Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
J Biotechnol ; 391: 81-91, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38825191

ABSTRACT

Solanum xanthocarpum fruits are used in the treatment of cough, fever, and heart disorders. It possesses antipyretic, hypotensive, antiasthmatic, aphrodisiac and antianaphylactic properties. In the present study, 24 elicitors (both biotic and abiotic) were used to enhance the production of glycoalkaloids in cell cultures of S. xanthocarpum. Four concentrations of elicitors were added into the MS culture medium. The maximum accumulation (5.56-fold higher than control) of demissidine was induced by sodium nitroprusside at 50 mM concentration whereas the highest growth of cell biomass (4.51-fold higher than control) stimulated by systemin at 30 mM concentration. A total of 17 genes of biosynthetic pathways of glycoalkaloids were characterized from the cells of S. xanthocarpum. The greater accumulation of demissidine was confirmed with the expression analysis of 11 key biosynthetic pathway enzymes e.g., acetoacetic-CoA thiolase, 3- hydroxy 3-methyl glutaryl synthase, ß-hydroxy ß-methylglutaryl CoA reductase, mevalonate kinase, farnesyl diphosphate synthase, squalene synthase, squalene epoxidase, squalene-2,3- epoxide cyclase, cycloartenol synthase, UDP-glucose: solanidine glucosyltransferase and UDP-rhamnose: solanidine rhamno-galactosyl transferase. The maximum expression levels of UDP-rhamnose: solanidine rhamno-galactosyl transferase gene was recorded in this study.


Subject(s)
Biosynthetic Pathways , Solanum , Solanum/genetics , Solanum/metabolism , Biosynthetic Pathways/genetics , Gene Expression Regulation, Plant/drug effects , Alkaloids/metabolism , Alkaloids/biosynthesis , Plant Proteins/genetics , Plant Proteins/metabolism , Solanaceous Alkaloids/metabolism
2.
J Appl Toxicol ; 42(6): 1067-1077, 2022 06.
Article in English | MEDLINE | ID: mdl-34967033

ABSTRACT

Anisodamine is one of the major components of the tropine alkaloid family and is widely used in the treatment of pain, motion sickness, pupil dilatation, and detoxification of organophosphorus poisoning. As a muscarinic receptor antagonist, the low toxicity and moderate drug effect of anisodamine often result in high doses for clinical use, making it important to fully investigate its toxicity. In this study, zebrafish embryos were exposed to 1.3-, 2.6-, and 5.2-mM anisodamine for 7 days to study the toxic effects of drug exposure on pigmentation, mineral density, craniofacial area, and eye development. The results showed that exposure to anisodamine at 1.3 mM resulted in cranial malformations and abnormal pigmentation in zebrafish embryos; 2.6- and 5.2-mM anisodamine resulted in significant eye development defects and reduced bone density in zebrafish embryos. The associated toxicities were correlated with functional development of neural crest cells through gene expression (col1a2, ddb1, dicer1, mab21l1, mab21l2, sox10, tyrp1b, and mitfa) in the dose of 5.2-mM exposed group. In conclusion, this study provides new evidence of the developmental toxicity of high doses of anisodamine in aqueous solutions to organisms and provides a warning for the safe use of this drug.


Subject(s)
Solanaceous Alkaloids , Zebrafish , Animals , Embryo, Nonmammalian , Minerals/metabolism , Minerals/pharmacology , Pigmentation , Solanaceous Alkaloids/metabolism , Solanaceous Alkaloids/pharmacology , Solanaceous Alkaloids/therapeutic use , Zebrafish/genetics , Zebrafish Proteins/genetics
3.
BMC Plant Biol ; 21(1): 60, 2021 Jan 22.
Article in English | MEDLINE | ID: mdl-33482727

