Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.294
Filter
1.
Water Sci Technol ; 89(10): 2812-2822, 2024 May.
Article in English | MEDLINE | ID: mdl-38822616

ABSTRACT

The sequential extraction routes of biogenic materials from sewage sludge (SS) were investigated. Physical methods (ultrasound, heating) and chemical methods (sodium hydroxide, sodium carbonate) were used to extract extracellular polymeric substances (EPS) and alginate-like extracellular polymers (ALEs) from SS. The residues after extraction were further subjected to physical methods (heating) and chemical methods (sulfuric acid, sodium hydroxide) for protein extraction. A comparison was made between sequential extraction routes and direct extraction of biomaterials from sludge in terms of extraction quantity, material properties, and applicability. The results showed that sequential extraction of biomaterials is feasible. The highest extraction quantities were obtained when using sodium carbonate for EPS and ALE extraction and sodium hydroxide for protein, reaching 449.80 mg/gVSS, 109.78 mg/gVSS, and 5447.08 mg/L, respectively. Sequential extraction procedures facilitate the extraction of biomaterials. Finally, suitable extraction methods for different application scenarios were analyzed.


Subject(s)
Sewage , Sewage/chemistry , Sodium Hydroxide/chemistry , Chemical Fractionation/methods , Carbonates/chemistry , Feasibility Studies
2.
Environ Geochem Health ; 46(6): 182, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38695980

ABSTRACT

Due to the development of industries such as mining, smelting, industrial electroplating, tanning, and mechanical manufacturing, heavy metals were discharged into water bodies seriously affecting water quality. Bamboo charcoal, as an environmentally friendly new adsorbent material, in this paper, the virgin bamboo charcoal (denoted as WBC) was modified with different concentrations of KMnO4 and NaOH to obtain KMnO4-modified bamboo charcoal (KBC) and NaOH-modified bamboo charcoal (NBC) which was used to disposed of water bodies containing Cu2+ and Zn2+. The main conclusions were as following: The adsorption of Cu2+ by WBC, KBC and NBC was significantly affected by pH value, and the optimum pH was 5.0. Differently, the acidity and alkalinity of the solution doesn't effect the adsorption of Zn2+ seriousely. Meanwhile, surface diffusion and pore diffusion jointly determine the adsorption rate of Cu2+ and Zn2+. The test result of EDS showed that Mn-O groups formed on the surface of K6 (WBC treated by 0.06 mol/L KMnO4) can promote the adsorption of Cu2+ and Zn2+ at a great degree. The O content on N6(WBC treated by 6 mol/L NaOH) surface increased by 30.95% compared with WBC. It is speculated that the increase of carbonyl group on the surface of NBC is one of the reasons for the improvement of Cu2+ and Zn2+ adsorption capacity. Finally, the residual concentrations of Cu2+ and Zn2+ in wastewater are much lower than 0.5 mg/L and 1.0 mg/L, respectively. Thus it can be seen, KBC and NBC could be a promising adsorbent for heavy metals.


Subject(s)
Charcoal , Copper , Water Pollutants, Chemical , Zinc , Adsorption , Zinc/chemistry , Copper/chemistry , Charcoal/chemistry , Water Pollutants, Chemical/chemistry , Hydrogen-Ion Concentration , Potassium Permanganate/chemistry , Water Purification/methods , Sasa/chemistry , Sodium Hydroxide/chemistry
3.
Pediatr Surg Int ; 40(1): 118, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698156

ABSTRACT

PURPOSE: We aimed to examine the effectiveness of mother milk exosomes in treating corrosive esophageal burns. MATERIALS AND METHODS: 32 rats were separated into four equal groups and weighed individually before the procedure. A corrosive esophageal burn model was created with 12.5% sodium hydroxide by a 3F Fogarty catheter. Group 1 did not apply any process or treatment, Group 2 was burned, and no treatment was performed. Group 3 was burned, and then 0.5 cc/day of mother milk exosome extract was given. Group 4 was not applied any process, and 0.5 cc/day mother milk exosome extract was given. All rats were weighed again and sacrificed. Biopsy samples were sent to the pathology laboratory for histopathological examination (in terms of inflammation, fibrosis, and necrosis).Kindly check and confrm all email ids.The e-mail addresses and affiliation of all authors were checked. Affiliation departments are as stated on the title page. There is no change. RESULTS: A significant difference was found in the results of inflammation and fibrosis. There was a meaningful difference in fibrosis between the 2nd and 3rd groups. There was weight gain in groups 1, 3 and 4. Statistical evaluations for each group were significant. CONCLUSION: It was observed that breast milk exosomes may be effective in inflammation and fibrosis formation in treating corrosive esophageal burns. This suggested that breast milk exosomes reduce stricture formation due to esophageal corrosion.Please confirm if the author names are presented accurately and in the correct sequence (given name, middle name/initial, family name). Author 1 Given name: [specify authors given name] Last name [specify authors last name]. Also, kindly confirm the details in the metadata are correct.The names and affiliation of all authors were checked. Affiliation departments are as stated on the title page. There is no change. Also we confirm the details in the metadata.


