) due to strong electrostatic attraction. Triton X-100 outperforms CTAB and SDS in polysaccharide extraction, attributed to its higher water solubility and lower critical micelle concentration. CTAB stimulates cyanobacteria to secrete proteins, xanthohumic acid, and humic acids to maintain normal physiological cells. Additionally, the results of SEM and ion content showed that CTAB damages the cell membrane, resulting in a ∼90% increase in the release of intracellular MC-LR without cell disintegration. Ionic analyses confirm that all three surfactants alter cell membrane permeability and disrupt ionic metabolic pathways in microalgae. This study highlights the relationship between the surface charge properties of typical surfactants and the dispersion/agglomeration behavior of cyanobacteria. It provides insights into the impact mechanism of exogenous surfactants on toxic algae production in eutrophic water bodies, offering theoretical references for managing surfactant pollution and treating algae blooms.


Subject(s)
Microcystins , Microcystis , Surface-Active Agents , Microcystins/chemistry , Microcystins/metabolism , Microcystis/drug effects , Surface-Active Agents/chemistry , Surface-Active Agents/pharmacology , Octoxynol/chemistry , Octoxynol/pharmacology , Sodium Dodecyl Sulfate/chemistry , Sodium Dodecyl Sulfate/pharmacology
9.
Forensic Sci Int ; 360: 112044, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38733652

ABSTRACT

WET UCIO is an inexpensive carbon-based powder suspension, reportedly as effective as commercially available formulations for latent fingermark detection on the sticky side of adhesive tapes. However, the surfactant solution used in WET UCIO is not readily accessible outside Europe, limiting its use in Seychelles or other non-European jurisdictions. In this study, the UCIO formulation was modified based on a 'frugal forensic' approach, by replacing the surfactant solution with an in-house sodium dodecyl sulfate solution prepared in 5 % aqueous ethanol. A comparative assessment against Wetwop™ using eight different pressure-sensitive adhesive tapes found that the modified formulation was at least as effective as commercial powder suspension. Modifying this technique under the frugal forensic framework has enhanced its accessibility to other jurisdictions and is recommended for validation in Seychelles.


Subject(s)
Adhesives , Dermatoglyphics , Powders , Humans , Suspensions , Surface-Active Agents , Sodium Dodecyl Sulfate/chemistry , Carbon/chemistry
10.
Biomed Mater ; 19(4)2024 May 07.
Article in English | MEDLINE | ID: mdl-38653259

ABSTRACT

The decellularized matrix has a great potential for tissue remodeling and regeneration; however, decellularization could induce host immune rejection due to incomplete cell removal or detergent residues, thereby posing significant challenges for its clinical application. Therefore, the selection of an appropriate detergent concentration, further optimization of tissue decellularization technique, increased of biosafety in decellularized tissues, and reduction of tissue damage during the decellularization procedures are pivotal issues that need to be investigated. In this study, we tested several conditions and determined that 0.1% Sodium dodecyl sulfate and three decellularization cycles were the optimal conditions for decellularization of pulp tissue. Decellularization efficiency was calculated and the preparation protocol for dental pulp decellularization matrix (DPDM) was further optimized. To characterize the optimized DPDM, the microstructure, odontogenesis-related protein and fiber content were evaluated. Our results showed that the properties of optimized DPDM were superior to those of the non-optimized matrix. We also performed the 4D-Label-free quantitative proteomic analysis of DPDM and demonstrated the preservation of proteins from the natural pulp. This study provides a optimized protocol for the potential application of DPDM in pulp regeneration.


Subject(s)
Decellularized Extracellular Matrix , Dental Pulp , Proteomics , Tissue Engineering , Tissue Scaffolds , Dental Pulp/cytology , Proteomics/methods , Animals , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Decellularized Extracellular Matrix/chemistry , Sodium Dodecyl Sulfate/chemistry , Humans , Odontogenesis , Extracellular Matrix/metabolism , Extracellular Matrix/chemistry
11.
Res Vet Sci ; 173: 105257, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636324