ABSTRACT

BACKGROUND: Glycoalkaloids are bioactive compounds that contribute to the defence response of plants against herbivore attack and during pathogenesis. Solanaceous plants, including cultivated and wild potato species, are sources of steroidal glycoalkaloids. Solanum plants differ in the content and composition of glycoalkaloids in organs. In wild and cultivated potato species, more than 50 steroidal glycoalkaloids were recognized. Steroidal glycoalkaloids are recognized as potential allelopathic/phytotoxic compounds that may modify the growth of target plants. There are limited data on the impact of the composition of glycoalkaloids on their phytotoxic potential. RESULTS: The presence of α-solasonine and α-solamargine in potato leaf extracts corresponded to the high phytotoxic potential of the extracts. Among the differentially expressed genes between potato leaf bulks with high and low phytotoxic potential, the most upregulated transcripts in sample of high phytotoxic potential were anthocyanin 5-aromatic acyltransferase-like and subtilisin-like protease SBT1.7-transcript variant X2. The most downregulated genes were carbonic anhydrase chloroplastic-like and miraculin-like. An analysis of differentially expressed proteins revealed that the most abundant group of proteins were those related to stress and defence, including glucan endo-1,3-beta-glucosidase acidic isoform, whose expression level was 47.96× higher in potato leaf extract with low phytotoxic. CONCLUSIONS: The phytotoxic potential of potato leaf extract possessing low glycoalkaloid content is determined by the specific composition of these compounds in leaf extract, where α-solasonine and α-solamargine may play significant roles. Differentially expressed gene and protein profiles did not correspond to the glycoalkaloid biosynthesis pathway in the expression of phytotoxic potential. We cannot exclude the possibility that the phytotoxic potential is influenced by other compounds that act antagonistically or may diminish the glycoalkaloids effect.


Subject(s)
Phytochemicals/metabolism , Plant Extracts/analysis , Proteome , Solanaceous Alkaloids/metabolism , Solanum/genetics , Transcriptome , Chimera , Gene Expression Profiling , Plant Leaves/chemistry , Plant Leaves/genetics , Plant Leaves/metabolism , Proteomics , Solanum/chemistry , Solanum/metabolism , Toxins, Biological/metabolism
4.
J Biotechnol ; 323: 238-245, 2020 Nov 10.
Article in English | MEDLINE | ID: mdl-32896528

ABSTRACT

An efficient genetic transfection technique has been established using A4 strain of Agrobacterium rhizogenes for the first time in a medicinally valuable plant Solanum erianthum D. Don. The explants were randomly pricked with sterile needle, inoculated with bacterial suspension. The infected leaves were then washed and transferred to MS basal medium fortified with cefotaxime for hairy root induction. A maximum transformation efficiency of 72 % has been recorded after two days of co-cultivation period. The transfer of rolA and rolB genes from the bacterium to the plant genome has been confirmed in five transformed hairy rootlines by standard Polymerase Chain Reaction technique. On the basis of growth analysis and secondary metabolite study two potential rhizoclones (A4-HR-A and A4-HR-B) were selected. Rhizoclone A4-HR-A can produce highest amount of alkaloid, phenolic and flavonoid, whereas A4-HR-B was observed to be highest tannin producer. Alkaloid like solasodine, commercially important for steroidal drug synthesis, was quantified from leaf and A4-HR-A clone by an improved High Performance Liquid Chromatography method. This showed a sustainable increase (1.33 fold) in production of solasodine in hairy rootline.


Subject(s)
Agrobacterium/metabolism , Plant Roots/metabolism , Plants, Genetically Modified/genetics , Solanaceous Alkaloids/metabolism , Solanum/metabolism , Transfection , Cloning, Molecular , Flavonoids/metabolism , Phenol/metabolism , Plant Leaves/metabolism , Plant Leaves/microbiology , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/microbiology , Plants, Genetically Modified/metabolism , Plants, Genetically Modified/microbiology , Plants, Medicinal/metabolism , Plants, Medicinal/microbiology , Polymerase Chain Reaction , Solanum/microbiology
5.
Naunyn Schmiedebergs Arch Pharmacol ; 393(9): 1715-1728, 2020 09.
Article in English | MEDLINE | ID: mdl-32388600

ABSTRACT

The present research work was designed to examine the neuroprotective effect of ethanolic extract of Solanum virginianum Linn. (SV) in chronic construction injury (CCI) of sciatic nerve-induced neuropathic pain in rats. The extract was initially standardized by high-performance thin-layer chromatography using solasodine as a biomarker and was then subjected to assess the degree of mechanical allodynia, thermal allodynia, mechanical hyperalgesia, thermal hyperalgesia and biochemical evaluations. Administration of SV (100 and 200 mg/kg; p.o.) and pregabalin (10 mg/kg; p.o.) as a reference standard significantly debilitated hyperalgesia and allodynia and notably restored the altered antioxidant level and pro-inflammatory cytokine (IL-1ß and TNF-α) expression in a dose-dependent manner. Further, to appraise the mechanistic approach of solasodine, docking simulation studies were done on the 3D structure of the voltage-gated N-type calcium channel (Cav 2.2), R-type calcium channel (Cav 2.3) and sodium channel (Nav 1.7), and the results revealed that solasodine properly positioned into Phe 19, Leu 32, Met 51 and Met 71 (FLMM pocket) of Cav 2.2 and Cav 2.3 and being a competitor of Ca2+/N-lobe it may inactivate these calcium channels but did not bind into the desired binding pocket of Nav 1.7. Thus, the study confirmed the role of solasodine as a major biomarker for the observed neuroprotective nature of Solanum virginianum.