Subject(s)
Burns, Chemical , Disease Models, Animal , Exosomes , Animals , Rats , Burns, Chemical/therapy , Esophagitis/chemically induced , Esophagitis/pathology , Caustics/toxicity , Milk, Human , Female , Sodium Hydroxide/toxicity , Esophagus/pathology , Male
4.
Sci Rep ; 14(1): 12088, 2024 05 27.
Article in English | MEDLINE | ID: mdl-38802402

ABSTRACT

Nowadays, scientists are currently attempting to lessen the harmful effects of chemicals on the environment. Stability testing identifies how a drug's quality changes over time. The current work suggests a first and sustainable differential pulse voltammetry technique for quantifying difluprednate (DIF) as an anti-inflammatory agent in the presence of its alkaline degradation product (DEG). The optimum conditions for the developed method were investigated with a glassy carbon electrode and a scan rate of 100 mV s-1. The linearity range was 2.0 × 10-7-1.0 × 10-6 M for DIF. DIF was found to undergo alkaline degradation, when refluxed for 8 h using 2.0 M NaOH, and DEG was successfully characterized utilizing IR and MS/MS. The intended approach demonstrated the selectivity for DIF identification in pure, pharmaceutical, and degradation forms. The student's t-test and F value were used to compare the suggested and reported approaches statistically. The results were validated according to ICH requirements. The greenness of the studied approach was evaluated using the Green Analytical Procedure Index and the Analytical Greenness metric. Additionally, the whiteness features of the proposed approach were examined with the recently released red, green, and blue 12 model, and the recommended strategy performed better than the reported approaches in greenness and whiteness.


Subject(s)
Electrochemical Techniques , Electrochemical Techniques/methods , Electrodes , Sodium Hydroxide/chemistry , Tandem Mass Spectrometry/methods , Hydrogen-Ion Concentration , Green Chemistry Technology/methods
5.
Water Environ Res ; 96(4): e11020, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38636954

ABSTRACT

Antiretroviral drugs (ARVDs) have been extensively employed in health care to improve the quality of life and lifecycle longevity. However, overuse and improper disposal of ARVDs have been recognized as an emerging concern whereby wastewater treatment major recipients. Therefore, in this work, the activated macadamia nutshells (MCNs) were explored as low-cost adsorbents for the removal of ARVDs in wastewater samples. Fourier transform infrared spectroscopy (FTIR), Scanning Electron microscopy (SEM), Brunauer-Emmet-Teller (BET), and Powder X-ray diffraction (PXRD). The highest removal efficiency (R.E) was above 86% for the selected analytes nevirapine, abacavir, and efavirenz. The maximum adsorption capacity of the functionalized MCN adsorbent was 10.79, 27.44, and 38.17 mg/g for nevirapine, abacavir, and efavirenz for HCl-modified adsorbent. In contrast, NaOH modified had adsorption capacities of 13.67, 14.25, and 20.79 mg/g. The FTIR showed distinct functional groups OH and CO, which facilitate the removal of selected ARVDs. From studying kinetics parameters, the pseudo-second-order (R2 = 0.990-0.996) was more dominant than the pseudo-first-order (R2 = 0.872-0.994). The experimental data was most fitted in the Freundlich model with (R2 close to 1). The thermodynamic parameters indicated that the adsorption process was spontaneous and exothermic. The study indicated that MCNs are an eco-friendly, low-cost, and effective adsorbent for the removal of nevirapine, abacavir, and efavirenz. PRACTITIONER POINTS: Modification macadamia nutshell with HCl and NaOH improved physio-chemical properties that yielded high removal efficiency compared with raw macadamia nutshells. Modification of macadamia by HCl showed high removal efficiency, which could be attributed to high interaction such as H-bonding that improves adsorption. The macadamia nutshell as an adsorbent showed so much robustness with regeneration studies yielding to about 69.64% of selected compounds.


