Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
1.
An Acad Bras Cienc ; 96(2): e20220830, 2024.
Article in English | MEDLINE | ID: mdl-38747783

ABSTRACT

Frugivore bats are important seed dispersers in forests and their abundance are associated with the presence of zoochoric plants. In this context, the aim of our study was to investigate the association of the frugivore bat S. lilium with the diaspores of the zoochoric plant S. mauritianum, a common arboreal species present in forest fragments of southern Brazil. We also investigated the diet of the species based on seed content present in feces of individuals. Bats were mist-netted from November 2017 to April 2018 in a fragment of Atlantic Forest. The proportion of immature and mature diaspores of S. mauritianum was estimated in the same area where bats were sampled, and feces were sampled from captured individuals. In total, 61 individuals of S. lilium were captured, and 795 seeds were sampled from their feces. The abundance of S. lilium was significantly associated with the proportion of immature diaspores of S. mauritianum. We identified seeds of two botanical families: Solanaceae (89%) and Moraceae (11%) in the fecal samples. Our findings support the view that S. lilium is a legitimate disperser of S. mauritianum, and that its ecological function is probably a result of co-adaptation.


Subject(s)
Chiroptera , Feces , Forests , Animals , Brazil , Chiroptera/classification , Feces/chemistry , Solanum/classification , Seed Dispersal , Population Density , Seeds
2.
BMC Genomics ; 25(1): 412, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38671394

ABSTRACT

BACKGROUND: Solanum aculeatissimum and Solanum torvum belong to the Solanum species, and they are essential plants known for their high resistance to diseases and adverse conditions. They are frequently used as rootstocks for grafting and are often crossbred with other Solanum species to leverage their resistance traits. However, the phylogenetic relationship between S. aculeatissimum and S. torvum within the Solanum genus remains unclear. Therefore, this paper aims to sequence the complete chloroplast genomes of S. aculeatissimum and S. torvum and analyze them in comparison with 29 other previously published chloroplast genomes of Solanum species. RESULTS: We observed that the chloroplast genomes of S. aculeatissimum and S. torvum possess typical tetrameric structures, consisting of one Large Single Copy (LSC) region, two reverse-symmetric Inverted Repeats (IRs), and one Small Single Copy (SSC) region. The total length of these chloroplast genomes ranged from 154,942 to 156,004 bp, with minimal variation. The highest GC content was found in the IR region, while the lowest was in the SSC region. Regarding gene content, the total number of chloroplast genes and CDS genes remained relatively consistent, ranging from 128 to 134 and 83 to 91, respectively. Nevertheless, there was notable variability in the number of tRNA genes and rRNAs. Relative synonymous codon usage (RSCU) analysis revealed that both S. aculeatissimum and S. torvum preferred codons that utilized A and U bases. Analysis of the IR boundary regions indicated that contraction and expansion primarily occurred at the junction between SSC and IR regions. Nucleotide polymorphism analysis and structural variation analysis demonstrated that chloroplast variation in Solanum species mainly occurred in the LSC and SSC regions. Repeat sequence analysis revealed that A/T was the most frequent base pair in simple repeat sequences (SSR), while Palindromic and Forward repeats were more common in long sequence repeats (LSR), with Reverse and Complement repeats being less frequent. Phylogenetic analysis indicated that S. aculeatissimum and S. torvum belonged to the same meristem and were more closely related to Cultivated Eggplant. CONCLUSION: These findings enhance our comprehension of chloroplast genomes within the Solanum genus, offering valuable insights for plant classification, evolutionary studies, and potential molecular markers for species identification.


Subject(s)
Base Composition , Genome, Chloroplast , Phylogeny , Solanum , Solanum/genetics , Solanum/classification , Codon Usage , Sequence Analysis, DNA
3.
Mol Biol Evol ; 40(5)2023 05 02.
Article in English | MEDLINE | ID: mdl-37158385