Subject(s)
Analgesics/pharmacology , Hyperalgesia/prevention & control , Molecular Docking Simulation , Neuralgia/prevention & control , Pain Threshold/drug effects , Plant Extracts/pharmacology , Sciatic Neuropathy/drug therapy , Solanaceous Alkaloids/pharmacology , Solanum , Analgesics/isolation & purification , Analgesics/metabolism , Animals , Behavior, Animal/drug effects , Binding Sites , Binding, Competitive , Calcium Channels, N-Type/drug effects , Calcium Channels, N-Type/metabolism , Disease Models, Animal , Ethanol/chemistry , Female , Hyperalgesia/metabolism , Hyperalgesia/physiopathology , Male , Neuralgia/metabolism , Neuralgia/physiopathology , Plant Extracts/isolation & purification , Plant Extracts/metabolism , Protein Binding , Rats, Wistar , Sciatic Neuropathy/metabolism , Sciatic Neuropathy/physiopathology , Solanaceous Alkaloids/isolation & purification , Solanaceous Alkaloids/metabolism , Solanum/chemistry , Solvents/chemistry
6.
Phytother Res ; 34(1): 201-213, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31823440

ABSTRACT

Nasopharyngeal carcinoma (NPC) is a common head and neck malignancy with higher incidence in Southern China and Southeast Asia. Solamargine (SM), a steroidal alkaloid glycoside, has been shown to have anticancer properties. However, the underlying mechanism involved remains undetermined. In this study, we showed that SM inhibited the growth of NPC cells. Mechanistically, we found that solamargine decreased lncRNA colon cancer-associated transcript-1 (CCAT1) and increased miR7-5p expression. There was a reciprocal interaction of CCAT1 and miR7-5p. In addition, SM inhibited the expression of SP1 protein and promoter activity, which was strengthened by miR7-5p mimics and inhibited by overexpressed CCAT1. MiR7-5p could bind to 3'-UTR of SP1 and attenuated SP1 gene expression. Exogenously expressed SP1 feedback resisted SM-increased miR7-5p expression and more importantly reversed SM-inhibited growth of NPC cells. Finally, SM inhibited NPC tumor growth in vivo. Collectively, our results show that SM inhibits the growth of NPC cells through reciprocal regulation of CCAT1 and miR7-5p, followed by inhibition of SP1 gene expression in vitro and in vivo. The interregulation and correlation among CCAT1, miR7-5p and SP1, and the feedback regulatory loop unveil the novel molecular mechanism underlying the overall responses of SM in anti-NPC.


Subject(s)
Colonic Neoplasms/genetics , Gene Expression Regulation, Neoplastic/genetics , MicroRNAs/metabolism , Nasopharyngeal Carcinoma/genetics , Solanaceous Alkaloids/metabolism , Sp1 Transcription Factor/metabolism , Animals , Cell Line, Tumor , Cell Proliferation , China , Disease Models, Animal , Humans , Mice , Transfection
7.
Nat Commun ; 10(1): 4036, 2019 09 06.
Article in English | MEDLINE | ID: mdl-31492848

ABSTRACT

The skeleton of tropane alkaloids is derived from ornithine-derived N-methylpyrrolinium and two malonyl-CoA units. The enzymatic mechanism that connects N-methylpyrrolinium and malonyl-CoA units remains unknown. Here, we report the characterization of three pyrrolidine ketide synthases (PYKS), AaPYKS, DsPYKS, and AbPYKS, from three different hyoscyamine- and scopolamine-producing plants. By examining the crystal structure and biochemical activity of AaPYKS, we show that the reaction mechanism involves PYKS-mediated malonyl-CoA condensation to generate a 3-oxo-glutaric acid intermediate that can undergo non-enzymatic Mannich-like condensation with N-methylpyrrolinium to yield the racemic 4-(1-methyl-2-pyrrolidinyl)-3-oxobutanoic acid. This study therefore provides a long sought-after biosynthetic mechanism to explain condensation between N-methylpyrrolinium and acetate units and, more importantly, identifies an unusual plant type III polyketide synthase that can only catalyze one round of malonyl-CoA condensation.


