Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 12.732
Filter
1.
Carbohydr Polym ; 339: 122257, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823923

ABSTRACT

Traditional solid phase extraction (SPE) suffers from a lack of specific adsorption. To overcome this problem, a combination of adsorption method and molecular imprinting technology by polydopamine modification was proposed to realize specific recognition of target compounds in SPE, which is of great significance to improve the separation efficiency of SPE. Cellulose hydrogel beads were prepared by dual cross-linking curing method and modified with polydopamine to make them hydrophilic and biocompatible. Subsequently, cellulose hydrogel-based molecularly imprinted beads (MIBs) were synthesized by surface molecular imprinting technology and used as novel column fillers in SPE to achieve efficient adsorption (34.16 mg·g-1) with specific selectivity towards camptothecin (CPT) in 120 min. The simulation and NMR analysis revealed that recognition mechanism of MIBs involved hydrogen bond interactions and Van der Waals effect. The MIBs were successful used in separating CPT from Camptotheca acuminata fruits, exhibiting impressive adsorption capacity (1.19 mg·g-1) and efficient recovery of CPT (81.54 %). Thus, an environmentally friendly column filler for SPE was developed, offering a promising avenue for utilizing cellulose-based materials in the selective separation of natural products.


Subject(s)
Camptothecin , Cellulose , Hydrogels , Molecular Imprinting , Solid Phase Extraction , Camptothecin/chemistry , Camptothecin/isolation & purification , Cellulose/chemistry , Adsorption , Molecular Imprinting/methods , Hydrogels/chemistry , Solid Phase Extraction/methods , Camptotheca/chemistry , Polymers/chemistry , Hydrophobic and Hydrophilic Interactions , Indoles/chemistry , Fruit/chemistry
2.
Wei Sheng Yan Jiu ; 53(3): 447-454, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38839587

ABSTRACT

OBJECTIVE: To develop and validate a solid phase extraction-ultra-high performance liquid chromatography-tandem mass spectrometry method for the determination of six bisphenols(bisphenol S, bisphenol F, bisphenol A, 2, 2'-methylenediphenol, bisphenol AF, bisphenol AP) in urine. METHODS: After enzymolysis of urine sample, the target substances were quickly purified and extracted by WAX solid phase extraction column. On ACQUITY BEH C_(18) column(2.1 mm×100 mm, 1.7 µm), the mobile phase of water and methanol was used to separate. Finally, multi-reaction detection was carried out under electrospray negative ion scanning, and quantification was carried out by internal standard method. RESULTS: The correlation coefficients(r) of the target compounds were all more than 0.998 in the range of 0.1-50.0 ng/mL, the linearity was good, and the detection limits were all lower than 0.1 ng/mL. The recoveries of the three standard concentrations(0.5, 5.0 and 50.0 ng/mL) were all between 80% and 120%, and the relative standard deviation was less than 20%(n=5). The standard reference material was detected and the concentration was within the reference range. CONCLUSION: This method can be used to detect six bisphenols in urine quickly and accurately, is suitable for the trace analysis of bisphenol compounds in human urine.


Subject(s)
Benzhydryl Compounds , Phenols , Tandem Mass Spectrometry , Humans , Phenols/urine , Phenols/analysis , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Benzhydryl Compounds/urine , Solid Phase Extraction/methods , Sulfones/urine
3.
Anal Chim Acta ; 1312: 342780, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38834272