Subject(s)
Alkynes , Benzoxazines , Cyclopropanes , Dideoxyadenosine/analogs & derivatives , HIV Infections , Water Pollutants, Chemical , Wastewater , Macadamia , Adsorption , Nevirapine , Quality of Life , Sodium Hydroxide , Thermodynamics , Kinetics , Water Pollutants, Chemical/chemistry , Spectroscopy, Fourier Transform Infrared , Hydrogen-Ion Concentration
6.
Biomed Res Int ; 2024: 7720286, 2024.
Article in English | MEDLINE | ID: mdl-38577705

ABSTRACT

Background: Zirconia, with its excellent mechanical properties, has become a popular choice for esthetic and durable restorations due to the increasing demand of patients. It has overcome most of the limitations of all ceramic restorations. However, bonding to zirconia remains a challenge. Objectives: This study is aimed at assessing the effect of surface treatment with alkaline agents at two different temperatures on microshear bond strength (µSBS) of zirconia to composite resin. Materials and Methods: This in vitro, experimental study was conducted on zirconia blocks measuring 2 × 4 × 8 mm. The blocks were sandblasted with alumina powder and randomly assigned to 5 groups (n = 16 each). The blocks in groups 1 and 2 underwent surface treatment with sodium hydroxide (NaOH) and groups 3 and 4 with zirconium hydroxide (Zr(OH)4) at room temperature and 70°C. Group 5 served as the control group and did not receive any surface treatment. After the application of bonding agent and its light-curing, composite cylinders in plastic tubes were bonded to the surface of each block and cured. After incubation, they underwent µSBS test. Data were analyzed by one-way ANOVA and Tukey's test (alpha = 0.05). Results: The µSBS was significantly higher in all intervention groups than that in the control group (P < 0.05). The µSBS in Zr(OH)4 groups was significantly higher than that in NaOH groups (P < 0.05). The mean µSBS of heated groups was slightly, but not significantly, higher than the corresponding room temperature groups (P > 0.05). Conclusion: Surface treatment of zirconia with NaOH and Zr(OH)4 alkaline agents can increase its µSBS to composite resin; Zr(OH)4 was significantly more effective than NAOH for this purpose, but heating did not have a significant effect on µSBS.


Subject(s)
Composite Resins , Dental Bonding , Humans , Composite Resins/chemistry , Surface Properties , Resin Cements/chemistry , Temperature , Sodium Hydroxide , Materials Testing , Zirconium/chemistry , Ceramics/chemistry , Shear Strength
7.
Microb Cell Fact ; 23(1): 106, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600576

ABSTRACT

BACKGROUND: The textile industry has several negative impacts, mainly because it is based on a linear business model that depletes natural resources and produces excessive amounts of waste. Globally, about 75% of textile waste is disposed of in landfills and only 25% is reused or recycled, while less than 1% is recycled back into new garments. In this study, we explored the valorisation of cotton fabric waste from an apparel textile manufacturing company as valuable biomass to produce lactic acid, a versatile chemical building block. RESULTS: Post-industrial cotton patches were pre-treated with the aim of developing a methodology applicable to the industrial site involved. First, a mechanical shredding machine reduced the fabric into individual fibres of maximum 35 mm in length. Afterwards, an alkaline treatment was performed, using NaOH at different concentrations, including a 16% (w/v) NaOH enriched waste stream from the mercerisation of cotton fabrics. The combination of chemo-mechanical pre-treatment and enzymatic hydrolysis led to the maximum recovery yield of 90.46 ± 3.46%, corresponding to 74.96 ± 2.76 g/L of glucose released, which represents a novel valorisation of two different side products (NaOH enriched wastewater and cotton textile waste) of the textile industry. The Saccharomyces cerevisiae strain CEN.PK m850, engineered for redirecting the natural alcoholic fermentation towards a homolactic fermentation, was then used to valorise the glucose-enriched hydrolysate into lactic acid. Overall, the process produced 53.04 g/L ± 0.34 of L-lactic acid, with a yield of 82.7%, being the first example of second-generation biomass valorised with this yeast strain, to the best of our knowledge. Remarkably, the fermentation performances were comparable with the ones obtained in the control medium. CONCLUSION: This study validates the exploitation of cotton post-industrial waste as a possible feedstock for the production of commodity chemicals in microbial cell-based biorefineries. The presented strategy demonstrates the possibility of implementing a circular bioeconomy approach in manufacturing textile industries.


