Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.678
Filter
1.
Cell Mol Life Sci ; 81(1): 213, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727814

ABSTRACT

Trimeric G proteins transduce signals from a superfamily of receptors and each G protein controls a wide range of cellular and systemic functions. Their highly conserved alpha subunits fall in five classes, four of which have been well investigated (Gs, Gi, G12, Gq). In contrast, the function of the fifth class, Gv is completely unknown, despite its broad occurrence and evolutionary ancient origin (older than metazoans). Here we show a dynamic presence of Gv mRNA in several organs during early development of zebrafish, including the hatching gland, the pronephros and several cartilage anlagen, employing in situ hybridisation. Next, we generated a Gv frameshift mutation in zebrafish and observed distinct phenotypes such as reduced oviposition, premature hatching and craniofacial abnormalities in bone and cartilage of larval zebrafish. These phenotypes could suggest a disturbance in ionic homeostasis as a common denominator. Indeed, we find reduced levels of calcium, magnesium and potassium in the larvae and changes in expression levels of the sodium potassium pump atp1a1a.5 and the sodium/calcium exchanger ncx1b in larvae and in the adult kidney, a major osmoregulatory organ. Additionally, expression of sodium chloride cotransporter slc12a3 and the anion exchanger slc26a4 is altered in complementary ways in adult kidney. It appears that Gv may modulate ionic homeostasis in zebrafish during development and in adults. Our results constitute the first insight into the function of the fifth class of G alpha proteins.


Subject(s)
Homeostasis , Zebrafish Proteins , Zebrafish , Animals , Zebrafish/genetics , Zebrafish/metabolism , Homeostasis/genetics , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , GTP-Binding Protein alpha Subunits/metabolism , GTP-Binding Protein alpha Subunits/genetics , Larva/metabolism , Larva/genetics , Larva/growth & development , Gene Expression Regulation, Developmental , Sodium-Potassium-Exchanging ATPase/metabolism , Sodium-Potassium-Exchanging ATPase/genetics , Calcium/metabolism , Kidney/metabolism , Magnesium/metabolism
2.
Aging (Albany NY) ; 16(9): 8320-8335, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38728254

ABSTRACT

Exosomal long non-coding RNAs (LncRNAs) play a crucial role in the pathogenesis of cerebrovascular diseases. However, the expression profiles and functional significance of exosomal LncRNAs in intracranial aneurysms (IAs) remain poorly understood. Through high-throughput sequencing, we identified 1303 differentially expressed LncRNAs in the plasma exosomes of patients with IAs and healthy controls. Quantitative real-time polymerase chain reaction (qRT-PCR) verification confirmed the differential expression of LncRNAs, the majority of which aligned with the sequencing results. ATP1A1-AS1 showed the most significant upregulation in the disease group. Importantly, subsequent in vitro experiments validated that ATP1A1-AS1 overexpression induced a phenotype switching in vascular smooth muscle cells, along with promoting apoptosis and upregulating MMP-9 expression, potentially contributing to IAs formation. Furthermore, expanded-sample validation affirmed the high diagnostic value of ATP1A1-AS1. These findings suggest that ATP1A1-AS1 is a potential therapeutic target for inhibiting IAs progression and serves as a valuable clinical diagnostic marker.


Subject(s)
Apoptosis , Exosomes , Intracranial Aneurysm , Myocytes, Smooth Muscle , Phenotype , RNA, Long Noncoding , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Humans , Apoptosis/genetics , Intracranial Aneurysm/genetics , Intracranial Aneurysm/metabolism , Intracranial Aneurysm/pathology , Intracranial Aneurysm/blood , Exosomes/metabolism , Exosomes/genetics , Male , Myocytes, Smooth Muscle/metabolism , Middle Aged , Female , Sodium-Potassium-Exchanging ATPase/genetics , Sodium-Potassium-Exchanging ATPase/metabolism , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 9/genetics , Case-Control Studies
3.
Int Immunopharmacol ; 133: 112045, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38615384

ABSTRACT

The ATP1A3 gene is associated with the development and progression of neurological diseases. However, the pathological function and therapeutic value of ATP1A3 in glioblastoma (GBM) remains unknown. In this study, we tried to explore the correlation between the ATP1A3 gene expression and immune features in GBM samples. We found that ATP1A3 gene expression levels showed significant negative correlation with immune checkpoints such as PD-L1, CTLA-4 and IDO1. Next, ATP1A3 gene expression levels showed significant negative correlation with the anti-cancer immune cell process, the immune score and stromal score. By grouping ATP1A3 expression levels, we found that that immunomodulator-related genes and tumor-associated immune cell effector gene expression levels were associated with lower ATP1A3 expression. In addition, immunotherapy prediction pathway activity and a majority of the anti-cancer immune cell process activity levels were also showed to be correlated with lower ATP1A3 gene expression. Further, nine prognostic factors were identified by prognostic analysis, and a GBM prognostic model (risk score) was established. We applied the model to the TCGA GBM training set sample and the GSE4412 validation set sample and found that patients in the high risk score subgroup had significantly shorter survival time, demonstrating the prognostic value and prognostic efficacy of the risk score. Furthermore, ATP1A3 overexpression has also been found to sensitize cancer cells to anti-PD-1 therapy. In conclusion, we showed that ATP1A3 is a highly promising treatment target in GBM and the risk score is an independent prognostic factor for cancer and can be used to help guide the prediction of survival time in patients with GBM.


