Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30.072
Filter
1.
PeerJ ; 12: e16943, 2024.
Article in English | MEDLINE | ID: mdl-38770100

ABSTRACT

The aim of the current study was to assess the potency of the exopolymeric substances (EPS)-secreting purple non-sulfur bacteria (PNSB) on rice plants on acidic salt-affected soil under greenhouse conditions. A two-factor experiment was conducted following a completely randomized block design. The first factor was the salinity of the irrigation, and the other factor was the application of the EPS producing PNSB (Luteovulum sphaeroides EPS18, EPS37, and EPS54), with four replicates. The result illustrated that irrigation of salt water at 3-4‰ resulted in an increase in the Na+ accumulation in soil, resulting in a lower rice grain yield by 12.9-22.2% in comparison with the 0‰ salinity case. Supplying the mixture of L. sphaeroides EPS18, EPS37, and EPS54 increased pH by 0.13, NH4+ by 2.30 mg NH4+ kg-1, and available P by 8.80 mg P kg-1, and decreased Na+ by 0.348 meq Na+ 100 g-1, resulting in improvements in N, P, and K uptake and reductions in Na uptake, in comparison with the treatment without bacteria. Thus, the treatments supplied with the mixture of L. sphaeroides EPS18, EPS37, and EPS54 resulted in greater yield by 27.7% than the control treatment.


Subject(s)
Oryza , Soil Microbiology , Soil , Oryza/microbiology , Oryza/metabolism , Oryza/growth & development , Soil/chemistry , Salinity , Salt Stress , Proteobacteria/metabolism , Hydrogen-Ion Concentration , Sodium/metabolism , Sodium/pharmacology
2.
An Acad Bras Cienc ; 96(2): e20230999, 2024.
Article in English | MEDLINE | ID: mdl-38775554

ABSTRACT

Soil organic matter is closely linked to the quality of Agroecosystems and directly influences the agricultural production and the environmental conditions. Understanding of soil organic matter dynamics in agroforestry systems requires studies with a temporal focus, since the changes in its chemical composition tend to follow a gradual behavior. The aim of this study was to investigate the dynamics of changes in stocks and chemical composition of soil organic matter under agroforestry, using systems in different stages of vegetation succession. The soil sampling was carried out from trenches, and litter fractions were also sampled. The samples were collected from different layers of the soil profile under the following conditions: Control; agroforestry with 1 year; agroforestry with 3 years; agroforestry with 7 years and Forest in natural regeneration. The following attributes/parameters were determined/calculated: i) C and N contents and stocks and C/N ratio; ii) C and N proportions in soil granulometric fractions and iii) kinetics of organic matter accumulation in soil with the time of systems evolution. The results showed: i) The C/N ratio tended to increase in depth but did not show a clear variation between the systems evaluated; ii) the adoption of successive agroforestry practices has the potential to increase the C and N stocks in soil; iii) the soil organic matter accumulation occurs gradually during the systems evolution and is mainly related to the particulate fraction (> 0.053 mm).


Subject(s)
Agriculture , Carbon , Forestry , Nitrogen , Soil , Soil/chemistry , Brazil , Agriculture/methods , Carbon/analysis , Nitrogen/analysis
3.
Environ Monit Assess ; 196(6): 567, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38775991

ABSTRACT

The study attempted to evaluate the agricultural soil quality using the Soil Quality Index (SQI) model in two Community Development Blocks, Ausgram-II and Memari-II of Purba Bardhaman District. Total 104 soil samples were collected (0-20 cm depth) from each Block to analyse 13 parameters (bulk density, soil porosity, soil aggregate stability, water holding capacity, infiltration rate, available nitrogen, available phosphorous, available potassium, soil pH, soil organic carbon, electrical conductivity, soil respiration and microbial biomass carbon) in this study. The Integrated Quality Index (IQI) was applied using the weighted additive approach and non-linear scoring technique to retain the Minimum Data Set (MDS). Principal Component Analysis (PCA) identified that SAS, BD, available K, pH, available N, and available P were the key contributing parameters to SQI in Ausgram-II. In contrast, WHC, SR, available N, pH, and SAS contributed the most to SQI in Memari-II. Results revealed that Ausgram-II (0.97) is notably higher SQI than Memari-II (0.69). In Ausgram-II, 99.72% of agricultural lands showed very high SQI (Grade I), whereas, in Memari-II, 49.95% of lands exhibited a moderate SQI (Grade III) and 49.90% showed a high SQI (Grade II). Sustainable Yield Index (SYI), Sensitivity Index (SI) and Efficiency Ratio (ER) were used to validate the SQIs. A positive correlation was observed between SQI and paddy ( R2 = 0.82 & 0.72) and potato yield (R2 = 0.71 & 0.78) in Ausgram-II and Memari-II Block, respectively. This study could evaluate the agricultural soil quality and provide insights for decision-making in fertiliser management practices to promote agricultural sustainability.