Subject(s)
Industrial Waste , Saccharomyces cerevisiae , Fermentation , Lactic Acid , Hydrolysis , Sodium Hydroxide , Textiles , Glucose
8.
J Environ Manage ; 357: 120786, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38583386

ABSTRACT

An innovative task was undertaken to convert ubiquitous and toxic electronic waste, waste toner powder (WTP), into novel adsorbents. Alkaline modification with KOH, NaOH, and NH4OH was employed for the first time to synthesize a series of surface-modified WTP with enhanced dispersibility and adsorption capacity. XRD, XRF, FTIR, and BET analyses confirmed that the prepared KOH-WTP, NaOH-WTP, and NH4OH-WTP were oxygen-functionalized self-doped iron oxide-graphite nanocomposites. The prepared adsorbents were used to remove methylene blue and tetracycline from aqueous solutions. KOH-WTP (0.1 g/100 mL) adsorbed 80% of 10 mg/L methylene blue within 1 h, while 0.1 g/100 mL NH4OH-WTP removed 72% of 10 mg/L tetracycline in 3 h. Exploring surface chemistry by altering solution pH and temperature suggested that hydrogen bonding, electrostatic interactions, π-π electron stacking, and pore filling were plausible adsorption mechanisms. Scanning electron microscopy revealed a diminishing adsorbents porosity after adsorption proving the filling of pores by the adsorbates. KOH-WTP and NH4OH-WTP removed 77% and 61% of methylene blue and tetracycline respectively in the fourth reuse. The adsorption data of methylene blue and tetracycline fitted the Freundlich isotherm model. The maximum adsorption capacities of KOH-WTP and NH4OH-WTP for methylene blue and tetracycline were 59 mg/g and 43 mg/g respectively. The prepared adsorbents were also compared with other adsorbents to assess their performance. The transformation of waste toner powder into magnetically separable oxygen-functionalized WTP with outstanding recyclability and adsorption capacity showcases a significant advancement in sustainable wastewater treatment. This further aligns with the principles of the circular economy through the utilization of toxic e-waste in value-added applications. Additionally, magnetic separation of surface-modified WTP post-treatment can curtail filtration and centrifugation expenses and adsorbent loss during wastewater treatment.


Subject(s)
Ferric Compounds , Graphite , Nanocomposites , Water Pollutants, Chemical , Methylene Blue , Adsorption , Powders , Sodium Hydroxide , Tetracycline , Anti-Bacterial Agents , Oxygen , Water Pollutants, Chemical/analysis , Kinetics , Hydrogen-Ion Concentration
9.
Eur Biophys J ; 53(4): 225-238, 2024 May.
Article in English | MEDLINE | ID: mdl-38613566

ABSTRACT

Calibration of titration calorimeters is an ongoing problem, particularly with calorimeters with reaction vessel volumes < 10 mL in which an electrical calibration heater is positioned outside the calorimetric vessel. Consequently, a chemical reaction with a known enthalpy change must be used to accurately calibrate these calorimeters. This work proposes the use of standard solutions of potassium acid phthalate (KHP) titrated into solutions of excess sodium hydroxide (NaOH) or excess tris(hydroxymethyl)aminomethane (TRIS) as standard reactions to determine the collective accuracy of the relevant variables in a determination of the molar enthalpy change for a reaction. KHP is readily available in high purity, weighable for easy preparation of solutions with accurately known concentrations, stable in solution, not compromised by side reactions with common contaminants such as atmospheric CO2, and non-corrosive to materials used in calorimeter construction. Molar enthalpy changes for these reactions were calculated from 0 to 60 °C from reliable literature data for the pKa of KHP, the molar enthalpy change for protonation of TRIS, and the molar enthalpy change for ionization of water. The feasibility of using these reactions as enthalpic standards was tested in several calorimeters; a 50 mL CSC 4300, a 185 µL NanoITC, a 1.4 mL VP-ITC, and a TAM III with 1 mL reaction vessels. The results from the 50 mL CSC 4300, which was accurately calibrated with an electric heater, verified the accuracy of the calculated standard values for the molar enthalpy changes of the proposed reactions.


Subject(s)
Calorimetry , Sodium Hydroxide , Tromethamine , Sodium Hydroxide/chemistry , Calibration , Tromethamine/chemistry , Temperature , Reference Standards , Thermodynamics
10.
Environ Sci Pollut Res Int ; 31(22): 32800-32812, 2024 May.
Article in English | MEDLINE | ID: mdl-38664320

ABSTRACT

The highly stable biomass structure formed by cellulose, hemicellulose, and lignin results in incomplete conversion and carbonization under hydrothermal conditions. In this study, pretreated corn straw hydrochar (PCS-HC) was prepared using a low-temperature alkali/urea combination pretreatment method. The Mass loss rate of cellulose, hemicellulose, and lignin from pretreated biomass, as well as the effects of the pretreatment method on the physicochemical properties of PCS-HC and the adsorption performance of PCS-HC for alkaline dyes (rhodamine B and methylene blue), were investigated. The results showed that the low-temperature NaOH/urea pretreatment effectively disrupted the stable structure formed by cellulose, hemicellulose, and lignin. NaOH played a dominant role in solubilizing cellulose and the combination of low temperature and urea enhanced the ability of NaOH to remove cellulose, hemicellulose, and lignin. Compared to the untreated hydrochar, PCS-HC exhibited a rougher surface, a more abundant pore structure, and a larger specific surface area. The unpretreated hydrochar exhibited an adsorption capacity of 64.8% for rhodamine B and 66.32% for methylene blue. However, the removal of rhodamine B and methylene blue by PCS-BC increased to 89.12% and 90.71%, respectively, under the optimal pretreatment conditions. The PCS-HC exhibited a favorable adsorption capacity within the pH range of 6-9. However, the presence of co-existing anions such as Cl-, SO42-, CO32-, and NO3- hindered the adsorption capacity of PCS-HC. Among these anions, CO32- exhibited the highest level of inhibition. Chemisorption, including complexation, electrostatic attraction, and hydrogen bonding, were the primary mechanism for dye adsorption by PCS-HC. This study provides an efficient method for utilizing agricultural waste and treating dye wastewater.