Subject(s)
Brain Neoplasms , Glioma , Immunotherapy , Sodium-Potassium-Exchanging ATPase , Humans , Prognosis , Immunotherapy/methods , Sodium-Potassium-Exchanging ATPase/genetics , Sodium-Potassium-Exchanging ATPase/metabolism , Brain Neoplasms/genetics , Brain Neoplasms/immunology , Brain Neoplasms/therapy , Brain Neoplasms/mortality , Glioma/genetics , Glioma/immunology , Glioma/therapy , Glioma/mortality , Gene Expression Regulation, Neoplastic , Biomarkers, Tumor/genetics , Female , Male , Glioblastoma/genetics , Glioblastoma/therapy , Glioblastoma/immunology , Glioblastoma/mortality , Middle Aged
4.
Free Radic Biol Med ; 218: 190-204, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38574977

ABSTRACT

Dysfunction of the Na+/K+-ATPase (NKA) has been documented in various neurodegenerative diseases, yet the specific role of NKAα1 in Parkinson's disease (PD) remains incompletely understood. In this investigation, we utilized NKAα1 haploinsufficiency (NKAα1+/-) mice to probe the influence of NKAα1 on dopaminergic (DA) neurodegeneration induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Our findings reveal that NKAα1+/- mice displayed a heightened loss of DA neurons and more pronounced motor dysfunction compared to the control group when exposed to MPTP. Intriguingly, this phenomenon coincided with the activation of ferroptosis and impaired mitophagy both in vivo and in vitro. To scrutinize the role and underlying mechanism of NKAα1 in PD, we employed DR-Ab, an antibody targeting the DR-region of the NKA α subunit. Our study demonstrates that the administration of DR-Ab effectively reinstated the membrane abundance of NKAα1, thereby mitigating MPTP-induced DA neuron loss and subsequent improvement in behavioral deficit. Mechanistically, DR-Ab heightened the formation of the surface NKAα1/SLC7A11 complex, inhibiting SLC7A11-dependent ferroptosis. Moreover, DR-Ab disrupted the cytosolic interaction between NKAα1 and Parkin, facilitating the translocation of Parkin to mitochondria and enhancing the process of mitophagy. In conclusion, this study establishes NKAα1 as a key regulator of ferroptosis and mitophagy, identifying its DR-region as a promising therapeutic target for PD.


Subject(s)
Dopaminergic Neurons , Ferroptosis , Mitophagy , Parkinson Disease , Sodium-Potassium-Exchanging ATPase , Animals , Mitophagy/drug effects , Ferroptosis/drug effects , Ferroptosis/genetics , Mice , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Dopaminergic Neurons/drug effects , Sodium-Potassium-Exchanging ATPase/metabolism , Sodium-Potassium-Exchanging ATPase/genetics , Parkinson Disease/metabolism , Parkinson Disease/pathology , Parkinson Disease/genetics , Parkinson Disease/drug therapy , Humans , Male , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Mitochondria/metabolism , Mitochondria/pathology , Mitochondria/drug effects , Disease Models, Animal , Mice, Inbred C57BL , Haploinsufficiency , Mice, Knockout
5.
Genes (Basel) ; 15(4)2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38674378

ABSTRACT

Migraine is a severe, debilitating neurovascular disorder. Hemiplegic migraine (HM) is a rare and debilitating neurological condition with a strong genetic basis. Sequencing technologies have improved the diagnosis and our understanding of the molecular pathophysiology of HM. Linkage analysis and sequencing studies in HM families have identified pathogenic variants in ion channels and related genes, including CACNA1A, ATP1A2, and SCN1A, that cause HM. However, approximately 75% of HM patients are negative for these mutations, indicating there are other genes involved in disease causation. In this review, we explored our current understanding of the genetics of HM. The evidence presented herein summarises the current knowledge of the genetics of HM, which can be expanded further to explain the remaining heritability of this debilitating condition. Innovative bioinformatics and computational strategies to cover the entire genetic spectrum of HM are also discussed in this review.