Subject(s)
Agriculture , Environmental Monitoring , Oryza , Soil , India , Soil/chemistry , Environmental Monitoring/methods , Oryza/growth & development , Nitrogen/analysis , Soil Pollutants/analysis , Phosphorus/analysis
4.
Bull Environ Contam Toxicol ; 112(5): 69, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722440

ABSTRACT

The rapid development of livestock and poultry industry in China has caused serious environment pollution problems. To understand the heavy metals accumulation and identify their sources, 7 heavy metals contents and lead isotope ratios were determined in 24 soil samples from vegetable fields irrigated with swine wastewater in Dongxiang County, Jiangxi Province, China. The results showed that the concentration of Cr, Ni, Cu, Zn, As, Cd and Pb in the swine wastewater irrigated vegetable soils varied from 38.5 to 86.4, 7.57 to 30.6, 20.0 to 57.1, 37.5 to 174, 9.18 to 53.1, 0.043 to 0.274 and 12.8 to 37.1 mg/kg, respectively. The soils were moderately to heavily polluted by As, moderately polluted by Cr, Ni, Cu, Zn and Cd, and unpolluted to moderately polluted by Pb. Sampling soils were classified as moderately polluted according to the Nemerow comprehensive pollution index. Lead isotope and Principal Component Analysis (PCA) analysis indicated that swine wastewater irrigation and atmospheric deposition were the primary sources of the heavy metals.


Subject(s)
Environmental Monitoring , Lead , Metals, Heavy , Soil Pollutants , Vegetables , Wastewater , Soil Pollutants/analysis , Animals , Metals, Heavy/analysis , China , Wastewater/chemistry , Swine , Vegetables/chemistry , Lead/analysis , Agricultural Irrigation , Soil/chemistry , Isotopes/analysis
5.
Environ Microbiol ; 26(5): e16631, 2024 May.
Article in English | MEDLINE | ID: mdl-38757479

ABSTRACT

Peatlands, one of the oldest ecosystems, globally store significant amounts of carbon and freshwater. However, they are under severe threat from human activities, leading to changes in water, nutrient and temperature regimes in these delicate systems. Such shifts can trigger a substantial carbon flux into the atmosphere and diminish the water-holding capacity of peatlands. Microbes associated with moss in peatlands play a crucial role in providing these ecosystem services, which are at risk due to global change. Therefore, understanding the factors influencing microbial composition and function is vital. Our study focused on five peatlands along an altitudinal gradient in Switzerland, where we sampled moss on hummocks containing Sarracenia purpurea. Structural equation modelling revealed that habitat condition was the primary predictor of community structure and directly influenced other environmental variables. Interestingly, the microbial composition was not linked to the local moss species identity. Instead, microbial communities varied significantly between sites due to differences in acidity levels and nitrogen availability. This finding was also mirrored in a co-occurrence network analysis, which displayed a distinct distribution of indicator species for acidity and nitrogen availability. Therefore, peatland conservation should take into account the critical habitat characteristics of moss-associated microbial communities.


Subject(s)
Bacteria , Bryophyta , Ecosystem , Microbiota , Switzerland , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Bryophyta/microbiology , Soil/chemistry , Soil Microbiology , Nitrogen/metabolism , Nitrogen/analysis , Wetlands , Biodiversity
6.
Sci Data ; 11(1): 478, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724554

ABSTRACT

Soil organic carbon (SOC) is a soil health indicator and understanding dynamics changing SOC stocks will help achieving net zero goals. Here we present four datasets featuring 11,750 data points covering co-located aboveground and below-ground metrics for exploring ecosystem SOC dynamics. Five sites across England with an established land use contrast, grassland and woodland next to each other, were rigorously sampled for aboveground (n = 109), surface (n = 33 soil water release curves), topsoil, and subsoil metrics. Commonly measured soil metrics were analysed in five soil increments for 0-1 metre (n = 4550). Less commonly measured soil metrics which were assumed to change across the soil profile were measured on a subset of samples only (n = 3762). Additionally, we developed a simple method for soil organic matter fractionation using density fractionation which is part of the less common metrics. Finally, soil metrics which may impact SOC dynamics, but with less confidence as to their importance across the soil profile were only measured on topsoil (~5-15 cm = mineral soil) and subsoil (below 50 cm) samples (n = 2567).