Subject(s)
Malonyl Coenzyme A/metabolism , Plant Proteins/metabolism , Polyketide Synthases/metabolism , Pyrroles/metabolism , Solanaceous Alkaloids/metabolism , Tropanes/metabolism , Amino Acid Sequence , Biocatalysis , Chromatography, Liquid/methods , Crystallography, X-Ray , Malonyl Coenzyme A/chemistry , Models, Chemical , Molecular Structure , Phylogeny , Plant Proteins/classification , Plant Proteins/genetics , Polyketide Synthases/chemistry , Polyketide Synthases/genetics , Pyrroles/chemistry , Sequence Homology, Amino Acid , Solanaceous Alkaloids/chemistry , Tandem Mass Spectrometry/methods , Tropanes/chemistry
8.
Chem Biol Interact ; 308: 372-376, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31152736

ABSTRACT

According to recent research advance, it is interesting to identify new, potent and selective inhibitors of human butyrylcholinesterase (BChE) for therapeutic treatment of both the Alzheimer's disease (AD) and heroin abuse. In this study, we carried out a structure-based virtual screening followed by in vitro activity assays, with the goal to identify new inhibitors that are selective for BChE over acetylcholinesterase (AChE). As a result, a set of new, selective inhibitors of human BChE were identified from natural products with solanaceous alkaloid scaffolds. The most active one of the natural products (compound 1) identified has an IC50 of 16.8 nM against BChE. It has been demonstrated that the desirable selectivity of these inhibitors for BChE over AChE is mainly controlled by three key residues in the active site cavity, i.e. residues Q119, A277, and A328 in BChE versus the respective residues Y124, W286, and Y337 in AChE. Based on this structural insight, future rational design of new, potent and selective BChE inhibitors may focus on these key structural differences in the active site cavity.


Subject(s)
Butyrylcholinesterase/chemistry , Cholinesterase Inhibitors/chemistry , Solanaceous Alkaloids/chemistry , Binding Sites , Butyrylcholinesterase/metabolism , Catalytic Domain , Cholinesterase Inhibitors/metabolism , Humans , Inhibitory Concentration 50 , Molecular Docking Simulation , Solanaceous Alkaloids/metabolism , Structure-Activity Relationship
9.
Plant Sci ; 283: 301-310, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31128700

ABSTRACT

Mandrakes (Mandragora spp., Solanaceae) are known to contain tropane alkaloids and have been used since antiquity in traditional medicine. Tropane alkaloids such as scopolamine and hyoscyamine are used in modern medicine to treat pain, motion sickness, as eye pupil dilators and antidotes against organo-phosphate poisoning. Hyoscyamine is converted to 6ß-hydroxyhyoscyamine (anisodamine) and scopolamine by hyoscyamine 6ß-hydroxylase (H6H), a 2-oxoglutarate dependent dioxygenase. We describe here a marked chemo-diversity in the tropane alkaloid content in Mandragora spp. M. officinarum and M. turcomanica lack anisodamine and scopolamine but display up to 10 fold higher hyoscyamine levels as compared with M. autumnalis. Transcriptomic analyses revealed that H6H is highly conserved among scopolamine-producing Solanaceae. MoH6H present in M. officinarum differs in several amino acid residues including a homozygotic mutation in the substrate binding region of the protein and its prevalence among accessions was confirmed by Cleaved-Amplified-Polymorphic-Sequence analyses. Functional expression revealed that MaH6H, a gene isolated from M. autumnalis encodes an active H6H enzyme while the MoH6H sequence isolated from M. officinarum was functionally inactive. A single G to T mutation in nucleotide 663 of MoH6H is associated with the lack of anisodamine and scopolamine in M. officinalis.