ABSTRACT

Despite the increasing abundance of whole transcriptome data, few methods are available to analyze global gene expression across phylogenies. Here, we present a new software package (Computational Analysis of Gene Expression Evolution [CAGEE]) for inferring patterns of increases and decreases in gene expression across a phylogenetic tree, as well as the rate at which these changes occur. In contrast to previous methods that treat each gene independently, CAGEE can calculate genome-wide rates of gene expression, along with ancestral states for each gene. The statistical approach developed here makes it possible to infer lineage-specific shifts in rates of evolution across the genome, in addition to possible differences in rates among multiple tissues sampled from the same species. We demonstrate the accuracy and robustness of our method on simulated data and apply it to a data set of ovule gene expression collected from multiple self-compatible and self-incompatible species in the genus Solanum to test hypotheses about the evolutionary forces acting during mating system shifts. These comparisons allow us to highlight the power of CAGEE, demonstrating its utility for use in any empirical system and for the analysis of most morphological traits. Our software is available at https://github.com/hahnlab/CAGEE/.


Subject(s)
Gene Expression Profiling , Phylogeny , Software , Solanum , Solanum/classification , Solanum/genetics , Biological Evolution
4.
PLoS One ; 15(10): e0240124, 2020.
Article in English | MEDLINE | ID: mdl-33031462

ABSTRACT

The chloroplasts are a crucial part of photosynthesizing plant cells and are extensively utilized in phylogenetic studies mainly due to their maternal inheritance. Characterization and analysis of complete plastome sequences is necessary to understand their diversity and evolutionary relationships. Here, a panel of thirteen plastomes from various potato taxa are presented. Though they are highly similar with respect to gene order and content, there is also a great extent of SNPs and InDels between them, with one of the Solanum bukasovii plastomes (BUK2) having the highest number of SNPs and InDels. Five different potato plastome types (C, S, A, W, W2) are present in the panel. Interestingly, the S. tuberosum subsp. tuberosum (TBR) accession has a W-type plastome, which is not commonly found in this species. The S-type plastome has a conserved 48 bp deletion not found in other types, which is responsible for the divergence of the S-type from the C-type plastome. Finally, a phylogenetic analysis shows that these plastomes cluster according to their types. Congruence between the nuclear genome and the plastome phylogeny of these accessions was seen, however with considerable differences, supporting the hypothesis of introgression and hybridization between potato species.


Subject(s)
Plastids/genetics , Solanum/genetics , DNA, Plant/genetics , Evolution, Molecular , Genes, Plant , INDEL Mutation , Phylogeny , Polymorphism, Single Nucleotide , Solanum/classification , Solanum tuberosum/classification , Solanum tuberosum/genetics
5.
Sci Rep ; 9(1): 13256, 2019 09 13.
Article in English | MEDLINE | ID: mdl-31519937

ABSTRACT

A transcriptome analysis of G. pallida juveniles collected from S. tuberosum or S. sisymbriifolium 24 h post infestation was performed to provide insights into the parasitic process of this nematode. A total of 41 G. pallida genes were found to be significantly differentially expressed when parasitizing the two plant species. Among this set, 12 were overexpressed when G. pallida was parasitizing S. tuberosum and 29 were overexpressed when parasitizing S. sisymbriifolium. Out of the 12 genes, three code for secretory proteins; one is homologous to effector gene Rbp-4, the second is an uncharacterized protein with a signal peptide sequence, and the third is an ortholog of a Globodera rostochiensis effector belonging to the 1106 effector family. Other overexpressed genes from G. pallida when parasitizing S. tuberosum were either unknown, associated with a stress or defense response, or associated with sex differentiation. Effector genes namely Eng-1, Cathepsin S-like cysteine protease, cellulase, and two unknown genes with secretory characteristics were over expressed when G. pallida was parasitizing S. sisymbriifolium relative to expression from S. tuberosum. Our findings provide insight into gene regulation of G. pallida while infecting either the trap crop S. sisymbriifolium or the susceptible host, S. tuberosum.


Subject(s)
Gene Expression Regulation , Helminth Proteins/genetics , Host-Parasite Interactions/genetics , Immunity, Innate/genetics , Plant Diseases/parasitology , Solanum/parasitology , Tylenchoidea/genetics , Animals , Gene Expression Profiling , Helminth Proteins/metabolism , Solanum/classification , Solanum/genetics , Tylenchoidea/pathogenicity
6.
Am J Bot ; 105(1): 60-70, 2018 01.
Article in English | MEDLINE | ID: mdl-29532930