ABSTRACT

Decellularization is an innovative method to create natural scaffolds by removing all cellular materials while preserving the composition and three-dimensional ultrastructure of the extracellular matrix (ECM). The obtention of decellularized reproductive organs in cats might facilitate the development of assisted reproductive techniques not only in this species but also in other felids. The aim was to compare the efficiency of three decellularization protocols on reproductive organs (ovary, oviduct, and uterine horn) in domestic cats. The decellularization protocol involved 0.1% sodium dodecyl sulfate and 1%Triton X-100. Protocol 1 (P1) entailed 2-cycles of decellularization using these detergents. Protocol 2 (P2) was like P1 but included 3-cycles. Protocol 3 (P3) was similar to P2, with the addition of deoxyribonuclease incubation. Reproductive organs from nine cats were separated into two sides. One side served as the control (non-decellularized organ) while the contralateral side was the treated group (decellularized organ). The treated organs were subdivided into 3 groups (n = 3 per group) for each protocol. Both control and treated samples were analyzed for DNA content, histology (nuclear and ECM (collagen, elastin, and glycosaminoglycans (GAGs)) density), ultrastructure by electron microscopy, and cytotoxicity. The results of the study showed that P3 was the only protocol that displayed no nucleus residue and significantly reduced DNA content in decellularized samples (in all the studied organs) compared to the control (P < 0.05). The ECM content in the ovaries remained similar across all protocols compared with controls (P > 0.05). However, elastic fibers and GAGs decreased in decellularized oviducts (P < 0.05), while collagen levels remained unchanged (P > 0.05). Regarding the uterus, the ECM content decreased in decellularized uterine horns from P3 (P < 0.05). Electron microscopy revealed that the microarchitecture of the decellularized samples was maintained compared to controls. The decellularized tissues, upon being washed for 24 h, showed cytocompatibility following co-incubation with sperm. In conclusion, when comparing different decellularization methods, P3 proved to be the most efficient in removing nuclear material from reproductive organs compared to P1 and P2. P3 demonstrated its success in decellularizing ovarian samples by significantly decreasing DNA content while maintaining ECM components and tissue microarchitecture. However, P3 was less effective in maintaining ECM contents in decellularized oviducts and uterine horns.


Subject(s)
Extracellular Matrix , Uterus , Animals , Female , Cats , Uterus/cytology , Ovary/cytology , Ovary/ultrastructure , Oviducts/cytology , Oviducts/ultrastructure , DNA/analysis , Octoxynol , Sodium Dodecyl Sulfate , Glycosaminoglycans/analysis , Decellularized Extracellular Matrix/chemistry
12.
Cell Tissue Bank ; 25(2): 721-734, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38671187

ABSTRACT

Tissue regeneration is thought to have considerable promise with the use of scaffolds designed for tissue engineering. Although polymer-based scaffolds for tissue engineering have been used extensively and developed quickly, their ability to mimic the in-vivo milieu, overcome immunogenicity, and have comparable mechanical or biochemical properties has limited their capability for repair. Fortunately, there is a compelling method to get around these challenges thanks to the development of extracellular matrix (ECM) scaffolds made from decellularized tissues. We used ECM decellularized sheep kidney capsule tissue in our research. Using detergents such as Triton-X100 and sodium dodecyl sulfate (SDS), these scaffolds were decellularized. DNA content, histology, mechanical properties analysis, attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), biocompatibility, hemocompatibility and scanning electron microscope (SEM) imaging were measured. The results showed that the three-dimensional (3D) structure of the ECM remained largely intact. The scaffolds mentioned above had several hydrophilic properties. The best biocompatibility and blood compatibility properties were reported in the SDS method of 0.5%. The best decellularization scaffold was introduced with 0.5% SDS. Therefore, it can be proposed as a scaffold that has ECM like natural tissue, for tissue engineering applications.


Subject(s)
Kidney , Tissue Engineering , Tissue Scaffolds , Tissue Scaffolds/chemistry , Animals , Sheep , Tissue Engineering/methods , Kidney/cytology , Regeneration , Decellularized Extracellular Matrix/chemistry , Biocompatible Materials/chemistry , Sodium Dodecyl Sulfate/chemistry , Sodium Dodecyl Sulfate/pharmacology , Materials Testing , Extracellular Matrix/chemistry , Spectroscopy, Fourier Transform Infrared , Humans
13.
Colloids Surf B Biointerfaces ; 237: 113839, 2024 May.
Article in English | MEDLINE | ID: mdl-38492411