Subject(s)
Migraine with Aura , Humans , Migraine with Aura/genetics , Mutation , Genetic Predisposition to Disease , NAV1.1 Voltage-Gated Sodium Channel/genetics , Sodium-Potassium-Exchanging ATPase/genetics , Genetic Linkage , Calcium Channels/genetics
6.
Zhongguo Zhong Yao Za Zhi ; 49(3): 754-762, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38621879

ABSTRACT

This study aims to explore the mechanism of Linggui Zhugan Decoction(LGZGD) in inhibiting Angiotensin Ⅱ(AngⅡ)-induced cardiomyocyte hypertrophy by regulating sigma-1 receptor(Sig1R). The model of H9c2 cardiomyocyte hypertrophy induced by AngⅡ in vitro was established by preparing LGZGD-containing serum and blank serum. H9c2 cells were divided into normal group, AngⅡ model group, 20% normal rat serum group(20% NSC), and 20% LGZGD-containing serum group. After the cells were incubated with AngⅡ(1 µmol·L~(-1)) or AngⅡ with serum for 72 h, the surface area of cardiomyocytes was detected by phalloidine staining, and the activities of Na~+-K~+-ATPase and Ca~(2+)-Mg~(2+)-ATPase were detected by micromethod. The mitochondrial Ca~(2+) levels were detected by flow cytometry, and the expression levels of atrial natriuretic peptide(ANP), brain natriuretic peptide(BNP), Sig1R, and inositol 1,4,5-triphosphate receptor type 2(IP_3R_2) were detected by Western blot. The expression of Sig1R was down-regulated by transfecting specific siRNA for investigating the efficacy of LGZGD-containing serum on cardiomyocyte surface area, Na~+-K~+-ATPase activity, Ca~(2+)-Mg~(2+)-ATPase activity, mitochondrial Ca~(2+), as well as ANP, BNP, and IP_3R_2 protein expressions. The results showed that compared with the normal group, AngⅡ could significantly increase the surface area of cardiomyocytes and the expression of ANP and BNP(P<0.01), and it could decrease the activities of Na~+-K~+-ATPase and Ca~(2+)-Mg~(2+)-ATPase, the concentration of mitochondrial Ca~(2+), and the expression of Sig1R(P<0.01). In addition, IP_3R_2 protein expression was significantly increased(P<0.01). LGZGD-containing serum could significantly decrease the surface area of cardiomyocytes and the expression of ANP and BNP(P<0.05, P<0.01), and it could increase the activities of Na~+-K~+-ATPase and Ca~(2+)-Mg~(2+)-ATPase, the concentration of mitochondrial Ca~(2+ )(P<0.01), and the expression of Sig1R(P<0.05). In addition, IP_3R_2 protein expression was significantly decreased(P<0.05). However, after Sig1R was down-regulated, the effects of LGZGD-containing serum were reversed(P<0.01). These results indicated that the LGZGD-containing serum could inhibit cardiomyocyte hypertrophy induced by AngⅡ, and its pharmacological effect was related to regulating Sig1R, promoting mitochondrial Ca~(2+ )inflow, restoring ATP synthesis, and protecting mitochondrial function.


Subject(s)
Myocytes, Cardiac , Sodium-Potassium-Exchanging ATPase , Rats , Animals , Cells, Cultured , Sodium-Potassium-Exchanging ATPase/genetics , Sodium-Potassium-Exchanging ATPase/metabolism , Atrial Natriuretic Factor/genetics , Atrial Natriuretic Factor/metabolism , Angiotensin II/adverse effects , Angiotensin II/metabolism , Natriuretic Peptide, Brain/metabolism , Hypertrophy/metabolism , Cardiomegaly/chemically induced , Cardiomegaly/drug therapy , Cardiomegaly/genetics
7.
Mol Biol Rep ; 51(1): 517, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622478

ABSTRACT

BACKGROUND: We previously demonstrated that insulin-like growth factor-1 (IGF-1) regulates sodium/potassium adenosine triphosphatase (Na+/K+-ATPase) in vascular smooth muscle cells (VSMC) via phosphatidylinositol-3 kinase (PI3K). Taking into account that others' work show that IGF-1 activates the PI3K/protein kinase B (Akt) signaling pathway in many different cells, we here further questioned if the Akt/mammalian target of rapamycin (mTOR)/ribosomal protein p70 S6 kinase (S6K) pathway stimulates Na+/K+-ATPase, an essential protein for maintaining normal heart function. METHODS AND RESULTS: There were 14 adult male Wistar rats, half of whom received bolus injections of IGF-1 (50 µg/kg) for 24 h. We evaluated cardiac Na+/K+-ATPase expression, activity, and serum IGF-1 levels. Additionally, we examined the phosphorylated forms of the following proteins: insulin receptor substrate (IRS), phosphoinositide-dependent kinase-1 (PDK-1), Akt, mTOR, S6K, and α subunit of Na+/K+-ATPase. Additionally, the mRNA expression of the Na+/K+-ATPase α1 subunit was evaluated. Treatment with IGF-1 increases levels of serum IGF-1 and stimulates Na+/K+-ATPase activity, phosphorylation of α subunit of Na+/K+-ATPase on Ser23, and protein expression of α2 subunit. Furthermore, IGF-1 treatment increased phosphorylation of IRS-1 on Tyr1222, Akt on Ser473, PDK-1 on Ser241, mTOR on Ser2481 and Ser2448, and S6K on Thr421/Ser424. The concentration of IGF-1 in serum positively correlates with Na+/K+-ATPase activity and the phosphorylated form of mTOR (Ser2448), while Na+/K+-ATPase activity positively correlates with the phosphorylated form of IRS-1 (Tyr1222) and mTOR (Ser2448). CONCLUSION: These results indicate that the Akt/mTOR/S6K signalling pathway may be involved in the IGF-1 regulating cardiac Na+/K+-ATPase expression and activity.