Subject(s)
Alkaloids/metabolism , Mandragora/metabolism , Mixed Function Oxygenases/metabolism , Gene Expression Profiling , Genes, Plant/genetics , Mandragora/genetics , Mixed Function Oxygenases/genetics , Scopolamine/metabolism , Sequence Analysis, DNA , Solanaceous Alkaloids/metabolism
10.
Plant J ; 94(6): 975-990, 2018 06.
Article in English | MEDLINE | ID: mdl-29569783

ABSTRACT

Steroidal glycoalkaloids (SGAs) are specialized anti-nutritional metabolites that accumulate in Solanum lycopersicum (tomato) and Solanum tuberosum (potato). A series of SGA biosynthetic genes is known to be upregulated in Solanaceae species by jasmonate-responsive Ethylene Response Factor transcription factors, including JRE4 (otherwise known as GAME9), but the exact regulatory significance in planta of each factor has remained unaddressed. Here, via TILLING-based screening of an EMS-mutagenized tomato population, we isolated a JRE4 loss-of-function line that carries an amino acid residue missense change in a region of the protein important for DNA binding. In this jre4 mutant, we observed downregulated expression of SGA biosynthetic genes and decreased SGA accumulation. Moreover, JRE4 overexpression stimulated SGA production. Further characterization of jre4 plants revealed their increased susceptibility to the generalist herbivore Spodoptera litura larvae. This susceptibility illustrates that herbivory resistance is dependent on JRE4-mediated defense responses, which include SGA accumulation. Ethylene treatment attenuated the jasmonate-mediated JRE4 expression induction and downstream SGA biosynthesis in tomato leaves and hairy roots. Overall, this study indicated that JRE4 functions as a primary master regulator of SGA biosynthesis, and thereby contributes toward plant defense against chewing insects.


Subject(s)
Plant Proteins/metabolism , Solanaceous Alkaloids/metabolism , Solanum lycopersicum/metabolism , Transcription Factors/metabolism , Animals , Gene Expression Regulation, Plant , Herbivory , Larva , Solanum lycopersicum/physiology , Plant Leaves/metabolism , Plant Proteins/physiology , Plant Roots/metabolism , Spodoptera , Transcription Factors/physiology
11.
Food Chem Toxicol ; 109(Pt 1): 356-362, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28919409

ABSTRACT

Antifungal activity of some natural molecules can be abated or blocked by efflux pumps in Candida albicans, which restricts the discovery of potential antifungal agents. Here we found that the steroidal alkaloid solasodine is active against C. albicans efflux pump-deficient strains but inert towards the wild type. However, the glucosylated solasodine-3-O-ß-d-glucopyranoside exhibits antifungal activity towards the wild type strain. Further investigation revealed that the entry of solasodine into C. albicans cells is blocked by efflux pumps. Glucosylation provides an alternative access not disturbed by efflux pumps. Once inside cells, the carried glucosylated solasodine is cleaved into the active molecule solasodine by the glucosidase, which is located in cytoplasm membrane and exhibits selective activity against hydrolyzing glucosyl natural products but not against other monosaccharide-substituted products. This glucosidase is not encoded by orf19.4031, considered homologous to steryl-ß-glucosidase encoded by the gene EGH1 in Saccharomyces cerevisiae. Our study reveals that glucosylation is an alternative approach for introducing potential antifungal activity into C. albicans cells and overcoming the drug-resistance resulting from hyperactivation of efflux pumps.


Subject(s)
Antifungal Agents/metabolism , Antifungal Agents/pharmacology , Candida albicans/drug effects , Fungal Proteins/metabolism , Glucosidases/metabolism , Glucosides/pharmacology , Solanaceous Alkaloids/metabolism , Solanaceous Alkaloids/pharmacology , Candida albicans/enzymology , Drug Resistance, Fungal , Glucosides/metabolism , Glycosylation
12.
J Food Drug Anal ; 25(1): 27-36, 2017 01.
Article in English | MEDLINE | ID: mdl-28911540

ABSTRACT

Capsaicinoids are active constituents responsible for the pungent and spicy flavor in chili peppers. During the past few decades, various extraction methods of capsaicinoids from peppers have been developed with high yields. Through biological studies, pharmacological benefits have been reported such as pain relief, antiinflammation, anticancer, cardio-protection, as well as weight loss. In this paper, the extraction methods and bioavailability of capsaicinoids are reviewed and discussed. In addition, the pharmacological effects and their underlying mechanisms are also studied.