ABSTRACT

Herein, we have employed a supramolecular assembly of a cationic dye, LDS-698 and a common surfactant sodium dodecyl sulfate (SDS) as a turn-on fluorescent sensor for protamine (Pr) detection. Addition of cationic Pr to the solution of dye-surfactant complex brings negatively charged SDS molecules together through strong electrostatic interaction, assisting aggregation of SDS way before its critical micellar concentration (CMC). These aggregates encapsulate the dye molecules within their hydrophobic region, arresting non-radiative decay channels of the excited dye. Thus, the LDS-698•SDS assembly displays substantial enhancement in fluorescence intensity that follows a nice linear trend with Pr concentration, providing limit of detection (LOD) for Pr as low as 3.84(±0.11) nM in buffer, 124.4(±6.7) nM in 1% human serum and 28.3(±0.5) nM in 100% human urine. Furthermore, high selectivity, low background signal, large stokes shift, and emission in the biologically favorable deep-red region make the studied assembly a promising platform for Pr sensing. As of our knowledge it is the first ever Pr sensory platform, using a very common surfactant (SDS), which is economically affordable and very easily available in the market. This innovative approach can replace the expensive, exotic and specialized chemicals considered for the purpose and thus showcase its potential in practical applications.


Subject(s)
Pulmonary Surfactants , Surface-Active Agents , Humans , Surface-Active Agents/chemistry , Antidotes , Heparin , Sodium Dodecyl Sulfate/chemistry , Cations/chemistry
14.
J Basic Microbiol ; 64(6): e2300441, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38470163

ABSTRACT

High-temperature-requirement protein A (HtrA) family proteins play important roles in controlling protein quality and are recognized as virulence factors in numerous animal and human bacterial pathogens. The role of HtrA family proteins in plant pathogens remains largely unexplored. Here, we investigated the HtrA family protein, DegQ, in the crucifer black rot pathogen Xanthomonas campestris pathovar campestris (Xcc). DegQ is essential for bacterial attachment and full virulence of Xcc. Moreover, the degQ mutant strain showed increased sensitivity to heat treatment and sodium dodecyl sulfate. Expressing the intact degQ gene in trans in the degQ mutant could reverse the observed phenotypic changes. In addition, we demonstrated that the DegQ protein exhibited chaperone-like activity. Transcriptional analysis displayed that degQ expression was induced under heat treatment. Our results contribute to understanding the function and expression of DegQ of Xcc for the first time and provide a novel perspective about HtrA family proteins in plant pathogen.


Subject(s)
Bacterial Proteins , Gene Expression Regulation, Bacterial , Plant Diseases , Xanthomonas campestris , Xanthomonas campestris/genetics , Xanthomonas campestris/pathogenicity , Xanthomonas campestris/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Plant Diseases/microbiology , Virulence/genetics , Virulence Factors/genetics , Virulence Factors/metabolism , Hot Temperature , Bacterial Adhesion/genetics , Sodium Dodecyl Sulfate/pharmacology , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Brassica/microbiology , Gene Expression Profiling , Mutation
15.
Braz J Microbiol ; 55(2): 1507-1519, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38468117

ABSTRACT

Bioremediation of surfactants in water bodies holds significant ecological importance as they are contaminants of emerging concern posing substantial threats to the aquatic environment. Microbes exhibiting special ability in terms of bioremediation of contaminants have always been reported to thrive in extraordinary environmental conditions that can be extreme in terms of temperature, lack of nutrients, and salinity. Therefore, in the present investigation, a total of 46 bacterial isolates were isolated from the Indian sector of the Southern Ocean and screened for degradation of sodium dodecyl sulphate (SDS). Further, two Gram-positive psychrotolerant bacterial strains, ASOI-01 and ASOI-02 were identified with significant SDS degradation potential. These isolates were further studied for growth optimization under different environmental conditions. The strains were characterized as Staphylococcus saprophyticus and Bacillus pumilus based on morphological, biochemical, and molecular (16S RNA gene) characteristics. The study reports 88.9% and 93.4% degradation of SDS at a concentration of 100 mgL-1, at 20 °C, and pH 7 by S. saprophyticus ASOI-01 and B. pumilus ASOI-02, respectively. The experiments were also conducted in wastewater samples where a slight reduction in degradation efficiency was observed with strains ASOI-01 and ASOI-02 exhibiting 76.83 and 64.93% degradation of SDS respectively. This study infers that these bacteria can be used for the bioremediation of anionic surfactants from water bodies and establishes the potential of extremophilic microbes for the utilization of sustainable wastewater management.