Subject(s)
Insulin-Like Growth Factor I , Proto-Oncogene Proteins c-akt , Animals , Male , Rats , Insulin-Like Growth Factor I/pharmacology , Insulin-Like Growth Factor I/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Rats, Wistar , Sodium-Potassium-Exchanging ATPase/genetics , Sodium-Potassium-Exchanging ATPase/metabolism , TOR Serine-Threonine Kinases/metabolism , Ribosomal Protein S6 Kinases
8.
Prenat Diagn ; 44(5): 661-664, 2024 May.
Article in English | MEDLINE | ID: mdl-38549198

ABSTRACT

We report a 32-year-old G3P1 at 35 weeks 3 days with a dichorionic, diamniotic twin gestation who presented for evaluation secondary to ventriculomegaly (VM) in one twin. Fetal ultrasound and MRI demonstrated microcephaly, severe VM, compression of the corpus callosum, scalp and nuchal thickening, elongated ears, bilateral talipes, right-sided congenital diaphragmatic hernia (CDH), and loss of normal cerebral architecture, indicative of a prior insult in the affected twin. The co-twin was grossly normal. The family pursued a palliative care pathway for the affected twin and was delivered at 37 weeks and 6 days. The affected twin passed away within the first hour of life due to respiratory compromise. Postmortem trio exome sequencing identified a homozygous likely pathogenic variant in ATP1A2 (c.2439+1G>A). Although this variant is novel, it is predicted to affect the donor split site in intron 17, resulting in a frameshift and complete loss-of-function of the gene. Biallelic loss of function variants in this gene have been reported in seven individuals with multiple anomalies similar to those in the affected twin. However, only one other individual with a possible CDH has been previously reported. Our case suggests that CDH be included in the phenotypic spectrum of this disorder and reports the first frameshift mutation causing this autosomal recessive multiple congenital anomaly syndrome.


Subject(s)
Abnormalities, Multiple , Sodium-Potassium-Exchanging ATPase , Adult , Female , Humans , Infant, Newborn , Pregnancy , Abnormalities, Multiple/genetics , Abnormalities, Multiple/diagnostic imaging , Diseases in Twins/genetics , Diseases in Twins/diagnostic imaging , Diseases in Twins/diagnosis , Fatal Outcome , Sodium-Potassium-Exchanging ATPase/genetics , Ultrasonography, Prenatal
9.
Ann Clin Transl Neurol ; 11(4): 1075-1079, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38504481

ABSTRACT

ATP1A1 encodes a sodium-potassium ATPase that has been linked to several neurological diseases. Using exome and genome sequencing, we identified the heterozygous ATP1A1 variant NM_000701.8: c.2707G>A;p.(Gly903Arg) in two unrelated children presenting with delayed motor and speech development and autism. While absent in controls, the variant occurred de novo in one proband and co-segregated in two affected half-siblings, with mosaicism in the healthy mother. Using a specific ouabain resistance assay in mutant transfected HEK cells, we found significantly reduced cell viability. Demonstrating loss of ATPase function, we conclude that this novel variant is pathogenic, expanding the phenotype spectrum of ATP1A1.


Subject(s)
Autistic Disorder , Intellectual Disability , Child , Humans , Autistic Disorder/genetics , Intellectual Disability/genetics , Family , Siblings , Adenosine Triphosphatases , Sodium-Potassium-Exchanging ATPase/genetics
10.
Article in Chinese | MEDLINE | ID: mdl-38297853

ABSTRACT

CAPOS syndrome is an autosomal dominant neurological disorder caused by mutations in the ATP1A3 gene. Initial symptoms, often fever-induced, include recurrent acute ataxic encephalopathy in childhood, featuring cerebellar ataxia, optic atrophy, areflflexia, sensorineural hearing loss, and in some cases, pes cavus. This report details a case of CAPOS syndrome resulting from a maternal ATP1A3 gene mutation. Both the child and her mother exhibited symptoms post-febrile induction,including severe sensorineural hearing loss in both ears, ataxia, areflexia, and decreased vision. Additionally, the patient's mother presented with pes cavus. Genetic testing revealed a c. 2452G>A(Glu818Lys) heterozygous mutation in theATP1A3 gene in the patient . This article aims to enhance clinicians' understanding of CAPOS syndrome, emphasizing the case's clinical characteristics, diagnostic process, treatment, and its correlation with genotypeic findings.