Subject(s)
Sodium Hydroxide , Urea , Wastewater , Water Pollutants, Chemical , Adsorption , Sodium Hydroxide/chemistry , Urea/chemistry , Wastewater/chemistry , Water Pollutants, Chemical/chemistry , Coloring Agents/chemistry , Lignin/chemistry , Cellulose/chemistry , Rhodamines/chemistry , Temperature
11.
J Mol Graph Model ; 130: 108779, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38657395

ABSTRACT

Scorodites are commonly used for arsenic immobilization, and it is also the main component of arsenic bearing tailings. Alkali-activated geopolymers are commonly used to landfill arsenic-bearing minerals. However, there no previous studies have explored the interaction between geopolymer molecules and the surface of scorodite. In this paper, Si(OH)4 as a monomer molecule of geopolymer, the mechanism of adsorption and 'ion exchange' between Si(OH)4 molecule and the surface of scorodite during alkali-activation is studied. Results show that the Fe-terminated scorodite (010) surface has high stability. Si(OH)4 are more easily adsorbed on the hollow site of an Fe-terminated scorodite (010) surface, which is described as chemisorption. Compared with Si(OH)4, NaOH is easier to adsorb on an Fe-terminated scorodite (010) surface. The co-adsorption of NaOH and Si(OH)4 on the Fe-terminated scorodite (010) surface was studied, and also belongs to chemical adsorption. When the hydroxyl binds to the As atom, the adsorbed Si(OH)4 is more likely to undergo an 'ion exchange' reaction with the surface, and the reaction is barrierless. The intermediate As(OH)4 produced by the 'ion exchange' reaction can be deprotonated to form an arsenate molecule, which can occur spontaneously. This work reveals that the interaction mechanism of geopolymer molecules on surface of scorodite.


Subject(s)
Surface Properties , Adsorption , Ion Exchange , Arsenic/chemistry , Sodium Hydroxide/chemistry , Iron/chemistry
12.
PLoS One ; 19(3): e0300042, 2024.
Article in English | MEDLINE | ID: mdl-38536821

ABSTRACT

BACKGROUND: Mycobacterium tuberculosis culturing remains the gold standard for laboratory diagnosis of tuberculosis. Tuberculosis remains a great public health problem in developing countries like The Gambia, as most of the methods currently used for bacterial isolation are either time-consuming or costly. OBJECTIVE: To evaluate the Kudoh swab method in a West African setting in Gambia, with a particular focus on the method's performance when culturing Mycobacterium africanum West Africa 2 (MAF2) isolates. METHOD: 75 sputum samples were collected in the Greater Banjul Area and decontaminated in parallel with both the standard N-acetyl-L-Cysteine-NaOH (NALC-NaOH) and the Kudoh swab method in the TB diagnostics laboratory in the Medical Research Council Unit The Gambia between 30th December 2017 and 25th February 2018. These samples were subsequently cultured on standard Löwenstein-Jensen and Modified Ogawa media respectively and incubated at 37°C for mycobacterial growth. Spoligotyping was done to determine if the decontamination and culture methods compared could equally detect Mycobacterium tuberculosis, Mycobacterium africanum West Africa 1 and Mycobacterium africanum West Africa 2. RESULT: Among the 50 smear positives, 35 (70%) were culture-positive with Kudoh and 32 (64%) were culture positive with NALC-NaOH, whilst 7(28%) of the 25 smear negative samples were culture positive with both methods (Table 2). There was no significant difference in recovery between both methods (McNemar's test, p-value = 0.7003), suggesting that the overall positivity rate between the two methods is comparable. There were no differences in time-to-positivity or contamination rate between the methods. However, Kudoh yielded positive cultures that were negative on LJ and vice versa. All findings were irrespective of mycobacterial lineages. CONCLUSION: The Kudoh method has comparable sensitivity to the NALC-NaOH method for detecting Mycobacterium tuberculosis complex isolates. It is easy to perform and could be an add on option for mycobacterial culture in the field in The Gambia, since it requires less biosafety equipment.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , Gambia , Sodium Hydroxide , Bacteriological Techniques/methods , Sputum/microbiology , Tuberculosis/diagnosis , Tuberculosis/microbiology , Culture Media
13.
Environ Sci Pollut Res Int ; 31(17): 25147-25162, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38468006