ABSTRACT

PREMISE OF THE STUDY: The species boundaries of wild and cultivated potatoes are controversial, with most of the taxonomic problems in the cultivated potato clade. We here provide the first in-depth phylogenetic study of the cultivated potato clade to explore possible causes of these problems. METHODS: We examined 131 diploid accessions, using 12 nuclear orthologs, producing an aligned data set of 14,072 DNA characters, 2171 of which are parsimony-informative. We analyzed the data to produce phylogenies and perform concordance analysis and goodness-of-fit tests. KEY RESULTS: There is good phylogenetic structure in clades traditionally referred to as clade 1+2 (North and Central American diploid potatoes exclusive of Solanum verrucosum), clade 3, and a newly discovered basal clade, but drastically reduced phylogenetic structure in clade 4, the cultivated potato clade. The results highlight a clade of species in South America not shown before, 'neocardenasii', sister to clade 1+2, that possesses key morphological traits typical of diploids in Mexico and Central America. Goodness-of-fit tests suggest potential hybridization between some species of the cultivated potato clade. However, we do not have enough phylogenetic signal with the data at hand to explicitly estimate such hybridization events with species networks methods. CONCLUSIONS: We document the close relationships of many of the species in the cultivated potato clade, provide insight into the cause of their taxonomic problems, and support the recent reduction of species in this clade. The discovery of the neocardenasii clade forces a reevaluation of a hypothesis that section Petota originated in Mexico and Central America.


Subject(s)
Evolution, Molecular , Phylogeny , Solanum/genetics , Sequence Analysis, DNA , Solanum/classification
7.
J Food Drug Anal ; 26(2): 751-760, 2018 04.
Article in English | MEDLINE | ID: mdl-29567246

ABSTRACT

African indigenous vegetables (AIVs) because of their nutrient density have the unique potential to reduce micronutrient deficiencies in sub-Saharan Africa, yet some may also contain anti-nutritive compounds. Vegetable nightshades from Solanum americanum, Solanum nigrum, Solanum scabrum and Solanum villosum are among the major AIVs used as a leafy vegetables and consumed regularly in many countries in sub-Sahara Africa. These under-recognized food crops have not been subjected to extensive studies for their nutritional and antinutritive factors. In this study, 15 entries of the vegetable nightshades were field-grown and the leaves which are the consumed product of commerce chemically profiled by LC/ESI-MS. Twenty-three flavones, eight saponins, and two glycoalkaloids along with a phenolic acid of chlorogenic acid were identified by MS and UV data. Anti-nutrient glycoalkaloids were quantified as total aglycones after acidic hydrolysis using MS detection and found to be within safe-consumption thresholds by comparison with the glycoalkaloid level in the globally consumed Solanum member eggplants. Edible nightshades were also found to be sources of ß-carotene, vitamin E and total polyphenols and exhibited high antioxidant activity. Results of this study support that consumption of vegetable nightshades are safe from the presence of glycoalkaloids and thus, can contribute to the reduction of micronutrient deficiency in sub-Sahara Africa.


Subject(s)
Alkaloids/analysis , Micronutrients/analysis , Plant Extracts/analysis , Solanum/chemistry , Africa South of the Sahara , Alkaloids/toxicity , Antioxidants/analysis , Chromatography, Liquid , Plant Leaves/chemistry , Solanum/classification , Tandem Mass Spectrometry , Vegetables/chemistry
8.
Environ Monit Assess ; 189(5): 217, 2017 May.
Article in English | MEDLINE | ID: mdl-28411320

ABSTRACT

The straw from three different cadmium (Cd) hyperaccumulators (Galinsoga parviflora, Youngia erythrocarpa, and Solanum photeinocarpum) was added to Cd-contaminated soil, and its effects on plant growth and Cd accumulation in loquat seedlings were evaluated. Straw from each of G. parviflora, Y. erythrocarpa, and S. photeinocarpum was added to Cd-contaminated soil before planting seedlings of two varieties of loquat (Dawuxing and Chuanzao). Addition of straw from G. parviflora and S. photeinocarpum increased the root and shoot biomasses of both loquat varieties, compared with that in the control. Addition of straw also increased Cd uptake by loquat seedlings. The treatments could be ranked, from highest Cd contents in roots and shoots of loquat seedlings to lowest, as follows: S. photeinocarpum straw > Y. erythrocarpa straw > G. parviflora straw > control. All three types of hyperaccumulator straw increased the amount of Cd extracted by shoots of two loquat seedlings, with the maximum effect in the S. photeinocarpum straw treatment. Addition of hyperaccumulator straw also resulted in increased soil invertase, urease, and catalase activities to varying degrees. Among the three types of hyperaccumulator straw, S. photeinocarpum straw was the most effective to increase Cd accumulation in loquat seedlings. Therefore, this material has the potential to increase the phytoremediation capacity of loquat seedlings in Cd-contaminated orchards.