ABSTRACT

BACKGROUND: The convenient preparation and application of functionalized organic-inorganic hybrid monolithic materials have obtained substantial interest in the pretreatment of complex samples by solid-phase extraction (SPE). Compared to the in-tube solid-phase microextraction in fused-silica capillaries, micro SPE in plastic pipette tips have fascinating merits for the easily operated enrichment of trace target analytes from biological samples. However, the poor compatibility of organic-inorganic hybrid monoliths with plastics leads to the rare appearance of commercial hybrid monolithic pipette tips (HMPTs). Therefore, how to synthesize the organic-inorganic hybrid monolithic materials with better extraction performance in plastic pipette tips becomes a challenge. RESULTS: We develop a facile and cheap strategy to immobilize organic-inorganic hybrid monoliths in pipette tips. Melamine sponge was employed as the supporting skeleton to in situ assemble amine- and thiol-bifunctionalized hybrid monolithic material via "one pot" in a pipette tip, and gold nanoparticles (GNPs) and thiol-modified aptamer against human α-thrombin were sequentially attached to the hybrid monolith within the HMPTs. The average coverage density of the aptamer with GNPs as an intermediary reached as high as 818.5 pmol µL-1. The enriched thrombin concentration was determined by a sensitive enzymatic chromogenic assay with the limit of detection of 2 nM. The extraction recovery of thrombin at 10 nM in human serum was 86.1 % with a relative standard deviation of 6.1 %. This proposed protocol has been applied to the enrichment and determination of thrombin in real serum sample with strong anti-interference ability, low limit of detection and high recovery. SIGNIFICANCE: The amine- and thiol-bifunctionalized HMPTs prepared with sponge as the skeleton frame provided a novel substrate material to decorate aptamers for efficient enrichment of proteins. This enlightens us that we can take advantage of the tunability of sponge assisted HMPTs to produce and tailor a variety of micro SPE pipette tips for broader applications on the analysis of trace targets in complex biological, clinic and environmental samples.


Subject(s)
Aptamers, Nucleotide , Thrombin , Triazines , Triazines/chemistry , Triazines/isolation & purification , Aptamers, Nucleotide/chemistry , Humans , Thrombin/analysis , Thrombin/isolation & purification , Gold/chemistry , Metal Nanoparticles/chemistry , Solid Phase Extraction/methods
4.
Sci Rep ; 14(1): 13064, 2024 06 06.
Article in English | MEDLINE | ID: mdl-38844596

ABSTRACT

This study aimed to investigate carbamate pesticide residues in different varieties of date palm fruits in the UAE, utilizing UHPLC-MS/MS. For sample preparation and clean-up, the efficiency and performance of different QuEChERS dispersive solid-phase extraction kits were compared. Precision and recovery were assessed at 10 µg kg-1 for the three kits, revealing that Kit 2 demonstrated the best performance. The selected QuEChERS method was validated to detect 14 carbamate residues in 55 date samples. The method exhibited strong linearity with R2 > 0.999 and low LOD (0.01-0.005 µg kg-1) and LOQ (0.003-0.04 µg kg-1). Excellent accuracy (recovery: 88-106%) and precision (RSD: 1-11%) were observed, with negligible matrix effect (- 4.98-13.26%). All samples contained at least one carbamate residue. While most detected residues were below their MRLs, carbosulfan was found in 21 samples, propoxur in 2 samples, and carbofuran in 1 sample above their MRLs. The hazard index (HI) was calculated for carbosulfan, phenmedipham, carbaryl, propoxur, carbofuran, and methomyl to assess potential health risks for date consumers. All HI values were below the safety limit of 1.0, indicating that the consumption of dates does not pose a non-carcinogenic health risk for adults and children.


Subject(s)
Carbamates , Fruit , Pesticide Residues , Phoeniceae , Tandem Mass Spectrometry , Phoeniceae/chemistry , Pesticide Residues/analysis , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Carbamates/analysis , Fruit/chemistry , Humans , Risk Assessment , Solid Phase Extraction/methods , Food Contamination/analysis
5.
Se Pu ; 42(6): 508-523, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-38845512