ABSTRACT

The comparative study of the transformation among sediment phosphorus (P) fractions in different lake types is a global issue in lake ecosystems. However, interactions between sediment P fractions, environmental factors, and microorganisms vary with the nutrient status of lakes. In this study, we combine sequential extraction and metagenomics sequencing to assess the characteristics of P fractions and transformation in sediments from different lake types in the Inner Mongolian section of the Yellow River Basin. We then further explore the response of relevant microbial and environmental drivers to P fraction transformation and bioavailability in sediments. The sediments of all three lakes exhibited strong exogenous pollution input characteristics, and higher nutritional conditions led to enhanced sediment P fraction transformation ability. The transformation capacity of the sediment P fractions also differed among the different lake types at the same latitudes, which is affected by many factors such as lake environmental factors and microorganisms. Different drivers reflected the mutual control of weakly adsorbed phosphorus (WA-P), potential active phosphorus (PA-P), Fe/Al-bound phosphorus (NaOH-P), and Ca-bound phosphorus (HCl-P) with the bio-directly available phosphorus (Bio-P). The transformation of NaOH-P in reducing environments can improve P bioavailability, while HCl-P is not easily bioavailable in weakly alkaline environments. There were significant differences in the bacterial community diversity and composition between the different lake types at the same latitude (p < 0.05), and the role of P fractions was stronger in the sediments of lakes with rich biodiversity than in poor biodiversity. Lake eutrophication recovery was somewhat hindered by the microbial interactions of P cycling and P fractions within the sediment. This study provides data and theoretical support for exploring the commonalities and differences among different lake types in the Inner Mongolian section of the Yellow River Basin. Besides, it is representative and typical for promoting the optimization of ecological security patterns in ecologically fragile watersheds.


Subject(s)
Lakes , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Ecosystem , Phosphorus/analysis , Freezing , Sodium Hydroxide , Environmental Monitoring , Geologic Sediments , Eutrophication , China
14.
Environ Sci Pollut Res Int ; 31(17): 26019-26035, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38492145

ABSTRACT

This study synthesized a new thiomalic acid-modified rice husk biochar (TMA-BC) as a versatile and eco-friendly sorbent. After undergoing chemical treatments, the mercerized rice husk biochar (NaOH-BC) and TMA-BC samples showed higher BET surface area values of 277.1 m2/g and 305.8 m2/g, respectively, compared to the pristine biochar (BC) sample, which had a surface area of 234.2 m2/g. In batch adsorption experiments, it was found that the highest removal efficiency for malachite green (MG) was achieved with TMA-BC, reaching 96.4%, while NaOH-BC and BC exhibited removal efficiencies of 38.6% and 27.9%, respectively, at pH 8. The engineered TMA-BC exhibited a super adsorption capacity of 104.17 mg/g for MG dye at pH 8.0 and 25 °C with a dosage of 2 g/L. The SEM, TEM, XPS, and FTIR spectroscopy analyses were performed to examine mesoporous features and successful TMA-BC carboxylic and thiol functional groups grafting on biochar. Electrostatic forces, such as π - π interactions, hydrogen bonding, and pore intrusion, were identified as key factors in the sorption of MG dye. As compared to single-solution adsorption experiments, the binary solution experiments performed at optimized dosages of undesired ions, such as humic acid, sodium dodecyl sulfate surfactant, NaCl, and NaSCN, reflected an increase in MG dye removal of 2.8%, 8.7%, 5.4%, and 12.7%, respectively, which was attributed to unique mesoporous features and grafted functional groups of TMA-BC. Furthermore, the TMA-BC showed promising reusability up to three cycles. Our study indicates that mediocre biochar modified with TMA can provide an eco-friendly and cost-effective alternative to commercially accessible adsorbents.