Subject(s)
Cadmium/analysis , Environmental Monitoring/methods , Soil Pollutants/analysis , Soil/chemistry , Biodegradation, Environmental , Biomass , Eriobotrya , Plant Roots/chemistry , Seedlings/chemistry , Solanum/classification
9.
Nat Prod Res ; 31(15): 1831-1835, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28278650

ABSTRACT

One new flavonoid, 5,7,8,4'-tetrahydroxy-3-methoxyflavone-8-O-ß-d-xylopyranoside (2), along with other four known flavones (1, 3-5) were isolated from the aerial parts of Solanum rostratum. 8-hydroxyflavonoid was isolated from series Androceras for the first time. The structure of the new compound 2 was determined on the basis of spectroscopic techniques, including IR, NMR and HRESI-MS. The chemotaxonomic significance of these compounds was summarised.


Subject(s)
Flavones/chemistry , Flavonoids/chemistry , Solanum/chemistry , Xylose/analogs & derivatives , Magnetic Resonance Spectroscopy , Molecular Structure , Solanum/classification , Spectrometry, Mass, Electrospray Ionization , Xylose/chemistry
10.
Genome ; 60(1): 17-25, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27936922

ABSTRACT

Genomic analyses have shown that most genes in eukaryotic lineages belong to families. Gene families vary in terms of number of members, nucleotide similarity, gene integrity, expression, and function. Often, the members of gene families are arranged in clusters, which contribute to maintaining similarity among gene copies and also to generate duplicates through replication errors. Gene families offer us an opportunity to examine the forces involved in the evolution of the genomes and to study recombination events and genomic rearrangements. In this work, we focused on the evolution of two plant resistance gene families, Sw5 and Mi-1, and analyzed the completely sequenced nuclear genomes of potato and tomato. We first noticed that the potato genome carries larger resistance gene families than tomato, but all gene copies are pseudogenes. Second, phylogenetic analyses indicated that Sw5 and Mi-1 gene families had dissimilar evolutionary histories. In contrast to Sw5, Mi-1 homologues suffered repeated gene conversion events among the gene copies, particularly in the tomato genome.


Subject(s)
Evolution, Molecular , Genes, Plant , Multigene Family , Solanum/genetics , Chromosome Mapping , Chromosomes, Plant , Gene Dosage , Solanum lycopersicum/classification , Solanum lycopersicum/genetics , Phylogeny , Pseudogenes , Solanum/classification , Solanum tuberosum/classification , Solanum tuberosum/genetics
11.
Genome Res ; 26(12): 1676-1686, 2016 12.
Article in English | MEDLINE | ID: mdl-27821409

ABSTRACT

One of the most remarkable manifestations of plant evolution is the diversity for floral branching systems. These "inflorescences" arise from stem cell populations in shoot meristems that mature gradually to reproductive states in response to environmental and endogenous signals. The morphology of the shoot meristem maturation process is conserved across distantly related plants, raising the question of how diverse inflorescence architectures arise from seemingly common maturation programs. In tomato and related nightshades (Solanaceae), inflorescences range from solitary flowers to highly branched structures bearing hundreds of flowers. Since reproductive barriers between even closely related Solanaceae have precluded a genetic dissection, we captured and compared meristem maturation transcriptomes from five domesticated and wild species reflecting the evolutionary continuum of inflorescence complexity. We find these divergent species share hundreds of dynamically expressed genes, enriched for transcription factors. Meristem stages are defined by distinct molecular states and point to modified maturation schedules underlying architectural variation. These modified schedules are marked by a peak of transcriptome expression divergence during the reproductive transition, driven by heterochronic shifts of dynamic genes, including transcriptional regulators with known roles in flowering. Thus, evolutionary diversity in Solanaceae inflorescence complexity is determined by subtle modifications of transcriptional programs during a critical transitional window of meristem maturation, which we propose underlies similar cases of plant architectural variation. More broadly, our findings parallel the recently described transcriptome "inverse hourglass" model for animal embryogenesis, suggesting both plant and animal morphological variation is guided by a mid-development period of transcriptome divergence.