Subject(s)
Solanaceous Alkaloids/metabolism , Biological Availability , Humans , Vegetables
13.
Insect Biochem Mol Biol ; 72: 1-9, 2016 May.
Article in English | MEDLINE | ID: mdl-26951878

ABSTRACT

Polyphagous insect herbivores are adapted to many different secondary metabolites of their host plants. However, little is known about the role of ATP-binding cassette (ABC) transporters, a multigene family involved in detoxification processes. To study the larval response of the generalist Helicoverpa armigera (Lepidoptera) and the putative role of ABC transporters, we performed developmental assays on artificial diet supplemented with secondary metabolites from host plants (atropine-scopolamine, nicotine and tomatine) and non-host plants (taxol) in combination with a replicated RNAseq experiment. A maximum likelihood phylogeny identified the subfamily affiliations of the ABC transporter sequences. Larval performance was equal on the atropine-scopolamine diet and the tomatine diet. For the latter we could identify a treatment-specific upregulation of five ABC transporters in the gut. No significant developmental difference was detected between larvae fed on nicotine or taxol. This was also mirrored in the upregulation of five ABC transporters when fed on either of the two diets. The highest number of differentially expressed genes was recorded in the gut samples in response to feeding on secondary metabolites. Our results are consistent with the expectation of a general detoxification response in a polyphagous herbivore. This is the first study to characterize the multigene family of ABC transporters and identify gene expression changes across different developmental stages and tissues, as well as the impact of secondary metabolites in the agricultural pest H. armigera.


Subject(s)
ATP-Binding Cassette Transporters/genetics , Moths/genetics , ATP-Binding Cassette Transporters/metabolism , Animals , Gastrointestinal Tract/metabolism , Gene Expression Regulation, Developmental , Herbivory , Inactivation, Metabolic/genetics , Larva/genetics , Larva/growth & development , Larva/metabolism , Moths/growth & development , Moths/metabolism , Paclitaxel/metabolism , Phylogeny , Secondary Metabolism/genetics , Solanaceous Alkaloids/metabolism
14.
Acta Biol Hung ; 66(3): 304-15, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26344026

ABSTRACT

The family Solanaceae includes several melliferous plants, which tend to produce copious amounts of nectar. Floral nectar is a chemically complex aqueous solution, dominated by sugars, but minor components such as amino acids, proteins, flavonoids and alkaloids are present as well. This study aimed at analysing the protein and alkaloid profile of the nectar in seven solanaceous species. Proteins were examined with SDS-PAGE and alkaloids were analyzed with HPLC. The investigation of protein profile revealed significant differences in nectar-protein patterns not only between different plant genera, but also between the three Nicotiana species investigated. SDS-PAGE suggested the presence of several Nectarin proteins with antimicrobial activity in Nicotiana species. The nectar of all tobacco species contained the alkaloid nicotine, N. tabacum having the highest nicotine content. The nectar of Brugmansia suaveolens, Datura stramonium, Hyoscyamus niger and Lycium barbarum contained scopolamine, the highest content of which was measured in B. suaveolens. The alkaloid concentrations in the nectars of most solanaceous species investigated can cause deterrence in honeybees, and the nectar of N. rustica and N. tabacum can be considered toxic for honeybees.


Subject(s)
Plant Nectar/chemistry , Plant Proteins/analysis , Solanaceae/chemistry , Solanaceous Alkaloids/analysis , Animals , Bees , Plant Nectar/metabolism , Plant Proteins/metabolism , Solanaceae/metabolism , Solanaceous Alkaloids/metabolism
15.
J Biotechnol ; 211: 123-9, 2015 Oct 10.
Article in English | MEDLINE | ID: mdl-26239231

ABSTRACT

Hyoscyamine 6ß-hydroxylase (H6H, EC 1.14.11.11), an α-ketoglutarate dependent dioxygenase catalyzes the hydroxylation of (-)-hyoscyamine and the subsequent epoxidation of 6ß-hydroxyhyoscyamine to form scopolamine, a valuable natural alkaloid. In this study, random mutagenesis and site-directed saturation mutagenesis were used to enhance the hydroxylation activity of H6H from Anisodus acutangulus (AaH6H). A double mutant, AaH6HM1 (S14P/K97A), showed a 3.4-fold improved hydroxylation activity compared with the wild-type enzyme, and the in vivo epoxidation activity was also improved by 2.3 times. After 34h cultivation of Escherichia coli cells harboring Aah6hm1 in a 5-L bioreactor with a working volume of 3L, scopolamine was produced via a single-enzyme-mediated two-step transformation from 500mgL(-1) (-)-hyoscyamine in 97% conversion, and 1.068g of the product were isolated, corresponding to a space-time yield of 251mgL(-1)d(-1). This study shows that the protein engineering of some key enzymes is a promising and effective way for improving the production of rare natural products such as scopolamine.