ABSTRACT

Given continuous improvements in industrial production and living standards, the analysis and detection of complex biological sample systems has become increasingly important. Common complex biological samples include blood, serum, saliva, and urine. At present, the main methods used to separate and recognize target analytes in complex biological systems are electrophoresis, spectroscopy, and chromatography. However, because biological samples consist of complex components, they suffer from the matrix effect, which seriously affects the accuracy, sensitivity, and reliability of the selected separation analysis technique. In addition to the matrix effect, the detection of trace components is challenging because the content of the analyte in the sample is usually very low. Moreover, reasonable strategies for sample enrichment and signal amplification for easy analysis are lacking. In response to the various issues described above, researchers have focused their attention on immuno-affinity technology with the aim of achieving efficient sample separation based on the specific recognition effect between antigens and antibodies. Following a long period of development, this technology is now widely used in fields such as disease diagnosis, bioimaging, food testing, and recombinant protein purification. Common immuno-affinity technologies include solid-phase extraction (SPE) magnetic beads, affinity chromatography columns, and enzyme linked immunosorbent assay (ELISA) kits. Immuno-affinity techniques can successfully reduce or eliminate the matrix effect; however, their applications are limited by a number of disadvantages, such as high costs, tedious fabrication procedures, harsh operating conditions, and ligand leakage. Thus, developing an effective and reliable method that can address the matrix effect remains a challenging endeavor. Similar to the interactions between antigens and antibodies as well as enzymes and substrates, biomimetic molecularly imprinted polymers (MIPs) exhibit high specificity and affinity. Furthermore, compared with many other biomacromolecules such as antigens and aptamers, MIPs demonstrate higher stability, lower cost, and easier fabrication strategies, all of which are advantageous to their application. Therefore, molecular imprinting technology (MIT) is frequently used in SPE, chromatographic separation, and many other fields. With the development of MIT, researchers have engineered different types of imprinting strategies that can specifically extract the target analyte in complex biological samples while simultaneously avoiding the matrix effect. Some traditional separation technologies based on MIP technology have also been studied in depth; the most common of these technologies include stationary phases used for chromatography and adsorbents for SPE. Analytical methods that combine MIT with highly sensitive detection technologies have received wide interest in fields such as disease diagnosis and bioimaging. In this review, we highlight the new MIP strategies developed in recent years, and describe the applications of MIT-based separation analysis methods in fields including chromatographic separation, SPE, diagnosis, bioimaging, and proteomics. The drawbacks of these techniques as well as their future development prospects are also discussed.


Subject(s)
Molecular Imprinting , Humans , Chromatography, Affinity/methods , Solid Phase Extraction/methods , Enzyme-Linked Immunosorbent Assay
6.
J Sep Sci ; 47(11): e2300915, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38847294

ABSTRACT

In this work, core-shell material with a special structure was designed and applied in solid-phase extraction (SPE) for non-steroidal anti-inflammatory drugs (NSAIDs) combined with high-performance liquid chromatography. Based on the advantages of core-shell ZIF-8@ZIF-67 (Zeolite imidazole ester framework materials [ZIFs]), effective derivatization treatment was carried out to partially vulcanize the original ZIFs, resulting in a special and new double-core-shell structural material CoS/ZIF-67/ZnS/ZIF-8 (ZIFs@ZnS@CoS) with porous surface and center hollow. The multiple forces caused by the rich chemical structure, the large specific surface area caused by the special pore structure, and the effective protection of the ZIFs core by sulfide shell make the designed material have higher extraction efficiency and longer service life, compared with ZIF-8@ZIF-67 and ZIF-8. At the same time, the established analytical method for non-steroidal drugs had a high recovery rate (98.93%-102.10%), low detection limit (0.11-0.27 µg/L), and wide linear range (1-200 µg/L) within a good correlation coefficient R2 (0.9978-0.9993). Satisfactory results were also obtained from the extraction of NSAIDs from the Yellow River water samples. These results indicate that the designed double-core-shell structure material can effectively exert its structural advantages and become a promising extraction material.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal , Solid Phase Extraction , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/isolation & purification , Anti-Inflammatory Agents, Non-Steroidal/analysis , Solid Phase Extraction/methods , Chromatography, High Pressure Liquid , Surface Properties , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification , Water Pollutants, Chemical/analysis , Particle Size , Metal-Organic Frameworks/chemistry , Molecular Structure , Porosity , Zeolites/chemistry , Adsorption , Imidazoles/chemistry
7.
Mikrochim Acta ; 191(6): 297, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38709347

ABSTRACT

A new detection platform based on a hydroxylated covalent organic framework (COF) integrated with liquid chromatography-tandem mass spectrometry (LC-MS/MS) was constructed and used for detecting adrenergic receptor agonists (ARAs) residues in milk. The hydroxylated COF was prepared by polymerization of tris(4-aminophenyl)amine and 1,3,5-tris(4-formyl-3-hydroxyphenyl)benzene and applied to solid-phase extraction (SPE) of ARAs. This hydroxylated COF was featured with hierarchical flower-like morphology, easy preparation, and copious active adsorption sites. The adsorption model fittings and molecular simulation were applied to explore the potential adsorption mechanism. This detection platform was suitable for detecting four α2- and five ß2-ARAs residues in milk. The linear ranges of the ARAs were from 0.25 to 50 µg·kg-1; the intra-day and the inter-day repeatability were in the range 2.9-7.9% and 2.0-10.1%, respectively. This work demonstrates this hydroxylated COF has great potential as SPE cartridge packing, and provides a new way to determine ARAs residues in milk.