Subject(s)
Carbon , Grassland , Soil , Soil/chemistry , Carbon/analysis , England , Forests , Ecosystem
7.
Curr Microbiol ; 81(7): 170, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734822

ABSTRACT

As a primary nutrient in agricultural soils, phosphorus plays a crucial but growth-limiting role for plants due to its complex interactions with various soil elements. This often results in excessive phosphorus fertilizer application, posing concerns for the environment. Agri-research has therefore shifted focus to increase fertilizer-use efficiency and minimize environmental impact by leveraging plant growth-promoting rhizobacteria. This study aimed to evaluate the in-field incremental effect of inorganic phosphate concentration (up to 50 kg/ha/P) on the ability of two rhizobacterial isolates, Lysinibacillus sphaericus (T19), Paenibacillus alvei (T29), from the previous Breedt et al. (Ann Appl Biol 171:229-236, 2017) study on maize in enhancing the yield of commercially grown Duzi® cultivar wheat. Results obtained from three seasons of field trials revealed a significant relationship between soil phosphate concentration and the isolates' effectiveness in improving wheat yield. Rhizospheric samples collected at flowering during the third season, specifically to assess phosphatase enzyme activity at the different soil phosphate levels, demonstrated a significant decrease in soil phosphatase activity when the phosphorus rate reached 75% for both isolates. Furthermore, in vitro assessments of inorganic phosphate solubilization by both isolates at five increments of tricalcium phosphate-amended Pikovskaya media found that only isolate T19 was capable of solubilizing tricalcium at concentrations exceeding 3 mg/ml. The current study demonstrates the substantial influence of inorganic phosphate on the performance of individual rhizobacterial isolates, highlighting that this is an essential consideration when optimizing these isolates to increase wheat yield in commercial cultivation.


Subject(s)
Phosphates , Rhizosphere , Soil Microbiology , Soil , Triticum , Triticum/microbiology , Triticum/growth & development , Phosphates/metabolism , Soil/chemistry , Fertilizers/analysis , Paenibacillus/metabolism , Paenibacillus/genetics , Paenibacillus/growth & development , Phosphorus/metabolism
8.
Carbohydr Polym ; 337: 122188, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38710565

ABSTRACT

Growing plants in karst areas tends to be difficult due to the easy loss of water and soil. To enhance soil agglomeration, water retention, and soil fertility, this study developed a physically and chemically crosslinked hydrogel prepared from quaternary ammonium guar gum and humic acid. The results showed that non-covalent dynamic bonds between the two components delayed humic acid release into the soil, with a release rate of only 35 % after 240 h. The presence of four hydrophilic groups (quaternary ammonium, hydroxyl, carboxyl, and carbonyl) in the hydrogel more than doubled the soil's water retention capacity. The interaction between hydrogel and soil minerals (especially carbonate and silica) promoted hydrogel-soil and soil­carbonate adhesion, and the adhesion strength between soil particles was enhanced by 650 %. Moreover, compared with direct fertilization, this degradable hydrogel not only increased the germination rate (100 %) and growth status of mung beans but also reduced the negative effects of excessive fertilization on plant roots. The study provides an eco-friendly, low-cost, and intelligent system for soil improvement in karst areas. It further proves the considerable application potential of hydrogels in agriculture.


Subject(s)
Galactans , Humic Substances , Hydrogels , Mannans , Plant Gums , Quaternary Ammonium Compounds , Soil , Plant Gums/chemistry , Galactans/chemistry , Mannans/chemistry , Hydrogels/chemistry , Soil/chemistry , Quaternary Ammonium Compounds/chemistry , Fertilizers , Delayed-Action Preparations/chemistry , Germination/drug effects , Water/chemistry
9.
Environ Monit Assess ; 196(6): 516, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710964

ABSTRACT

Trace metal soil contamination poses significant risks to human health and ecosystems, necessitating thorough investigation and management strategies. Researchers have increasingly utilized advanced techniques like remote sensing (RS), geographic information systems (GIS), geostatistical analysis, and multivariate analysis to address this issue. RS tools play a crucial role in collecting spectral data aiding in the analysis of trace metal distribution in soil. Spectroscopy offers an effective understanding of environmental contamination by analyzing trace metal distribution in soil. The spatial distribution of trace metals in soil has been a key focus of these studies, with factors influencing this distribution identified as soil type, pH levels, organic matter content, land use patterns, and concentrations of trace metals. While progress has been made, further research is needed to fully recognize the potential of integrated geospatial imaging spectroscopy and multivariate statistical analysis for assessing trace metal distribution in soils. Future directions include mapping multivariate results in GIS, identifying specific anthropogenic sources, analyzing temporal trends, and exploring alternative multivariate analysis tools. In conclusion, this review highlights the significance of integrated GIS and multivariate analysis in addressing trace metal contamination in soils, advocating for continued research to enhance assessment and management strategies.