Subject(s)
Biological Products/metabolism , Escherichia coli/cytology , Mixed Function Oxygenases/metabolism , Mutant Proteins/metabolism , Scopolamine/metabolism , Biocatalysis , Bioreactors , Biotransformation , Hydroxylation , Hyoscyamine/metabolism , Mutagenesis, Site-Directed , Scopolamine/isolation & purification , Solanaceae/enzymology , Solanaceous Alkaloids/metabolism , Substrate Specificity
16.
FEMS Yeast Res ; 15(6)2015 Sep.
Article in English | MEDLINE | ID: mdl-26162798

ABSTRACT

Candida albicans undergoes yeast-to-hyphal transition that has been recognized as a virulence factor as well as the key point for the development of mature biofilm. In this study, we found that a natural product, solasodine-3-O-ß-D-glucopyranoside (SG), a steroidal alkaloid glycoside, isolated from Solanum. nigrum L., could attenuate the virulence of C. albicans by inhibiting the adhesion and morphological transition. Moreover, SG dramatically inhibited the biofilm formation and displayed killing activity against the mature biofilm. In vivo study using Caenorhabditis elegans showed that SG prolonged the survival time of C. albicans infected worms. The mechanism investigation revealed that SG could inhibit the expression of adhesions and hyphae-specific genes by regulating Ras-cAMP-PKA signaling pathway. The inhibitory effects on yeast-to-hyphal conversion and biofilm formation caused by SG could be rescued by addition of exogenerous cAMP, suggesting that the retarded cAMP synthesis is responsible for these actions. Taken together, our work uncovers the underlying mechanism of SG-dependent inhibition of the yeast-to-hyphal switch and biofilm formation and provides a potential application in treating relevant fungal infections.


Subject(s)
Antifungal Agents/metabolism , Biofilms/drug effects , Biological Products/metabolism , Candida albicans/drug effects , Hyphae/drug effects , Solanaceous Alkaloids/metabolism , Virulence Factors/antagonists & inhibitors , Animals , Antifungal Agents/isolation & purification , Biofilms/growth & development , Biological Products/isolation & purification , Caenorhabditis elegans/microbiology , Candida albicans/physiology , Cyclic AMP/metabolism , Disease Models, Animal , Glycosides/isolation & purification , Glycosides/metabolism , Hyphae/growth & development , Microbial Viability/drug effects , Signal Transduction/drug effects , Solanaceous Alkaloids/isolation & purification , Solanum/chemistry , Survival Analysis
17.
Molecules ; 20(5): 8560-73, 2015 May 13.
Article in English | MEDLINE | ID: mdl-25985357

ABSTRACT

A higher yield of glycoalkaloids was recovered from potato peels using pressurized liquid extraction (1.92 mg/g dried potato peels) compared to conventional solid-liquid extraction (0.981 mg/g dried potato peels). Response surface methodology deduced the optimal temperature and extracting solvent (methanol) for the pressurized liquid extraction (PLE) of glycoalkaloids as 80 °C in 89% methanol. Using these two optimum PLE conditions, levels of individual steroidal alkaloids obtained were of 597, 873, 374 and 75 µg/g dried potato peel for α-solanine, α-chaconine, solanidine and demissidine respectively. Corresponding values for solid liquid extraction were 59%, 46%, 40% and 52% lower for α-solanine, α-chaconine, solanidine and demissidine respectively.


Subject(s)
Alkaloids/metabolism , Phytochemicals/metabolism , Solanum tuberosum/metabolism , Solid Phase Extraction/methods , Diosgenin/metabolism , Methanol/chemistry , Solanaceous Alkaloids/metabolism , Solanine/analogs & derivatives , Solanine/metabolism
18.
Phytochemistry ; 113: 24-32, 2015 May.
Article in English | MEDLINE | ID: mdl-25556315

ABSTRACT

Steroidal alkaloids (SAs) and their glycosylated forms (SGAs) are toxic compounds largely produced by members of the Solanaceae and Liliaceae plant families. This class of specialized metabolites serves as a chemical barrier against a broad range of pest and pathogens. In humans and animals, SAs are considered anti-nutritional factors because they affect the digestion and absorption of nutrients from food and might even cause poisoning. In spite of the first report on SAs nearly 200 years ago, much of the molecular basis of their biosynthesis and regulation remains unknown. Aspects concerning chemical structures and biological activities of SAs have been reviewed extensively elsewhere; therefore, in this review the latest insights to the elucidation of the SAs biosynthetic pathway are highlighted. Recently, co-expression analysis combined with metabolic profiling revealed metabolic gene clusters in tomato and potato that contain core genes required for production of the prominent SGAs in these two species. Elaborating the knowledge regarding the SAs biosynthetic pathway, the subcellular transport of these molecules, as well as the identification of regulatory and signaling factors associated with SA metabolism will likely advance understanding of chemical defense mechanisms in Solanaceae and Liliaceae plants. It will also provide the means to develop, through classical breeding or genetic engineering, crops with modified levels of anti-nutritional SAs.