Subject(s)
Inflorescence/growth & development , Meristem/growth & development , Plant Proteins/genetics , Solanum/growth & development , Evolution, Molecular , Gene Expression Profiling , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Inflorescence/genetics , Meristem/classification , Meristem/genetics , Phylogeny , Solanum/classification , Solanum/genetics , Transcription Factors/genetics
12.
BMC Genomics ; 17: 321, 2016 05 04.
Article in English | MEDLINE | ID: mdl-27142449

ABSTRACT

BACKGROUND: Solanum sect. Basarthrum is phylogenetically very close to potatoes (Solanum sect. Petota) and tomatoes (Solanum sect. Lycopersicon), two groups with great economic importance, and for which Solanum sect. Basarthrum represents a tertiary gene pool for breeding. This section includes the important regional cultigen, the pepino (Solanum muricatum), and several wild species. Among the wild species, S. caripense is prominent due to its major involvement in the origin of pepino and its wide geographical distribution. Despite the value of the pepino as an emerging crop, and the potential for gene transfer from both the pepino and S. caripense to potatoes and tomatoes, there has been virtually no genomic study of these species. RESULTS: Using Illumina HiSeq 2000, RNA-Seq was performed with a pool of three tissues (young leaf, flowers in pre-anthesis and mature fruits) from S. muricatum and S. caripense, generating almost 111,000,000 reads among the two species. A high quality de novo transcriptome was assembled from S. muricatum clean reads resulting in 75,832 unigenes with an average length of 704 bp. These unigenes were functionally annotated based on similarity of public databases. We used Blast2GO, to conduct an exhaustive study of the gene ontology, including GO terms, EC numbers and KEGG pathways. Pepino unigenes were compared to both potato and tomato genomes in order to determine their estimated relative position, and to infer gene prediction models. Candidate genes related to traits of interest in other Solanaceae were evaluated by presence or absence and compared with S. caripense transcripts. In addition, by studying five genes, the phylogeny of pepino and five other members of the family, Solanaceae, were studied. The comparison of S. caripense reads against S. muricatum assembled transcripts resulted in thousands of intra- and interspecific nucleotide-level variants. In addition, more than 1000 SSRs were identified in the pepino transcriptome. CONCLUSIONS: This study represents the first genomic resource for the pepino. We suggest that the data will be useful not only for improvement of the pepino, but also for potato and tomato breeding and gene transfer. The high quality of the transcriptome presented here also facilitates comparative studies in the genus Solanum. The accurate transcript annotation will enable us to figure out the gene function of particular traits of interest. The high number of markers (SSR and nucleotide-level variants) obtained will be useful for breeding programs, as well as studies of synteny, diversity evolution, and phylogeny.


Subject(s)
Gene Expression Profiling/methods , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, RNA/methods , Solanum lycopersicum/genetics , Solanum/classification , Evolution, Molecular , Flowers/genetics , Gene Ontology , Genetic Variation , Molecular Sequence Annotation , Phylogeny , Plant Leaves/genetics , Plant Proteins/genetics , Solanum/genetics , Solanum tuberosum/genetics
13.
BMC Genomics ; 17: 300, 2016 Apr 23.
Article in English | MEDLINE | ID: mdl-27108408