Subject(s)
Rosaniline Dyes , Water Pollutants, Chemical , Ligands , Sodium Hydroxide , Water Pollutants, Chemical/chemistry , Kinetics , Charcoal/chemistry , Adsorption
15.
Environ Sci Pollut Res Int ; 31(17): 26153-26169, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38492142

ABSTRACT

This study explores the potential of municipal solid waste incineration bottom ash (MSWI BA) and coal gangue as precursors for alkali-activated cementitious materials (CG-MBA). An examination of the impact of MSWI BA content, NaOH/Na2SiO3 ratio, liquid-solid ratio, and NaOH concentration on strength and reaction through the application of diverse analytical methodologies. Results demonstrate that CG-MBA offers significant environmental benefits compared to conventional cement. When used as a construction filling material, CG-MBA exhibits a remarkable 74.5 ~ 79.2 wt% reduction in carbon dioxide emissions and 70.6 ~ 77.0 wt% reduction in energy consumption. Additionally, CG-MBA effectively immobilizes heavy metal ions in MSWI BA, with a fixation efficiency exceeding 56.0%. These findings suggest that CG-MBA is a promising sustainable solution for waste management, offering significant environmental benefits while demonstrating effective heavy metal immobilization. This approach contributes to pollution control and promotes environmental sustainability in the construction industry.


Subject(s)
Metals, Heavy , Refuse Disposal , Solid Waste/analysis , Coal Ash , Alkalies , Sodium Hydroxide , Incineration , Charcoal , Metals, Heavy/analysis , Coal , Particulate Matter
16.
Int J Biol Macromol ; 264(Pt 2): 130733, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38471610

ABSTRACT

Retrograded starches have received increasing attention due to their potential excipient properties in pharmaceutical formulations. However, to evade its application-oriented challenges, modification of retrograded starch is required. The study emphasizes influence of dry heating and the dual heat treatment by dry heating amalgamation with the vacuum heat treatment on quality parameters of retrograded starch. The starch was isolated by using two different extraction media (0.05 % w/v NaOH and 0.03 % citric acid) from Alocasia macrorrhizos and then retrograded separately. Further, retrograded starches were first modified by dry heating and afterwards modified with combination of dry and vacuum heating. Modification decreased moisture, ash content and increased solubility. Modified Samples from NaOH media had higher water holding capacity and amylose content. X-ray diffraction revealed type A and B crystals with increasing crystallinity of retrograded heat-modified samples from NaOH media. Thermogravimetric analysis, differential scanning calorimetry confirmed thermal stability. Shear tests showed shear-thinning behavior whereas dominant storage modulus (G/) over loss modulus (G//), depicting gel-like behavior. Storage, loss, and complex viscosity initially increased, then decreased with temperature. In-vitro release reflects, modified retrograded starches offers versatile drug release profiles, from controlled to rapid. Tailoring starch properties enables precise drug delivery, enhancing pharmaceutical formulation flexibility and efficacy.


Subject(s)
Alocasia , Hot Temperature , Sodium Hydroxide , Vacuum , Starch/chemistry , Amylose/chemistry , Solubility , Viscosity
17.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 38(3): 348-355, 2024 Mar 15.
Article in Chinese | MEDLINE | ID: mdl-38500430

ABSTRACT

Objective: To explore the effect of NaOH on the surface morphology of three-dimensional (3D) printed poly- L-lactic acid (PLLA) mesh scaffolds. Methods: The 3D printed PLLA mesh scaffolds were prepared by fused deposition molding technology, then the scaffold surfaces were etched with the NaOH solution. The concentrations of NaOH solution were 0.01, 0.1, 0.5, 1.0, and 3.0 mol/L, and the treatment time was 1, 3, 6, 9, and 12 hours, respectively. There were a total of 25 concentration and time combinations. After treatment, the microstructure, energy spectrum, roughness, hydrophilicity, compressive strength, as well as cell adhesion and proliferation of the scaffolds were observed. The untreated scaffolds were used as a normal control. Results: 3D printed PLLA mesh scaffolds were successfully prepared by using fused deposition molding technology. After NaOH etching treatment, a rough or micro porous structure was constructed on the surface of the scaffold, and with the increase of NaOH concentration and treatment time, the size and density of the pores increased. The characterization of the scaffolds by energy dispersive spectroscopy showed that the crystal contains two elements, Na and O. The surface roughness of NaOH treated scaffolds significantly increased ( P<0.05) and the contact angle significantly decreased ( P<0.05) compared to untreated scaffolds. There was no significant difference in compressive strength between the untreated scaffolds and treated scaffolds under conditions of 0.1 mol/L/12 h and 1.0 mol/L/3 h ( P>0.05), while the compression strength of the other treated scaffolds were significantly lower than that of the untreated scaffolds ( P<0.05). After co-culturing the cells with the scaffold, NaOH treatment resulted in an increase in the number of cells on the surface of the scaffold and the spreading area of individual cells, and more synapses extending from adherent cells. Conclusion: NaOH treatment is beneficial for increasing the surface hydrophilicity and cell adhesion of 3D printed PLLA mesh scaffolds.