Subject(s)
Genomics , Solanaceous Alkaloids/metabolism , Solanum/metabolism , Animals , Biosynthetic Pathways/genetics , Crops, Agricultural/metabolism , Genetic Engineering , Humans , Solanum lycopersicum/metabolism , Solanaceous Alkaloids/chemistry , Solanum tuberosum/metabolism , Steroids
19.
J Agric Food Chem ; 62(36): 9043-55, 2014 Sep 10.
Article in English | MEDLINE | ID: mdl-25144460

ABSTRACT

The Colorado potato beetle Leptinotarsa decemlineata (Say) (CPB) is a coleopteran herbivore that feeds on the foliage on Solanum species, in particular, potato. Six resistant wild Solanum species were identified, and two of these species had low levels of glycoalkaloids. Comparative analysis of the untargeted metabolite profiles of the foliage using UPLC-qTOF-MS was done to find metabolites shared between the wild species but not with Solanum tuberosum (L.) to identify resistance-related metabolites. It was found that only S. tuberosum produced the triose glycoalkaloids solanine and chaconine. Instead, the six wild species produced glycoalkaloids that shared in common tetrose sugar side chains. Additionally, there were non-glycoalkaloid metabolites associated with resistance including hydroxycoumarin and a phenylpropanoid, which were produced in all wild species but not in S. tuberosum.


Subject(s)
Alkaloids/pharmacology , Coleoptera/drug effects , Plant Leaves/chemistry , Plant Leaves/metabolism , Solanum tuberosum/metabolism , Solanum/metabolism , Alkaloids/analysis , Alkaloids/metabolism , Animals , Coleoptera/physiology , Glycosides/metabolism , Metabolomics , Plant Diseases , Solanaceous Alkaloids/metabolism , Solanine/metabolism , Solanine/pharmacology , Solanum/growth & development , Solanum tuberosum/growth & development , Tomatine/metabolism
20.
Bioorg Med Chem ; 22(8): 2435-41, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24657053

ABSTRACT

We report on the identification of the required configuration and binding orientation of nor-tropane alkaloid calystegines against ß-glucocerebrosidase. Calystegine B2 is a potent competitive inhibitor of human lysosomal ß-glucocerebrosidase with Ki value of 3.3 µM. A molecular docking study revealed that calystegine B2 had a favorable van der Waals interactions (Phe128, Trp179, and Phe246) and the hydrogen bonding (Glu235, Glu340, Asp127, Trp179, Asn234, Trp381 and Asn396) was similar to that of isofagomine. All calystegine isomers bound into the same active site as calystegine B2 and the essential hydrogen bonds formed to Asp127, Glu235 and Glu340 were maintained. However, their binding orientations were obviously different. Calystegine A3 bound to ß-glucocerebrosidase with the same orientations as calystegine B2 (Type 1), while calystegine B3 and B4 had different binding orientations (Type 2). It is noteworthy that Type 1 orientated calystegines B2 and A3 effectively stabilized ß-glucocerebrosidase, and consequently increased intracellular ß-glucocerebrosidase activities in N370S fibroblasts, while Type 2 orientated calystegines B3 and B4 could not keep the enzyme activity. These results clearly indicate that the binding orientations of calystegines are changed by the configuration of the hydroxyl groups on the nor-tropane ring and the suitable binding orientation is a requirement for achieving a strong affinity to ß-glucocerebrosidase.


Subject(s)
Tropanes/metabolism , Binding Sites , Catalytic Domain , Cell Line , Gaucher Disease/enzymology , Gaucher Disease/pathology , Glucosylceramidase/antagonists & inhibitors , Glucosylceramidase/metabolism , Humans , Hydrogen Bonding , Imino Pyranoses/chemistry , Imino Pyranoses/metabolism , Isomerism , Molecular Docking Simulation , Nortropanes/chemistry , Nortropanes/metabolism , Solanaceous Alkaloids/chemistry , Solanaceous Alkaloids/metabolism , Static Electricity , Structure-Activity Relationship , Tropanes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...