ABSTRACT

BACKGROUND: Solanum incanum is a close wild relative of S. melongena with high contents of bioactive phenolics and drought tolerance. S. aethiopicum is a cultivated African eggplant cross-compatible with S. melongena. Despite their great interest in S. melongena breeding programs, the genomic resources for these species are scarce. RESULTS: RNA-Seq was performed with NGS from pooled RNA of young leaf, floral bud and young fruit tissues, generating more than one hundred millions raw reads per species. The transcriptomes were assembled in 83,905 unigenes for S. incanum and in 87,084 unigenes for S. aethiopicum with an average length of 696 and 722 bp, respectively. The unigenes were structurally and functionally annotated based on comparison with public databases by using bioinformatic tools. The single nucleotide variant calling analysis (SNPs and INDELs) was performed by mapping our S. incanum and S. aethiopicum reads, as well as reads from S. melongena and S. torvum available on NCBI database (National Center for Biotechnology Information), against the eggplant genome. Both intraspecific and interspecific polymorphisms were identified and subsets of molecular markers were created for all species combinations. 36 SNVs were selected for validation in the S. incanum and S. aethiopicum accessions and 96 % were correctly amplified confirming the polymorphisms. In addition, 976 and 1,278 SSRs were identified in S. incanum and S. aethiopicum transcriptomes respectively, and a set of them were validated. CONCLUSIONS: This work provides a broad insight into gene sequences and allelic variation in S. incanum and S. aethiopicum. This work is a first step toward better understanding of target genes involved in metabolic pathways relevant for eggplant breeding. The molecular markers detected in this study could be used across all the eggplant genepool, which is of interest for breeding programs as well as to perform marker-trait association and QTL analysis studies.


Subject(s)
Genes, Plant , Solanum/genetics , Transcriptome , Chromosome Mapping , Gene Expression Profiling , Gene Ontology , INDEL Mutation , Microsatellite Repeats , Plant Breeding , Polymorphism, Single Nucleotide , RNA, Plant/genetics , Sequence Analysis, RNA , Solanum/classification , Solanum melongena/genetics
14.
Food Chem ; 203: 49-58, 2016 Jul 15.
Article in English | MEDLINE | ID: mdl-26948588

ABSTRACT

Pepino (Solanum muricatum) fruits from 15 accessions of cultivated pepino as well as six accessions from wild relatives were evaluated for contents in dry matter, protein, ß-carotene, chlorophylls and seven minerals. Several-fold differences among accessions were found for most traits. Average values obtained were similar to those of melon and cucumber, but the phenolic contents were much higher. Wild species had significantly higher average contents for all traits vs. the cultivated pepino accessions. And, the comparisons among the cultivated pepino varieties showed that the modern varieties were more uniform in composition, and they possessed significantly lower concentrations of protein, P, K, and Zn than local land races. Most of the significant correlations among composition traits were positive. Our studies show that regular consumption of pepino fruits could make a significant contribution to the recommended daily intake of P, K, Fe and Cu as well as to the average daily intake of phenolics. Furthermore, the higher values for most nutrients measured in the wild species and in the local land races indicate that new pepino varieties with improved fruit contents in nutrient and bioactive compounds can be developed.


Subject(s)
Fruit/chemistry , Minerals/analysis , Phenols/analysis , Plant Proteins/analysis , Solanum/chemistry , beta Carotene/analysis , Adult , Biodiversity , Chlorophyll/analysis , Female , Fruit/growth & development , Humans , Male , Nutritive Value , Plant Extracts/chemistry , Principal Component Analysis , Recommended Dietary Allowances , Solanum/classification , Solanum/growth & development
15.
Evolution ; 70(3): 696-706, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26842879

ABSTRACT

Understanding the genetic basis for changes in transcriptional regulation is an important aspect of understanding phenotypic evolution. Using interspecific introgression lines, we infer the mechanisms of divergence in genome-wide patterns of gene expression between the nightshades Solanum pennellii and S. lycopersicum (domesticated tomato). We find that cis- and trans-regulatory changes have had qualitatively similar contributions to divergence in this clade, unlike results from other systems. Additionally, expression data from four tissues (shoot apex, ripe fruit, pollen, and seed) suggest that introgressed regions in these hybrid lines tend to be downregulated, while background (nonintrogressed) genes tend to be upregulated. Finally, we find no evidence for an association between the magnitude of differential expression in NILs and previously determined sterility phenotypes. Our results contradict previous predictions of the predominant role of cis- over trans-regulatory divergence between species, and do not support a major role for gross genome-wide misregulation in reproductive isolation between these species.