Subject(s)
Bacillus pumilus , Biodegradation, Environmental , Seawater , Sodium Dodecyl Sulfate , Staphylococcus saprophyticus , Sodium Dodecyl Sulfate/metabolism , Bacillus pumilus/genetics , Bacillus pumilus/metabolism , Bacillus pumilus/isolation & purification , Bacillus pumilus/classification , Staphylococcus saprophyticus/genetics , Staphylococcus saprophyticus/isolation & purification , Staphylococcus saprophyticus/metabolism , Staphylococcus saprophyticus/classification , Seawater/microbiology , Surface-Active Agents/metabolism , Phylogeny , RNA, Ribosomal, 16S/genetics , Water Pollutants, Chemical/metabolism , Wastewater/microbiology
16.
Biofabrication ; 16(2)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38394679

ABSTRACT

Decellularized matrices are an attractive choice of scaffold in regenerative medicine as they can provide the necessary extracellular matrix (ECM) components, signals and mechanical properties. Various detergent-based protocols have already been proposed for decellularization of skeletal muscle tissue. However, a proper comparison is difficult due to differences in species, muscle origin and sample sizes. Moreover, a thorough evaluation of the remaining acellular matrix is often lacking. We compared an in-house developed decellularization protocol to four previously published methods in a standardized manner. Porcine skeletal muscle samples with uniform thickness were subjected to in-depth histological, ultrastructural, biochemical and biomechanical analysis. In addition, 2D and three-dimensional cytocompatibility experiments were performed. We found that the decellularization methods had a differential effect on the properties of the resulting acellular matrices. Sodium deoxycholate combined with deoxyribonuclease I was not an effective method for decellularizing thick skeletal muscle tissue. Triton X-100 in combination with trypsin, on the other hand, removed nuclear material but not cytoplasmic proteins at low concentrations. Moreover, it led to significant alterations in the biomechanical properties. Finally, sodium dodecyl sulphate (SDS) seemed most promising, resulting in a drastic decrease in DNA content without major effects on the ECM composition and biomechanical properties. Moreover, cell attachment and metabolic activity were also found to be the highest on samples decellularized with SDS. Through a newly proposed standardized analysis, we provide a comprehensive understanding of the impact of different decellularizing agents on the structure and composition of skeletal muscle. Evaluation of nuclear content as well as ECM composition, biomechanical properties and cell growth are important parameters to assess. SDS comes forward as a detergent with the best balance between all measured parameters and holds the most promise for decellularization of skeletal muscle tissue.


Subject(s)
Detergents , Extracellular Matrix , Animals , Swine , Detergents/chemistry , Detergents/metabolism , Detergents/pharmacology , Extracellular Matrix/metabolism , Octoxynol/chemistry , Octoxynol/metabolism , Octoxynol/pharmacology , Muscle, Skeletal , Sodium Dodecyl Sulfate/chemistry , Sodium Dodecyl Sulfate/metabolism , Sodium Dodecyl Sulfate/pharmacology , Tissue Scaffolds , Tissue Engineering/methods
17.
Proteomics ; 24(10): e2300339, 2024 May.
Article in English | MEDLINE | ID: mdl-38299459

ABSTRACT

Detergent-based workflows incorporating sodium dodecyl sulfate (SDS) necessitate additional steps for detergent removal ahead of mass spectrometry (MS). These steps may lead to variable protein recovery, inconsistent enzyme digestion efficiency, and unreliable MS signals. To validate a detergent-based workflow for quantitative proteomics, we herein evaluate the precision of a bottom-up sample preparation strategy incorporating cartridge-based protein precipitation with organic solvent to deplete SDS. The variance of data-independent acquisition (SWATH-MS) data was isolated from sample preparation error by modelling the variance as a function of peptide signal intensity. Our SDS-assisted cartridge workflow yield a coefficient of variance (CV) of 13%-14%. By comparison, conventional (detergent-free) in-solution digestion increased the CV to 50%; in-gel digestion provided lower CVs between 14% and 20%. By filtering peptides predicting to display lower precision, we further enhance the validity of data in global comparative proteomics. These results demonstrate the detergent-based precipitation workflow is a reliable approach for in depth, label-free quantitative proteome analysis.


Subject(s)
Chemical Precipitation , Detergents , Proteomics , Sodium Dodecyl Sulfate , Workflow , Proteomics/methods , Sodium Dodecyl Sulfate/chemistry , Detergents/chemistry , Proteome/analysis , Proteome/chemistry , Humans , Peptides/chemistry , Peptides/analysis
18.
J Oleo Sci ; 73(2): 169-176, 2024.
Article in English | MEDLINE | ID: mdl-38311407