Subject(s)
Cerebellar Ataxia , Foot Deformities, Congenital , Hearing Loss, Sensorineural , Optic Atrophy , Reflex, Abnormal , Talipes Cavus , Humans , Child , Female , Cerebellar Ataxia/genetics , Cerebellar Ataxia/diagnosis , Hearing Loss, Sensorineural/genetics , Hearing Loss, Sensorineural/diagnosis , Optic Atrophy/genetics , Optic Atrophy/diagnosis , Mutation , Phenotype , Sodium-Potassium-Exchanging ATPase/genetics
11.
Int J Mol Sci ; 25(3)2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38338921

ABSTRACT

Bipolar disorder (BD) is a severe and common chronic mental illness characterized by recurrent mood swings between depression and mania. The biological basis of the disease is poorly understood, and its treatment is unsatisfactory. Na+, K+-ATPase is a major plasma membrane transporter and signal transducer. The catalytic α subunit of this enzyme is the binding site for cardiac steroids. Three α isoforms of the Na+, K+-ATPase are present in the brain. Previous studies have supported the involvement of the Na+, K+-ATPase and endogenous cardiac steroids (ECS) in the etiology of BD. Decreased brain ECS has been found to elicit anti-manic and anti-depressive-like behaviors in mice and rats. However, the identity of the specific α isoform involved in these behavioral effects is unknown. Here, we demonstrated that decreasing ECS through intracerebroventricular (i.c.v.) administration of anti-ouabain antibodies (anti-Ou-Ab) decreased the activity of α1+/- mice in forced swimming tests but did not change the activity in wild type (wt) mice. This treatment also affected exploratory and anxiety behaviors in α1+/- but not wt mice, as measured in open field tests. The i.c.v. administration of anti-Ou-Ab decreased brain ECS and increased brain Na+, K+-ATPase activity in wt and α1+/- mice. The serum ECS was lower in α1+/- than wt mice. In addition, a study in human participants demonstrated that serum ECS significantly decreased after treatment. These results suggest that the Na+, K+-ATPase α1 isoform is involved in depressive- and manic-like behaviors and support that the Na+, K+-ATPase/ECS system participates in the etiology of BD.


Subject(s)
Depression , Sodium-Potassium-Exchanging ATPase , Humans , Mice , Rats , Animals , Sodium-Potassium-Exchanging ATPase/genetics , Sodium-Potassium-Exchanging ATPase/metabolism , Ouabain/metabolism , Protein Isoforms/metabolism , Steroids
12.
Int. j. morphol ; 42(1): 205-215, feb. 2024. ilus, tab
Article in English | LILACS | ID: biblio-1528814

ABSTRACT

SUMMARY: This study assessed the effects of Acacia Senegal (AS) combined with insulin on Na+/K+-ATPase (NKA) activity and mRNA expression, serum glucose, renal function, and oxidative stress in a rat model of diabetic nephropathy (DN). Sixty rats were equally divided into six groups: normal control, normal+AS, diabetic (DM), DM+insulin, DM+AS, and DM+insulin+AS groups. Diabetes mellitus (type 1) was induced by a single injection of streptozotocin (65 mg/kg), and insulin and AS treatments were carried until rats were culled at the end of week 12. Serum glucose and creatinine levels, hemoglobin A1c (HbA1c) were measured. Renal homogenate levels of NKA activity and gene expression, malondialdehyde, superoxide dismutase (SOD), catalase and reduced glutathione (GSH) were evaluated as well as kidney tissue histology and ultrastructure. Diabetes caused glomerular damage and modulation of blood and tissue levels of creatinine, glucose, HbA1c, malondialdehyde, NKA activity and gene expression, SOD, catalase and GSH, which were significantly (p<0.05) treated with AS, insulin, and insulin plus AS. However, AS+insulin treatments were more effective. In conclusion, combined administration of AS with insulin to rats with DN decreased NKA activity and gene expression as well as oxidative stress, and improved glycemic state and renal structure and function.


Este estudio evaluó los efectos de Acacia senegal (AS) combinada con insulina sobre la actividad Na+/K+- ATPasa (NKA) y la expresión de ARNm, la glucosa sérica, la función renal y el estrés oxidativo en un modelo de nefropatía diabética (ND) en ratas. Sesenta ratas se dividieron equitativamente en seis grupos: control normal, normal+AS, diabética (DM), DM+insulina, DM+AS y DM+insulina+AS. La diabetes mellitus (tipo 1) se indujo mediante una única inyección de estreptozotocina (65 mg/kg), y los tratamientos con insulina y AS se llevaron a cabo hasta que las ratas fueron sacrificadas al final de la semana 12. Se midieron niveles séricos de glucosa y creatinina, hemoglobina A1c (HbA1c). Se evaluaron los niveles de homogeneizado renal de actividad NKA y expresión génica, malondialdehído, superóxido dismutasa (SOD), catalasa y glutatión reducido (GSH), así como la histología y ultraestructura del tejido renal. La diabetes causó daño glomerular y modulación de los niveles sanguíneos y tisulares de creatinina, glucosa, HbA1c, malondialdehído, actividad y expresión génica de NKA, SOD, catalasa y GSH, los cuales fueron tratados significativamente (p<0,05) con AS, insulina e insulina más AS. Sin embargo, los tratamientos con AS+insulina fueron más efectivos. En conclusión, la administración combinada de AS con insulina a ratas con DN disminuyó la actividad de NKA y la expresión genética, así como el estrés oxidativo, y mejoró el estado glucémico y la estructura y función renal.