Subject(s)
Gene Expression Regulation, Plant , Solanum/classification , Solanum/genetics , Hybridization, Genetic , Plant Infertility , Regulatory Elements, Transcriptional , Transcriptome
16.
Environ Monit Assess ; 188(3): 182, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26899030

ABSTRACT

The study of the effects of exogenous abscisic acid (ABA) addition on cadmium (Cd) accumulation of two ecotypes (mining and farmland) of Solanum photeinocarpum was operated through a pot experiment. The results showed that the biomass and chlorophyll content of the two ecotypes of S. photeinocarpum increased with increasing ABA concentration. Applying exogenous ABA increased Cd content in the two ecotypes of S. photeinocarpum. The maximum Cd contents in shoots of the two ecotypes of S. photeinocarpum were obtained at 20 µmol/L ABA; shoot Cd contents respectively for the mining and farmland ecotypes were 33.92 and 24.71% higher than those for the control. Applying exogenous ABA also increased Cd extraction by the two ecotypes of S. photeinocarpum, and the highest Cd extraction was obtained at 20 µmol/L ABA with 569.42 µg/plant in shoots of the mining ecotype and 520.51 µg/plant in shoots of the farmland ecotype respectively. Therefore, exogenous ABA can be used for enhancing the Cd extraction ability of S. photeinocarpum, and 20 µmol/L ABA was the optimal dose.


Subject(s)
Abscisic Acid/metabolism , Cadmium/metabolism , Soil Pollutants/metabolism , Solanum/physiology , Biodegradation, Environmental , Biomass , Cadmium/analysis , Chlorophyll , Ecotype , Environmental Monitoring , Mining , Soil Pollutants/analysis , Solanum/classification
17.
Syst Biol ; 65(1): 109-27, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26454872

ABSTRACT

Phylogenetic analyses have lent support to the concept of lineage selection: that biological lineages can have heritable traits that influence their capacity to persist and diversify, and thereby affect their representation in biodiversity. While many discussions have focused on "positive" lineage selection, where stably heritable properties of lineages enhance their diversification rate, there are also intriguing examples that seem to represent "negative" lineage selection, where traits reduce the likelihood that a lineage will persist or speciate. In this article, we test whether a particular pattern of negative lineage selection is detectable from the distributions of the trait on a phylogeny. "Self-destructive" traits are those that arise often but then disappear again because they confer either a raised extinction rate or they are prone to a high rate of trait loss. For such a trait, the reconstructed origins will tend to be dispersed across the tips of the phylogeny, rather than defining large clades of related lineages that all share the trait. We examine the utility of four possible measures of "tippiness" as potential indicators of macroevolutionary self-destruction, applying them to phylogenies on which trait evolution has been simulated under different combinations of parameters for speciation, extinction, trait gain, and trait loss. We use an efficient simulation approach that starts with the required number of tips with and without the trait and uses a model to work "backwards" to construct different possible trees that result in that set of tips. We then apply these methods to a number of case studies: salt tolerance in grasses, color polymorphism in birds of prey, and selfing in nightshades. We find that the relative age of species, measured from tip length, can indicate a reduced speciation rate but does not identify traits that increase the extinction rate or the trait loss rate. We show that it is possible to detect cases of macroevolutionary self-destruction by considering the number of tips with the trait that arise from each inferred origin, and the degree to which the trait is scattered across the phylogeny. These metrics, and the methods we present, may be useful for testing macroevolutionary hypotheses from phylogenetic patterns.


Subject(s)
Extinction, Biological , Phylogeny , Animals , Biological Evolution , Birds/physiology , Pigmentation/genetics , Poaceae/classification , Poaceae/genetics , Poaceae/physiology , Solanum/classification , Solanum/physiology , Stress, Physiological
18.
BMC Plant Biol ; 15: 289, 2015 Dec 12.
Article in English | MEDLINE | ID: mdl-26654876

ABSTRACT

BACKGROUND: Type VI glandular trichomes represent the most abundant trichome type on leaves and stems of tomato plants and significantly contribute to herbivore resistance, particularly in the wild species. Despite this, their development has been poorly studied so far. The goal of this study is to fill this gap. Using a variety of cell imaging techniques, a detailed record of the anatomy and developmental stages of type VI trichomes in the cultivated tomato (Solanum lycopersicum) and in a related wild species (S. habrochaites) is provided. RESULTS: In both species, the development of these structures follows a highly reproducible cell division pattern. The two species differ in the shape of the trichome head which is round in S. habrochaites and like a four-leaf clover in S. lycopersicum, correlating with the presence of a large intercellular cavity in S. habrochaites where the produced metabolites accumulate. In both species, the junction between the intermediate cell and the four glandular cells constitute a breaking point facilitating the decapitation of the trichome and thereby the quick release of the metabolites. A strongly auto-fluorescent compound transiently accumulates in the early stages of development suggesting a potential role in the differentiation process. Finally, immuno-labelling with antibodies recognizing specific cell wall components indicate a key role of pectin and arabinogalactan components in the differentiation of type VI trichomes. CONCLUSIONS: Our observations explain the adaptive morphologies of type VI trichomes for metabolite storage and release and provide a framework for further studies of these important metabolic cellular factories. This is required to better exploit their potential, in particular for the breeding of pest resistance in tomato.