Subject(s)
Surgical Mesh , Tissue Scaffolds , Tissue Scaffolds/chemistry , Sodium Hydroxide , Cells, Cultured , Polyesters/chemistry , Lactic Acid , Printing, Three-Dimensional , Tissue Engineering
18.
Food Chem ; 446: 138815, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38428087

ABSTRACT

In this study, we developed a process combining dilute alkali (NaOH or NaHCO3) and physical (disk milling and/or ball milling) treatments to improve the functionality and fermentability of corn fiber. The results showed that combining chemical with physical processes greatly improved the functionality and fermentability of corn fiber. Corn fiber treated with NaOH followed by disk milling (NaOH-DM-CF) had the highest water retention (19.5 g/g), water swelling (38.8 mL/g), and oil holding (15.5 g/g) capacities. Moreover, NaOH-DM-CF produced the largest amount (42.9 mM) of short-chain fatty acid (SCFA) during the 24-hr in vitro fermentation using porcine fecal inoculum. In addition, in vitro fermentation of NaOH-DM-CF led to a targeted microbial shifting to Prevotella (genus level), aligning with a higher fraction of propionic acid. The outstanding functionality and fermentability of NaOH-DM-CF were attributed to its thin and loose structure, decreased ester linkages and acetyl groups, and enriched structural carbohydrate exposure.


Subject(s)
Dietary Fiber , Gastrointestinal Microbiome , Animals , Swine , Dietary Fiber/analysis , Zea mays/chemistry , Alkalies , Sodium Hydroxide , Animal Feed/analysis , Feces/chemistry , Fatty Acids, Volatile/analysis , Water/analysis , Fermentation
19.
Bioresour Technol ; 399: 130610, 2024 May.
Article in English | MEDLINE | ID: mdl-38508284

ABSTRACT

Lignin utilization in value-added co-products is an important component of enabling cellulosic biorefinery economics. However, aqueous dilute acid pretreatments yield lignins with limited applications due to significant modification during pretreatment, low solubility in many solvents, and high content of impurities (ash, insoluble polysaccharides). This work addresses these challenges and investigates the extraction and recovery of lignins from lignin-rich insoluble residue following dilute acid pretreatment and enzymatic hydrolysis of corn stover using three extraction approaches: ethanol organosolv, NaOH, and an ionic liquid. The recovered lignins exhibited recovery yields ranging from 30% for the ionic liquid, 44% for the most severe acid ethanol organosolv condition tested, and up to 86% for the most severe NaOH extraction condition. Finally, the fractional solubilities of different recovered lignins were assessed in a range of solvents and these solubilities were used to estimate distributions of Hildebrand and Hansen solubility parameters using a novel approach.


Subject(s)
Ionic Liquids , Lignin , Lignin/chemistry , Zea mays/chemistry , Sodium Hydroxide , Solvents , Ethanol/chemistry , Acids , Hydrolysis
20.
J Biotechnol ; 386: 28-41, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38461861

ABSTRACT

Low production costs and a potential feedstock supply make lignocellulosic ethanol (bioethanol) an important source of advanced biofuels. The physical and chemical preparation of this kind of lignocellulosic feedstock led to a high ethanol yield. In order to increase the yield of fermentable sugars, pretreatment is an essential process step that alters the lignocellulosic structure and improves its accessibility for the expensive hydrolytic enzymes. In this context, the chemical composition of sugarcane trash (dry leaves, green leaves, and tops) and jatropha (shell and seed cake) was determined to be mainly cellulose, hemicellulose, and lignin. Hydrogen peroxide and sodium hydroxide were applied in an attempt to facilitate the solubilization of lignin and hemicelluloses in five agrowastes. The extraction of hydrogen peroxide was much better than that of sodium hydroxide. A comparative study was done using SEM, EDXA, and FTIR to evaluate the difference between the two methods. The pretreated wastes were subjected to saccharification by commercial cellulases (30 IU/g substrate). The obtained glucose was fortified with nutrients and fermented statically by Saccharomyces cerevisiae F-307 for bioethanol production. The results revealed the bioethanol yields were 325.4, 310.8, 282.9, 302.4 and 264.0 mg ethanol/g treated agrowastes from green leaves of sugarcane, jatropha deolied seed cake, tops sugarcane, dry leaves of sugarcane, and jatropha shell, respectively. This study emphasizes the value of lignocellulosic agricultural waste as a resource for the production of biofuels as well as the significance of the extraction process.


Subject(s)
Jatropha , Saccharum , Lignin/metabolism , Saccharum/chemistry , Jatropha/metabolism , Biofuels , Sodium Hydroxide , Hydrogen Peroxide , Ethanol , Saccharomyces cerevisiae/metabolism , Hydrolysis , Fermentation
SELECTION OF CITATIONS
SEARCH DETAIL
...