Subject(s)
Animals , Male , Rats , Plant Extracts/administration & dosage , Sodium-Potassium-Exchanging ATPase/drug effects , Diabetic Nephropathies/drug therapy , Acacia/chemistry , Superoxide Dismutase , Glycated Hemoglobin/analysis , Plant Extracts/pharmacology , Gene Expression , Rats, Sprague-Dawley , Sodium-Potassium-Exchanging ATPase/genetics , Oxidative Stress , Microscopy, Electron, Transmission , Disease Models, Animal , Drug Therapy, Combination , Glycemic Control , Insulin/administration & dosage , Kidney/drug effects , Malondialdehyde
13.
Cell Calcium ; 118: 102851, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38308916

ABSTRACT

The Na+, K+ ATPases play a fundamental role in the homeostatic functions of astrocytes. After a brief historic prologue and discussion of the subunit composition and localization of the astrocytic Na+, K+ ATPases, the review focuses on the role of the astrocytic Na+, K+ pumps in extracellular K+ and glutamate homeostasis, intracellular Na+ and Ca2+ homeostasis and signaling, regulation of synaptic transmission and neurometabolic coupling between astrocytes and neurons. Loss-of-function mutations in the gene encoding the astrocytic α2 Na+, K+ ATPase cause a rare monogenic form of migraine with aura (familial hemiplegic migraine type 2). On the other hand, the α2 Na+, K+ ATPase is upregulated in spinal cord and brain samples from amyotrophic lateral sclerosis and Alzheimer disease patients, respectively. In the last part, the review focuses on i) the migraine relevant phenotypes shown by familial hemiplegic migraine type 2 knock-in mice with 50 % reduced expression of the astrocytic α2 Na+, K+ ATPase and the insights into the pathophysiology of migraine obtained from these genetic mouse models, and ii) the evidence that upregulation of the astrocytic α2 Na+, K+ ATPase in mouse models of amyotrophic lateral sclerosis and Alzheimer disease promotes neuroinflammation and contributes to progressive neurodegeneration.


Subject(s)
Alzheimer Disease , Amyotrophic Lateral Sclerosis , Migraine with Aura , Humans , Mice , Animals , Sodium-Potassium-Exchanging ATPase/genetics , Sodium-Potassium-Exchanging ATPase/metabolism , Migraine with Aura/genetics , Migraine with Aura/metabolism , Astrocytes/metabolism , Alzheimer Disease/metabolism , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism
14.
Biomolecules ; 14(1)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38275764

ABSTRACT

Na+,K+-ATPase actively extrudes three cytoplasmic Na+ ions in exchange for two extracellular K+ ions for each ATP hydrolyzed. The atomic structure with bound Na+ identifies three Na+ sites, named I, II, and III. It has been proposed that site III is the first to be occupied and site II last, when Na+ binds from the cytoplasmic side. It is usually assumed that the occupation of all three Na+ sites is obligatory for the activation of phosphoryl transfer from ATP. To obtain more insight into the individual roles of the ion-binding sites, we have analyzed a series of seven mutants with substitution of the critical ion-binding residue Ser777, which is a shared ligand between Na+ sites I and III. Surprisingly, mutants with large and bulky substituents expected to prevent or profoundly disturb Na+ access to sites I and III retain the ability to form a phosphoenzyme from ATP, even with increased apparent Na+ affinity. This indicates that Na+ binding solely at site II is sufficient to promote phosphorylation. These mutations appear to lock the membrane sector into an E1-like configuration, allowing Na+ but not K+ to bind at site II, while the cytoplasmic sector undergoes conformational changes uncoupled from the membrane sector.


Subject(s)
Adenosine Triphosphate , Sodium-Potassium-Exchanging ATPase , Sodium-Potassium-Exchanging ATPase/genetics , Sodium-Potassium-Exchanging ATPase/metabolism , Phosphorylation , Adenosine Triphosphate/metabolism , Binding Sites , Ions/metabolism
15.
Article in English | MEDLINE | ID: mdl-38224831

ABSTRACT

Salinity and temperature influence growth, survival, and reproduction of crustacean species such as Penaeus vannamei where Na +/K+-ATPase plays a key role in maintaining osmotic homeostasis in different salinity conditions. This ability is suggested to be mediated by other proteins including neuropeptides such as the crustacean hyperglycemic hormones (CHHs), and heat shock proteins (HSPs). The mRNA expression of Na+/K+-ATPase, HSP60, HSP70, CHH-A, and CHH-B1, was analyzed by qPCR in shrimp acclimated to different salinities (10, 26, and 40 PSU) and temperature conditions (20, 23, 26, 29, and 32 °C) to evaluate their uses as molecular stress biomarkers. The results showed that the hemolymph osmoregulatory capacity in shrimp changed with exposure to the different salinities. From 26 to 32 °C the Na+/K+-ATPase expression increased significantly at 10 PSU relative to shrimp acclimated at 26 PSU and at 20 °C increased at similar values independently of salinity. The highest HSP expression levels were obtained by HSP70 at 20 °C, suggesting a role in protecting proteins such as Na+/K+ -ATPase under low-temperature and salinity conditions. CHH-A was not expressed in the gill under any condition, but CHH-B1 showed the highest expression at the lowest temperatures and salinities, suggesting its participation in the Na+/K+-ATPase induction. Since Na+/K+-ATPase, HSPs, and CHHs seem to participate in maintaining the osmo-ionic balance and homeostasis in P. vannamei, their expression levels may be used as a stress biomarkers to monitor marine crustacean health status when acclimated in low salinity and temperature conditions.