Subject(s)
Environmental Monitoring , Metals , Remote Sensing Technology , Soil Pollutants , Soil , Environmental Monitoring/methods , Soil Pollutants/analysis , Multivariate Analysis , Soil/chemistry , Metals/analysis , Geographic Information Systems , Trace Elements/analysis
10.
Glob Chang Biol ; 30(5): e17320, 2024 May.
Article in English | MEDLINE | ID: mdl-38751310

ABSTRACT

One of the largest uncertainties in the terrestrial carbon cycle is the timing and magnitude of soil organic carbon (SOC) response to climate and vegetation change. This uncertainty prevents models from adequately capturing SOC dynamics and challenges the assessment of management and climate change effects on soils. Reducing these uncertainties requires simultaneous investigation of factors controlling the amount (SOC abundance) and duration (SOC persistence) of stored C. We present a global synthesis of SOC and radiocarbon profiles (nProfile = 597) to assess the timescales of SOC storage. We use a combination of statistical and depth-resolved compartment models to explore key factors controlling the relationships between SOC abundance and persistence across pedo-climatic regions and with soil depth. This allows us to better understand (i) how SOC abundance and persistence covary across pedo-climatic regions and (ii) how the depth dependence of SOC dynamics relates to climatic and mineralogical controls on SOC abundance and persistence. We show that SOC abundance and persistence are differently related; the controls on these relationships differ substantially between major pedo-climatic regions and soil depth. For example, large amounts of persistent SOC can reflect climatic constraints on soils (e.g., in tundra/polar regions) or mineral absorption, reflected in slower decomposition and vertical transport rates. In contrast, lower SOC abundance can be found with lower SOC persistence (e.g., in highly weathered tropical soils) or higher SOC persistence (e.g., in drier and less productive regions). We relate variable patterns of SOC abundance and persistence to differences in the processes constraining plant C input, microbial decomposition, vertical C transport and mineral SOC stabilization potential. This process-oriented grouping of SOC abundance and persistence provides a valuable benchmark for global C models, highlighting that pedo-climatic boundary conditions are crucial for predicting the effects of climate change and soil management on future C abundance and persistence.


Subject(s)
Carbon , Climate Change , Soil , Soil/chemistry , Carbon/analysis , Carbon Cycle , Models, Theoretical , Climate
11.
Curr Microbiol ; 81(6): 160, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38695903

ABSTRACT

Salt stress can adversely affect plant seed germination, growth and development, and eventually lead to slow growth and even death of plants. The purpose of this study was to investigate the effects of different concentrations of NaCl and Na2SO4 stress on the physicochemical properties, enzyme activities, rhizosphere microbial community and seven active components (L-phenylalanine, Protocatechuic acid, Eleutheroside B, Chlorogenic acid, Caffeic acid, Eleutheroside E, Isofraxidin) of Acanthopanax senticosus rhizosphere soil. Statistical analysis was used to explore the correlation between the rhizosphere ecological factors of Acanthopanax senticosus and its active components. Compared with Acanthopanax senticosus under NaCl stress, Na2SO4 generally had a greater effect on Acanthopanax senticosus, which reduced the richness of fungi in rhizosphere soil and adversely affected the content of multiple active components. Pearson analysis showed that pH, organic matter, ammonium nitrogen, available phosphorus, available potassium, catalase and urease were significantly correlated with active components such as Caffeic acid and Isofraxidin. There were 11 known bacterial genera, 12 unknown bacterial genera, 9 known fungal genera and 1 unknown fungal genus significantly associated with the active ingredient. Salt stress had great changes in the physicochemical properties, enzyme activities and microorganisms of the rhizosphere soil of Acanthopanax senticosus. In conclusion, different types and concentrations of salts had different effects on Acanthopanax senticosus, and the active components of Acanthopanax senticosus were regulated by rhizosphere soil ecological factors.


Subject(s)
Bacteria , Eleutherococcus , Fungi , Rhizosphere , Salt Stress , Soil Microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/drug effects , Bacteria/isolation & purification , Bacteria/metabolism , Fungi/classification , Fungi/drug effects , Fungi/genetics , Fungi/isolation & purification , Eleutherococcus/metabolism , Microbiota/drug effects , Soil/chemistry , Sodium Chloride/metabolism , Plant Roots/microbiology
12.
PLoS One ; 19(5): e0300573, 2024.
Article in English | MEDLINE | ID: mdl-38739594