Subject(s)
Solanum/growth & development , Trichomes/growth & development , Galactans/metabolism , Pectins/metabolism , Solanum/classification , Solanum/metabolism , Solanum/ultrastructure , Trichomes/metabolism , Trichomes/ultrastructure
19.
G3 (Bethesda) ; 5(11): 2341-55, 2015 Sep 08.
Article in English | MEDLINE | ID: mdl-26355020

ABSTRACT

Our ability to assemble complex genomes and construct ultradense genetic maps now allows the determination of recombination rates, translocations, and the extent of genomic collinearity between populations, species, and genera. We developed two ultradense genetic linkage maps for pepper from single-position polymorphisms (SPPs) identified de novo with a 30,173 unigene pepper genotyping array. The Capsicum frutescens × C. annuum interspecific and the C. annuum intraspecific genetic maps were constructed comprising 16,167 and 3,878 unigene markers in 2108 and 783 genetic bins, respectively. Accuracies of marker groupings and orders are validated by the high degree of collinearity between the two maps. Marker density was sufficient to locate the chromosomal breakpoint resulting in the P1/P8 translocation between C. frutescens and C. annuum to a single bin. The two maps aligned to the pepper genome showed varying marker density along the chromosomes. There were extensive chromosomal regions with suppressed recombination and reduced intraspecific marker density. These regions corresponded to the pronounced nonrecombining pericentromeric regions in tomato, a related Solanaceous species. Similar to tomato, the extent of reduced recombination appears to be more pronounced in pepper than in other plant species. Alignment of maps with the tomato and potato genomes shows the presence of previously known translocations and a translocation event that was not observed in previous genetic maps of pepper.


Subject(s)
Capsicum/genetics , Genetic Linkage , Genome, Plant , Recombination, Genetic , Synteny , Transcriptome , Capsicum/classification , Chromosome Breakpoints , Genetic Speciation , Polymorphism, Single Nucleotide , Solanum/classification , Solanum/genetics
20.
Int J Mol Sci ; 16(4): 7608-26, 2015 Apr 07.
Article in English | MEDLINE | ID: mdl-25853261

ABSTRACT

WRKY transcription factors, which play critical roles in stress responses, have not been characterized in eggplant or its wild relative, turkey berry. The recent availability of RNA-sequencing data provides the opportunity to examine WRKY genes from a global perspective. We identified 50 and 62 WRKY genes in eggplant (SmelWRKYs) and turkey berry (StorWRKYs), respectively, all of which could be classified into three groups (I-III) based on the WRKY protein structure. The SmelWRKYs and StorWRKYs contain ~76% and ~95% of the number of WRKYs found in other sequenced asterid species, respectively. Positive selection analysis revealed that different selection constraints could have affected the evolution of these groups. Positively-selected sites were found in Groups IIc and III. Branch-specific selection pressure analysis indicated that most WRKY domains from SmelWRKYs and StorWRKYs are conserved and have evolved at low rates since their divergence. Comparison to homologous WRKY genes in Arabidopsis revealed several potential pathogen resistance-related SmelWRKYs and StorWRKYs, providing possible candidate genetic resources for improving stress tolerance in eggplant and probably other Solanaceae plants. To our knowledge, this is the first report of a genome-wide analyses of the SmelWRKYs and StorWRKYs.


Subject(s)
Plant Proteins/chemistry , Plant Proteins/genetics , Solanum/metabolism , Transcription Factors/chemistry , Transcription Factors/genetics , Amino Acid Sequence , Conserved Sequence , Disease Resistance , Gene Expression Profiling , Multigene Family , Phylogeny , Selection, Genetic , Solanum/classification , Solanum/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...