Subject(s)
Penaeidae , Animals , Penaeidae/metabolism , Salinity , Adenosine Triphosphatases/metabolism , Temperature , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Sodium-Potassium-Exchanging ATPase/genetics , Sodium-Potassium-Exchanging ATPase/metabolism , Gills/metabolism
16.
J Chem Inf Model ; 64(3): 974-982, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38237560

ABSTRACT

Krokinobacter eikastus rhodopsin 2 (KR2) is a typical light-driven sodium pump. Although wild-type KR2 exhibits high Na+ selectivity, mutagenesis performed on the residues constituting the entrance enables permeation of K+ and Cs+, while the underlying mechanism remains elusive. This study presents a comprehensive molecular dynamics investigation, including force field optimization, metadynamics, and alchemical free energy methods, to explore the N61L/G263F mutant of KR2, which exhibits transportability for K+ and Cs+. The introduced Phe263 residue can directly promote ion binding at the entrance through cation-π interactions, while the N61L mutation can enhance ion binding at Phe46 by relieving steric hindrance. These results suggest that cation-π interactions may significantly influence the ion transportability and selectivity of KR2, which can provide important insights for protein engineering and the design of artificial ion transporters.


Subject(s)
Flavobacteriaceae , Molecular Dynamics Simulation , Sodium-Potassium-Exchanging ATPase , Sodium-Potassium-Exchanging ATPase/chemistry , Sodium-Potassium-Exchanging ATPase/genetics , Sodium-Potassium-Exchanging ATPase/metabolism , Rhodopsin/chemistry , Rhodopsin/genetics , Rhodopsin/metabolism , Cations/metabolism
17.
Genes Genomics ; 46(4): 475-487, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38243045

ABSTRACT

BACKGROUND: ATP1A3 is a gene that encodes the ATPase Na + /K + transporting subunit alpha-3 isoenzyme that is widely expressed in GABAergic neurons. It maintains metabolic balance and neurotransmitter movement. These pathways are essential for the proper functioning of the nervous system. A mutation in the ATP1A3 gene demonstrates remarkable genotype-phenotype heterogeneity. OBJECTIVES: To provide insight into patients with ATP1A3 mutation. MATERIAL AND METHODS: These cases were identified using next generation sequencing. The patients' clinical and genetic data were retrieved. Detailed revision of the literature was conducted to illustrate and compare findings. The clinical, genetical, neuroimaging, and electrophysiological data of all pediatric patients were extracted. RESULTS: The study included 14 females and 12 males in addition to two novel females cases. Their mean current age is 6.3 ± 4.24 years. There were 11.54% preterm pregnancies with 5 cases reporting pregnancy complications. Mean age of seizure onset was 1.07 ± 1.06 years. Seizure semiology included generalized tonic-clonic, staring spells, tonic-clonic, and others. Levetiracetam was the most frequently used Anti-seizure medication. The three most frequently reported classical symptoms included alternating hemiplegia of childhood (50%), cerebellar ataxia (50%), and optic atrophy (23.08%). Non-classical symptoms included dystonia (73.08%), paroxysmal dyskinesias (34.62%), and encephalopathy (26.92%). Developmental delay was reported among 84.62% in cognitive, 92.31% in sensorimotor, 80.77% in speech, and 76.92% in socioemotional. EEG and MRI were non-specific. CONCLUSION: Our study demonstrated high heterogeneity among patients with pathogenic variants in the ATP1A3 gene. Such variation is multifactorial and can be a predisposition of wide genetic and clinical variables. Many patients shared few similarities in their genetic map including repeatedly reported de novo, heterozygous, mutations in the gene. Clinically, higher females prevalence of atypical presentation was noted. These findings are validated with prior evidence and the comprehensive analysis in this study.


Subject(s)
Seizures , Sodium-Potassium-Exchanging ATPase , Male , Female , Infant, Newborn , Humans , Child , Infant , Child, Preschool , Phenotype , Mutation , Genotype , Sodium-Potassium-Exchanging ATPase/genetics
18.
Eur J Paediatr Neurol ; 48: 101-108, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38096596