ABSTRACT

The intercropping system is a promising approach to augmenting the soil nutrient status and promoting sustainable crop production. However, it is not known whether intercropping improves the soil phosphorus (P) status in alluvial soils with low P under subtropical climates. Over two growing seasons--2019-2020 and 2020-2021--two experimental fields were employed to explore the effect of durum wheat (Dw) and chickpea (Cp) cropping systems on the soil available P. A randomized complete block design was used in this experiment, with three blocks each divided into three plots. Each plot was used for one of the following three treatments with three replications: Dw monocrop (Dw-MC), Cp monocrop (Cp-MC), and Dw + Cp intercrop (CpDw-InC), with bulk soil (BS) used as a control. A reduction in the rhizosphere soil pH (-0.44 and -0.11 unit) was observed in the (Cp-MC) and (CpDw-InC) treatments over BS, occurring concomitantly with a significant increase in available P in the rhizosphere soil of around 28.45% for CpDw-InC and 24.9% for Cp-MC over BS. Conversely, the rhizosphere soil pH was significantly higher (+0.12 units) in the Dw-MC treatments. In addition, intercropping enhanced the soil microbial biomass P, with strong positive correlations observed between the biomass P and available P in the Cp-MC treatment, whereas this correlation was negative in the CpDw-InC and Dw-MC treatments. These findings suggested that Cp intercropped with Dw could be a viable approach in enhancing the available P through improved pH variation and biomass P when cultivated on alluvial soil under a subtropical climate.


Subject(s)
Biomass , Cicer , Phosphorus , Soil , Triticum , Phosphorus/analysis , Phosphorus/metabolism , Triticum/growth & development , Triticum/metabolism , Soil/chemistry , Cicer/growth & development , Cicer/metabolism , Agriculture/methods , Rhizosphere , Tropical Climate , Crops, Agricultural/growth & development , Crop Production/methods , Hydrogen-Ion Concentration , Climate
13.
Glob Chang Biol ; 30(5): e17311, 2024 May.
Article in English | MEDLINE | ID: mdl-38742695

ABSTRACT

The soil microbial carbon pump (MCP) is increasingly acknowledged as being directly linked to soil organic carbon (SOC) accumulation and stability. Given the close coupling of carbon (C) and nitrogen (N) cycles and the constraints imposed by their stoichiometry on microbial growth, N addition might affect microbial growth strategies with potential consequences for necromass formation and carbon stability. However, this topic remains largely unexplored. Based on two multi-level N fertilizer experiments over 10 years in two soils with contrasting soil fertility located in the North (Cambisol, carbon-poor) and Southwest (Luvisol, carbon-rich), we hypothesized that different resource demands of microorganism elicit a trade-off in microbial growth potential (Y-strategy) and resource-acquisition (A-strategy) in response to N addition, and consequently on necromass formation and soil carbon stability. We combined measurements of necromass metrics (MCP efficacy) and soil carbon stability (chemical composition and mineral associated organic carbon) with potential changes in microbial life history strategies (assessed via soil metagenomes and enzymatic activity analyses). The contribution of microbial necromass to SOC decreased with N addition in the Cambisol, but increased in the Luvisol. Soil microbial life strategies displayed two distinct responses in two soils after N amendment: shift toward A-strategy (Cambisol) or Y-strategy (Luvisol). These divergent responses are owing to the stoichiometric imbalance between microbial demands and resource availability for C and N, which presented very distinct patterns in the two soils. The partial correlation analysis further confirmed that high N addition aggravated stoichiometric carbon demand, shifting the microbial community strategy toward resource-acquisition which reduced carbon stability in Cambisol. In contrast, the microbial Y-strategy had the positive direct effect on MCP efficacy in Luvisol, which greatly enhanced carbon stability. Such findings provide mechanistic insights into the stoichiometric regulation of MCP efficacy, and how this is mediated by site-specific trade-offs in microbial life strategies, which contribute to improving our comprehension of soil microbial C sequestration and potential optimization of agricultural N management.


Subject(s)
Carbon , Fertilizers , Nitrogen , Soil Microbiology , Soil , Soil/chemistry , Carbon/metabolism , Carbon/analysis , Nitrogen/metabolism , Nitrogen/analysis , Fertilizers/analysis , Carbon Cycle , Microbiota
14.
Environ Monit Assess ; 196(6): 546, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38743357

ABSTRACT

Industrial activities have the potential to pollute soils with a wide variety of heavy metals (HMs). In Ghana, however, assessment of HM pollution of soils in industrial areas remains limited. Accordingly, HM soil pollution in one of the industrial areas in Accra, Ghana was assessed. Soil samples were taken and analysed for HMs, including Fe, Zr, Zn, Ti, Sr, Rb, Mn, Pb, Cu, and Co, using X-Ray Fluorescence (XRF). HM geochemical threshold values (GTVs) were determined to establish soil HM pollution levels and identify areas needing remediation. Furthermore, risk assessments were conducted to evaluate the potential ecological and human health risks associated with these metals. The mean concentrations of Fe, Zn, Rb, Sr, Zr, Ti, Mn, Co, Cu, and Pb in the soils were: 27133.83, 147.72, 16.30, 95.95, 307.11, 4663.66, 289.85, 418.54, 44.97, and 112.88 mg/kg, respectively. Generally, the concentrations of HMs decreased with depth, although some lower layers exhibited elevated HM levels. Soil pollution levels were categorized as low for Fe, Rb, Zr, Ti, Mn, Co, and Cu; moderate for Sr and Zn; and considerable for Pb. Notably, the northwestern part of the study area displayed a considerable to very high degree of HM contamination. While HMs in the soils posed low ecological risk, the human health risk assessment indicated potential health effects from Co, particularly in children. The presence of HMs in the soils was noted to originate from both natural geological phenomena and human activities, including industrial operations, agricultural practices, landfill activities, and vehicular emissions.