Subject(s)
Milk , Solid Phase Extraction , Tandem Mass Spectrometry , Solid Phase Extraction/methods , Milk/chemistry , Animals , Tandem Mass Spectrometry/methods , Hydroxylation , Metal-Organic Frameworks/chemistry , Adsorption , Adrenergic Agonists/chemistry , Adrenergic Agonists/analysis , Limit of Detection , Cattle
8.
Molecules ; 29(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38731551

ABSTRACT

The aim of this study is to solve the problems of the complicated pretreatment and high analytical cost in the detection technology of trace drugs and their metabolites in municipal wastewater. A high-performance magnetic sorbent was fsynthesized for the enrichment of trace drugs and their metabolites in wastewater to develop a magnetic solid-phase extraction pretreatment combined with the acoustic ejection mass spectrometry (AEMS) analytical method. The magnetic nanospheres were successfully prepared by magnetic nanoparticles modified with divinylbenzene and vinylpyrrolidone. The results showed that the linear dynamic range of 17 drugs was 1-500 ng/mL, the recovery was 44-100%, the matrix effect was more than 51%, the quantification limit was 1-2 ng/mL, and the MS measurement was fast. It can be seen that the developed magnetic solid-phase extraction (MSPE) method is a good solution to the problems of the complicated pretreatment and analytical cost in the analysis of drugs in wastewater. The developed magnetic material and acoustic excitation pretreatment coupled with mass spectrometry analysis method can realize the low-cost, efficient enrichment, and fast analysis of different kinds of drug molecules in urban sewage.


Subject(s)
Illicit Drugs , Mass Spectrometry , Sewage , Solid Phase Extraction , Sewage/analysis , Sewage/chemistry , Solid Phase Extraction/methods , Mass Spectrometry/methods , Illicit Drugs/analysis , Water Pollutants, Chemical/analysis , Wastewater/analysis , Wastewater/chemistry , Magnetite Nanoparticles/chemistry
9.
Molecules ; 29(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38731605

ABSTRACT

The aim of this study is to develop a rapid and accurate method for simultaneous analysis of multi-residue pesticides and conduct pesticide monitoring in agricultural products produced by the production and distribution stage in Korea. The representative agricultural products were selected as brown rice, soybean, potato, mandarin, and green pepper and developed using gas chromatography with tandem mass (GC-MS/MS) for the analysis of 272 pesticide residues. The experimental samples were extracted by the QuEChERS-EN method and then cleaned up by using d-SPE, including MgSO4 and primary secondary amine (PSA) sorbents. The established method was validated in accordance with Codex CAC-GL/40, and the limit of quantitation (LOQ) was determined to be 0.01 mg/kg. A total of 243 pesticides satisfied the guidelines in five samples at three levels with values of 60 to 120% (recovery) and ≤45% (coefficient of variation, CV). The remaining 29 pesticides did not satisfy the guidelines, and these pesticides are expected to be used as a screening method for the routine inspection of agricultural products. As a result of analyzing 223 agricultural products in South Korea by applying the simultaneous analysis method, none of the detected levels in the samples exceeded the standard values based on maximum residue limits (MRLs). The developed method in this study will be used to inspect residual pesticides in agricultural products, and it is anticipated to contribute to the distribution of safe agricultural products to consumers.


Subject(s)
Gas Chromatography-Mass Spectrometry , Pesticide Residues , Tandem Mass Spectrometry , Tandem Mass Spectrometry/methods , Pesticide Residues/analysis , Gas Chromatography-Mass Spectrometry/methods , Pesticides/analysis , Crops, Agricultural/chemistry , Republic of Korea , Food Contamination/analysis , Limit of Detection , Solid Phase Extraction/methods
10.
Anal Chim Acta ; 1308: 342662, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38740449