ABSTRACT

Skin disorders, including acne vulgaris, atopic dermatitis, and rosacea, are characterized by the presence of biofilms, which are communities of microorganisms. The mechanical stability of biofilms is attributed to one of their constituents-polysaccharides-which are secreted by microorganisms. Sophorolipids are biosurfactants with biofilm disruption and removal abilities and are expected to become alternatives for classical petrochemical-based surfactants in cosmetics. In this study, we investigated the influence of sophorolipids on ß-glucan such as dispersion status, interaction mechanism, and configuration change as a model polysaccharide of biofilm in aqueous solution. Dynamic light scattering measurements showed that sophorolipids interfere with the aggregation of ß- glucan in aqueous solutions. In contrast, sodium dodecyl sulfate (SDS), which is used as a typical surfactant reference, promotes the aggregation of ß-glucan. The interaction between sophorolipids and ß-glucan were investigated using surface tension measurements and isothermal titration calorimetry (ITC). Surface tension increased only near critical micelle concentration (CMC) region of sophorolipids in the presence of ß-glucan. This suggests that the interaction occurred in the solution rather than at the air-liquid interface. Moreover, the results of ITC indicate that hydrophobic interactions were involved in this interaction. In addition, the results of optical rotation measurements indicate that sophorolipids did not unfold the triple helical structure of ß-glucan. ß-glucan dispersion was expected to be caused steric hindrance and electrostatic repulsion when sophorolipids interacted with ß-glucan via hydrophobic interactions owing to the unique molecular structure of sophorolipids attributed by a bulky sugar moiety and a carboxyl functional group. These results demonstrated unique performances of sophorolipids on ß-glucan and provided more insights on the efficacy of sophorolipids as good anti-biofilms.


Subject(s)
Oleic Acids , Surface-Active Agents , Sodium Dodecyl Sulfate/chemistry , Surface-Active Agents/chemistry , Hydrophobic and Hydrophilic Interactions , Polysaccharides , Solutions
19.
Spectrochim Acta A Mol Biomol Spectrosc ; 311: 123986, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38335587

ABSTRACT

Tolterodine tartrate (TTD) was the first antimuscarinic medication developed exclusively for the treatment of overactive bladder syndrome and was approved by the FDA in 1998. As a result of the drug's extensive utilization within the local community following its authorization, there is a pressing need to develop and validate a spectrofluorometric method that is economically efficient, easily reproducible, environmentally sustainable, and possesses high sensitivity. The developed approach relies on enhancing the fluorescence intensity of TTD to reach a level 720 % higher than its initial value, achieved through the application of an aqueous sodium dodecyl sulfate (SDS) solution. A strong correlation was observed with a correlation coefficient of 0.9998 between the concentration of TTD and the fluorescence intensity within the range of 25.0-500.0 ng mL-1. This approach could be employed to quantify TTD in its pure form and to examine pharmaceutical tablets for the purposes of verifying uniform content. Additionally, it was utilized for the evaluation of TTD concentrations in spiked human plasma.


Subject(s)
Urinary Bladder, Overactive , Humans , Tolterodine Tartrate , Urinary Bladder, Overactive/drug therapy , Spectrometry, Fluorescence/methods , Muscarinic Antagonists/therapeutic use , Sodium Dodecyl Sulfate
20.
Water Sci Technol ; 89(4): 859-872, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38423605

ABSTRACT

A batch-scale electro-Fenton (EF) process was performed using graphite anode and waste battery-based Fe -Mn -Zn/C electrocatalyst coated on low-cost graphite felt cathode. The effectiveness of the EF's performance was evident with around 83.9 + 4.1% removal of 20 mg/L of sodium-dodecyl sulfate surfactant (SDS) at an optimum current density (CD) of 5.0 mA/cm2, Na2SO4 of 0.05 M, initial pH of 7.2, and electrolysis time of 180 min. Moreover, nearly 1.78-fold more removal of SDS was achieved in EF than in the electro-oxidation process operated without any catalyst. The operating cost of 0.35 $ of per m3 per order was needed to treat SDS wastewater. The remediation of SDS follows pseudo-first-order kinetics with a rate constant of 0.0095 min-1. Additionally, 90.3 + 2.1% of SDS and 57 + 2.6% of total organic carbon (TOC) removal was attained during 240 min of treatment time in secondary treated real wastewater; hence, additional 60 min of treatment time is required for effectively treating real wastewater than synthetic wastewater. Thus, EF is effective with battery waste-derived magnetic catalyst for treating wastewater containing SDS, which can lead to achieving sustainable environmental goals.


Subject(s)
Graphite , Water Pollutants, Chemical , Wastewater , Sodium Dodecyl Sulfate , Surface-Active Agents , Water Pollutants, Chemical/analysis , Hydrogen Peroxide , Oxidation-Reduction , Electrodes , Magnetic Phenomena , Zinc
SELECTION OF CITATIONS
SEARCH DETAIL
...