Subject(s)
Environmental Monitoring , Metals, Heavy , Soil Pollutants , Soil , Soil Pollutants/analysis , Ghana , Metals, Heavy/analysis , Soil/chemistry , Risk Assessment , Humans , Industry , Environmental Pollution/statistics & numerical data
15.
Glob Chang Biol ; 30(5): e17310, 2024 May.
Article in English | MEDLINE | ID: mdl-38747174

ABSTRACT

Enhanced rock weathering (ERW) has been proposed as a measure to enhance the carbon (C)-sequestration potential and fertility of soils. The effects of this practice on the soil phosphorus (P) pools and the general mechanisms affecting microbial P cycling, as well as plant P uptake are not well understood. Here, the impact of ERW on soil P availability and microbial P cycling functional groups and root P-acquisition traits were explored through a 2-year wollastonite field addition experiment in a tropical rubber plantation. The results show that ERW significantly increased soil microbial carbon-use efficiency and total P concentrations and indirectly increased soil P availability by enhancing organic P mobilization and mineralization of rhizosheath carboxylates and phosphatase, respectively. Also, ERW stimulated the activities of P-solubilizing (gcd, ppa and ppx) and mineralizing enzymes (phoADN and phnAPHLFXIM), thus contributing to the inorganic P solubilization and organic P mineralization. Accompanying the increase in soil P availability, the P-acquisition strategy of the rubber fine roots changed from do-it-yourself acquisition by roots to dependence on mycorrhizal collaboration and the release of root exudates. In addition, the direct effects of ERW on root P-acquisition traits (such as root diameter, specific root length, and mycorrhizal colonization rate) may also be related to changes in the pattern of belowground carbon investments in plants. Our study provides a new insight that ERW increases carbon-sequestration potential and P availability in tropical forests and profoundly affects belowground plant resource-use strategies.


Subject(s)
Phosphorus , Plant Roots , Silicates , Soil Microbiology , Soil , Phosphorus/metabolism , Soil/chemistry , Plant Roots/metabolism , Plant Roots/growth & development , Silicates/metabolism , Mycorrhizae/physiology , Calcium Compounds , Carbon/metabolism
16.
Glob Chang Biol ; 30(5): e17309, 2024 May.
Article in English | MEDLINE | ID: mdl-38747209

ABSTRACT

Global soil nitrogen (N) cycling remains poorly understood due to its complex driving mechanisms. Here, we present a comprehensive analysis of global soil δ15N, a stable isotopic signature indicative of the N input-output balance, using a machine-learning approach on 10,676 observations from 2670 sites. Our findings reveal prevalent joint effects of climatic conditions, plant N-use strategies, soil properties, and other natural and anthropogenic forcings on global soil δ15N. The joint effects of multiple drivers govern the latitudinal distribution of soil δ15N, with more rapid N cycling at lower latitudes than at higher latitudes. In contrast to previous climate-focused models, our data-driven model more accurately simulates spatial changes in global soil δ15N, highlighting the need to consider the joint effects of multiple drivers to estimate the Earth's N budget. These insights contribute to the reconciliation of discordances among empirical, theoretical, and modeling studies on soil N cycling, as well as sustainable N management.


Subject(s)
Nitrogen Cycle , Soil , Soil/chemistry , Nitrogen Isotopes/analysis , Machine Learning , Nitrogen/analysis , Nitrogen/metabolism , Climate , Models, Theoretical
17.
Braz J Biol ; 84: e282493, 2024.
Article in English | MEDLINE | ID: mdl-38747864