ABSTRACT

BACKGROUND: Non-sleep related apnea (NSA) has been observed in alternating hemiplegia of childhood (AHC) but has yet to be characterized. GOALS: Investigate the following hypotheses: 1) AHC patients manifest NSA that is often severe. 2) NSA is usually triggered by precipitating events. 3) NSA is more likely in patients with ATP1A3 mutations. METHODS: Retrospective review of 51 consecutive AHC patients (ages 2-45 years) enrolled in our AHC registry. NSAs were classified as mild (not needing intervention), moderate (needing intervention but not perceived as life threatening), or severe (needing intervention and perceived as life threatening). RESULTS: 19/51 patients (37 %) had 52 NSA events (6 mild, 11 moderate, 35 severe). Mean age of onset of NSA (± Standard Error of the Mean (SEM)): 3.8 ± 1.5 (range 0-24) years, frequency during follow up was higher at younger ages as compared to adulthood (year 1: 2.2/year, adulthood: 0.060/year). NSAs were associated with triggering factors, bradycardia and with younger age (p < 0.008 in all) but not with mutation status (p = 0.360). Triggers, observed in 17 patients, most commonly included epileptic seizures in 9 (47 %), anesthesia, AHC spells and intercurrent, stressful, conditions. Management included use of pulse oximeter at home in nine patients, home oxygen in seven, intubation/ventilatory support in seven, and basic CPR in six. An additional patient required tracheostomy. There were no deaths or permanent sequalae. CONCLUSIONS: AHC patients experience NSAs that are often severe. These events are usually triggered by seizures or other stressful events and can be successfully managed with interventions tailored to the severity of the NSA.


Subject(s)
Apnea , Epilepsy , Child , Humans , Mutation , Hemiplegia/genetics , Seizures , Sodium-Potassium-Exchanging ATPase/genetics
19.
Cancer Immunol Res ; 12(1): 36-47, 2024 01 03.
Article in English | MEDLINE | ID: mdl-38063845

ABSTRACT

T cells are often compromised within cancers, allowing disease progression. We previously found that intratumoral elevations in extracellular K+, related to ongoing cell death, constrained CD8+ T-cell Akt-mTOR signaling and effector function. To alleviate K+-mediated T-cell dysfunction, we pursued genetic means to lower intracellular K+. CD8+ T cells robustly and dynamically express the Na+/K+ ATPase, among other K+ transporters. CRISPR-Cas9-mediated disruption of the Atp1a1 locus lowered intracellular K+ and elevated the resting membrane potential (i.e., Vm, Ψ). Despite compromised Ca2+ influx, Atp1a1-deficient T cells harbored tonic hyperactivity in multiple signal transduction cascades, along with a phenotype of exhaustion in mouse and human CD8+ T cells. Provision of exogenous K+ restored intracellular levels in Atp1a1-deficient T cells and prevented damaging levels of reactive oxygen species (ROS), and both antioxidant treatment and exogenous K+ prevented Atp1a1-deficient T-cell exhaustion in vitro. T cells lacking Atp1a1 had compromised persistence and antitumor activity in a syngeneic model of orthotopic murine melanoma. Translational application of these findings will require balancing the beneficial aspects of intracellular K+ with the ROS-dependent nature of T-cell effector function. See related Spotlight by Banuelos and Borges da Silva, p. 6.


Subject(s)
Signal Transduction , T-Cell Exhaustion , Humans , Animals , Mice , Reactive Oxygen Species/metabolism , Signal Transduction/genetics , Sodium-Potassium-Exchanging ATPase/genetics , Sodium-Potassium-Exchanging ATPase/metabolism , CD8-Positive T-Lymphocytes/metabolism
20.
Brain Dev ; 46(1): 57-61, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37778966

ABSTRACT

BACKGROUND: Some patients with ATP1A3 variant-associated polymicrogyria have recurrent transient heart failure. However, effective treatment for the transient cardiac condition remains to be elucidated. CASE REPORT: The patient started experiencing focal motor onset seizures in 12 h after birth, revealing bilateral diffuse polymicrogyria. The patient also experienced transient bradycardia (sinus bradycardia) attacks from 15 days old. Echocardiography revealed a reduced ejection fraction; however, no obvious electrocorticogram or electroencephalogram abnormalities were observed during the attacks. Initially, the attacks occurred in clusters daily. They later decreased in frequency, occurring at monthly intervals. Repeated episodes of transient bradycardia attacks and polymicrogyria indicated possible ATP1A3 gene abnormality and genetic testing revealed a novel heterozygous ATP1A3 variant (NM_152296: exon22:c.2977_2982del:p.(Glu993_Ile994del)), which was not found in the patient's parents. Cilostazol was administered at 3 months old for recurrent transient bradycardia attacks. Cilostazol significantly shortened the duration of bradycardia episodes and prolonged the interval between attacks. Cilostazol also effectively treats transient symptomatic bradycardia. CONCLUSION: Cilostazol could be a treatment option for recurrent transient bradycardia attacks associated with ATP1A3 gene abnormalities and polymicrogyria.


Subject(s)
Heart Failure , Polymicrogyria , Humans , Infant , Cilostazol , Bradycardia/drug therapy , Bradycardia/genetics , Polymicrogyria/drug therapy , Polymicrogyria/genetics , Polymicrogyria/complications , Heart Failure/drug therapy , Heart Failure/genetics , Heart Failure/complications , Seizures/complications , Sodium-Potassium-Exchanging ATPase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...