ABSTRACT

The use of fertilizers affects not only the soil fertility and crop yield, but also significantly changes the taxonomic structure of the soil microbiocenosis. Here, based on stationary field experiment, we studied the influence of organo-mineral fertilizer (ОМF), modified by bacteria Bacillus subtilis, H-13 in comparison with different fertilizer systems (organic, mineral, organo-mineral) on (i) crop yield, (ii) physical and chemical properties, and (iii) alpha and beta diversity of the microbial community Albic Retisol (Loamic, Aric, Cutanic, Differentic, Ochric). The studies were carried out against the background of liming (рНКCl - 5.9) and without it (рНКCl - 5.1). The use of only one cattle farmyard manure was less effective than its co-application with mineral fertilizers in half doses. A similar effect was obtained when applying ОМF. In addition, the use of OMF contributes to a significant increase in the reserves of soil organic carbon in the soil layer 0-20 cm by 18%-32%. Using high-throughput sequencing of the 16S rRNA variable V4 gene sequence libraries, 10.759 taxa from 456 genera were identified, assigned to 34 fila (31 bacterial and 3 archaeotic. Unilateral application of mineral fertilizers leads to a significant decrease in the alpha diversity of the structure of soil microbial communities (OTE (other things equal) and Shannon index). A clear clustering of the microbiota was found in the variants with and without the introduction of сattle farmyard manure. It is revealed that the taxonomic structure of the microbiocenosis is formed under the influence of two main factors: crop rotation culture and applied fertilizers. The type of cultivated crop determines the dynamics of the microbiota at the level of larger taxa, such as domains, and fertilizers affect the structure of the microbial community at a lower taxonomic level (phyla, orders, bloodlines). On the basis of the Deseq analysis, marker taxa were identified, according to the share participation of which it is possible to determine the type of cultivated crop and fertilizers used in the experiment. Understanding the dynamics of taxa association and other influential factors can lead to the creation of universal systems of metagenomic indication, where tracking the dynamics of microbial communities will allow for a comprehensive assessment of the agroecological state of soils and timely decisions to prevent their degradation.


Subject(s)
Crops, Agricultural , Fertilizers , Soil Microbiology , Soil , Fertilizers/analysis , Soil/chemistry , Crops, Agricultural/microbiology , Russia , Agriculture/methods , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/analysis , Animals , Cattle , Microbiota , Manure/microbiology
18.
Microbiol Res ; 284: 127738, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38692035

ABSTRACT

This study aimed to (i) investigate the potential for enhanced phytoremediation to remove contaminants from soil historically co-contaminated with petroleum hydrocarbons (PHs) and heavy metals (HMs) and (ii) analyze the expression of crucial bacterial genes and whole metatranscriptomics profiles for better understanding of soil processes during applied treatment. Phytoremediation was performed using Zea mays and supported by the Pseudomonas qingdaonensis ZCR6 strain and a natural biofertilizer: meat and bone meal (MBM). In previous investigations, mechanisms supporting plant growth and PH degradation were described in the ZCR6 strain. Here, ZCR6 survived in the soil throughout the experiment, but the efficacy of PH removal from all soils fertilized with MBM reached 32 % regardless of the bacterial inoculation. All experimental groups contained 2 % (w/w) MBM. The toxic effect of this amendment on plants was detected 30 days after germination, irrespective of ZCR6 inoculation. Among the 17 genes tested using the qPCR method, only expression of the acdS gene, encoding 1-aminocyclopropane-1-carboxylic acid deaminase, and the CYP153 gene, encoding cytochrome P450-type alkane hydroxylase, was detected in soils. Metatranscriptomic analysis of soils indicated increased expression of methane particulated ammonia monooxygenase subunit A (pmoA-amoA) by Nitrosomonadales bacteria in all soils enriched with MBM compared to the non-fertilized control. We suggest that the addition of 2 % (w/w) MBM caused the toxic effect on plants via the rapid release of ammonia, and this led to high pmoA-amoA expression. In parallel, due to its wide substrate specificity, enhanced bacterial hydrocarbon removal in MBM-treated soils was observed. The metatranscriptomic results indicate that MBM application should be considered to improve bioremediation of soils polluted with PHs rather than phytoremediation. However, lower concentrations of MBM could be considered for phytoremediation enhancement. From a broader perspective, these results indicated the superior capability of metatranscriptomics to investigate the microbial mechanisms driving various bioremediation techniques.


Subject(s)
Biodegradation, Environmental , Pseudomonas , Soil Microbiology , Soil Pollutants , Zea mays , Soil Pollutants/metabolism , Zea mays/metabolism , Zea mays/microbiology , Pseudomonas/genetics , Pseudomonas/metabolism , Pseudomonas/isolation & purification , Metals, Heavy/metabolism , Petroleum/metabolism , Soil/chemistry , Hydrocarbons/metabolism , Gene Expression Profiling , Carbon-Carbon Lyases/metabolism , Carbon-Carbon Lyases/genetics , Transcriptome
19.
Sci Rep ; 14(1): 10870, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38740776

ABSTRACT

Pea, member of the plant family Leguminosae, play a pivotal role in global food security as essential legumes. However, their production faces challenges stemming from the detrimental impacts of abiotic stressors, leading to a concerning decline in output. Salinity stress is one of the major factors that limiting the growth and productivity of pea. However, biochar amendment in soil has a potential role in alleviating the oxidative damage caused by salinity stress. The purpose of the study was to evaluate the potential role of biochar amendment in soil that may mitigate the adverse effect of salinity stress on pea. The treatments of this study were, (a) Pea varieties; (i) V1 = Meteor and V2 = Green Grass, Salinity Stress, (b) Control (0 mM) and (ii) Salinity (80 mM) (c) Biochar applications; (i) Control, (ii) 8 g/kg soil (56 g) and (iii) 16 g/kg soil (112 g). Salinity stress demonstrated a considerable reduction in morphological parameters as Shoot and root length decreased by (29% and 47%), fresh weight and dry weight of shoot and root by (85, 63%) and (49, 68%), as well as area of leaf reduced by (71%) among both varieties. Photosynthetic pigments (chlorophyll a, b, and carotenoid contents decreased under 80 mM salinity up to (41, 63, 55 and 76%) in both varieties as compared to control. Exposure of pea plants to salinity stress increased the oxidative damage by enhancing hydrogen peroxide and malondialdehyde content by (79 and 89%), while amendment of biochar reduced their activities as, (56% and 59%) in both varieties. The activities of catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD) were increased by biochar applications under salinity stress as, (49, 59, and 86%) as well as non-enzymatic antioxidants as, anthocyanin and flavonoids improved by (112 and 67%). Organic osmolytes such as total soluble proteins, sugars, and glycine betaine were increased up to (57, 83, and 140%) by biochar amendment. Among uptake of mineral ions, shoot and root Na+ uptake was greater (144 and 73%) in saline-stressed plants as compared to control, while shoot and root Ca2+ and K+ were greater up to (175, 119%) and (77, 146%) in biochar-treated plants. Overall findings revealed that 16 g/kg soil (112 g) biochar was found to be effective in reducing salinity toxicity by causing reduction in reactive oxygen species and root and shoot Na+ ions uptake and improving growth, physiological and anti-oxidative activities in pea plants (Fig. 1). Figure 1 A schematic diagram represents two different mechanisms of pea under salinity stress (control and 80 mM NaCl) with Biochar (8 and 16 g/kg soil).


Subject(s)
Charcoal , Pisum sativum , Soil , Pisum sativum/drug effects , Pisum sativum/growth & development , Pisum sativum/metabolism , Soil/chemistry , Photosynthesis/drug effects , Salt Stress/drug effects , Salinity , Chlorophyll/metabolism , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/metabolism , Antioxidants/metabolism , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Leaves/growth & development , Plant Shoots/drug effects , Plant Shoots/growth & development , Plant Shoots/metabolism
20.
Sci Rep ; 14(1): 10918, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38740813

ABSTRACT

The contamination and quantification of soil potentially toxic elements (PTEs) contamination sources and the determination of driving factors are the premise of soil contamination control. In our study, 788 soil samples from the National Agricultural Park in Chengdu, Sichuan Province were used to evaluate the contamination degree of soil PTEs by pollution factors and pollution load index. The source identification of soil PTEs was performed using positive matrix decomposition (PMF), edge analysis (UNMIX) and absolute principal component score-multiple line regression (APCS-MLR). The geo-detector method (GDM) was used to analysis drivers of soil PTEs pollution sources to help interpret pollution sources derived from receptor models. Result shows that soil Cu, Pb, Zn, Cr, Ni, Cd, As and Hg average content were 35.2, 32.3, 108.9, 91.9, 37.1, 0.22, 9.76 and 0.15 mg/kg in this study area. Except for As, all are higher than the corresponding soil background values in Sichuan Province. The best performance of APCS-MLR was determined by comparison, and APCS-MLR was considered as the preferred receptor model for soil PTEs source distribution in the study area. ACPS-MLR results showed that 82.70% of Cu, 61.6% of Pb, 75.3% of Zn, 91.9% of Cr and 89.4% of Ni came from traffic-industrial emission sources, 60.9% of Hg came from domestic-transportation emission sources, 57.7% of Cd came from agricultural sources, and 89.5% of As came from natural sources. The GDM results showed that distance from first grade highway, population, land utilization and total potassium (TK) content were the main driving factors affecting these four sources, with q values of 0.064, 0.048, 0.069 and 0.058, respectively. The results can provide reference for reducing PTEs contamination in farmland soil.


Subject(s)
Environmental Monitoring , Soil Pollutants , Soil , Soil Pollutants/analysis , Soil/chemistry , Environmental Monitoring/methods , China , Metals, Heavy/analysis , Principal Component Analysis , Environmental Pollution/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...