ABSTRACT

BACKGROUND: The ongoing infusion of pharmaceutical and personal care products (PPCPs) into ecosystems sustains a perpetual life cycle and leads to multi-generational exposures. Limited understanding of their environmental impact and their intrinsic ability to induce physiological effect in humans, even at low doses, pose great risks to human health. Few scholarly works have conducted systematic research into the occurrence of PPCPs within potable water systems. Concurrently, the associated monitoring techniques have not been comprehensively examined with regards to the specific nature of drinking water, namely whether the significant presence of disinfectants may influence the detection of PPCPs. RESULTS: A modified approach in terms of detailed investigation of sample preservation and optimization of an in-lab fabricated solid phase extraction (SPE) cartridge filled with DVB-VP and PS-DVB sorbent was proposed. Favorable methodological parameters were achieved, with correlation coefficients spanning from 0.9866 to 0.9998. The LODs of the PPCPs fluctuated from 0.001 to 2 µg L-1, while the LOQs varied from 0.002 to 5 µg L-1. The analysis of spiked samples disclosed a methodological precision of 2.31-9.86 % and a recovery of 52.4-119 %. We utilized the established method for analyzing 14 water samples of three categories (source water, finished water and tap water) from five centralized water supply plants. A total of 24 categories encompassing 72 PPCPs were detected, with the concentrations of PPCPs manifested a marked decrease from source water to finished water and finally to tap water. SIGNIFICANCE: Our research meticulously examined the enhancement and purification effects of widely used commercial SPE cartridges and suggested the use of in-lab fabricated SPE cartridges packed with DVB-VP and PS-DVB adsorbents. We also conducted a systematic evaluation of the need to incorporate ascorbic acid and sodium thiosulfate as preservatives for PPCP measurement, in consideration of the unique characteristics of drinking water matrices, specifically, the significant concentration levels of disinfectants. Furthermore, the proposed method was effectively employed to study the presence of PPCPs in source water, finished water, and tap water collected from centralized water supply plants.


Subject(s)
Solid Phase Extraction , Water Pollutants, Chemical , Solid Phase Extraction/methods , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/isolation & purification , Pharmaceutical Preparations/analysis , Water Supply , Drinking Water/analysis , Cosmetics/analysis , Cosmetics/chemistry , Environmental Monitoring/methods
11.
Food Res Int ; 183: 114240, 2024 May.
Article in English | MEDLINE | ID: mdl-38760119

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic organic pollutants found in various environments, notably aquatic ecosystems and the food chain, posing significant health risks. Traditional methods for detecting PAHs in food involve complex processes and considerable reagent usage, raising environmental concerns. This study explores eco-friendly approaches suing solid phases derived from natural sources in matrix solid phase dispersion. We aimed to develop, optimize, and validate a sample preparation technique for seafood, employing natural materials for PAH analysis. Ten natural phases were compared with a commercial reference phase. The methodology involved matrix solid phase dispersion and pressurized liquid extraction, followed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Three solid phases (perlite, sweet manioc starch, and barley) showed superior performance in LC-MS/MS and were further evaluated with gas chromatography-tandem mass spectrometry (GC-MS/MS), confirming perlite as the most effective phase. Validation followed Brazilian regulatory guidelines and European Community Regulation 2021/808/EC. The resulting method offered advantages in cost-effectiveness, reduced environmental impact, cleaner extracts, and enhanced analytical performance compared to the reference solid phase and LC-MS/MS. Proficiency analysis confirmed method reliability, with over 50% alignment with green analytical chemistry principles. In conclusion, this study developed an environmentally sustainable sample preparation technique for seafood analysis using natural solid phases, particularly perlite, for PAH determination.


Subject(s)
Food Contamination , Gas Chromatography-Mass Spectrometry , Polycyclic Aromatic Hydrocarbons , Seafood , Tandem Mass Spectrometry , Polycyclic Aromatic Hydrocarbons/analysis , Seafood/analysis , Tandem Mass Spectrometry/methods , Gas Chromatography-Mass Spectrometry/methods , Chromatography, Liquid/methods , Food Contamination/analysis , Solid Phase Extraction/methods , Reproducibility of Results , Brazil , Green Chemistry Technology/methods
12.
Food Res Int ; 187: 114359, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763643

ABSTRACT

Chinese Xiaokeng green tea (XKGT) possesses elegant and fascinating aroma characteristics, but its key odorants are still unknown. In this study, 124 volatile compounds in the XKGT infusion were identified by headspace-solid phase microextraction (HS-SPME), stir bar sorptive extraction (SBSE), and solvent extraction-solid phase extraction (SE-SPE) combined with gas chromatography-mass spectrometry (GC-MS). Comparing these three pretreatments, we found HS-SPME was more efficient for headspace compounds while SE-SPE was more efficient for volatiles with higher boiling points. Furthermore, SBSE showed more sensitive to capture ketones then was effective to the application of pretreatment of aroma analysis in green tea. The aroma intensities (AIs) were further identified by gas chromatography-olfactometry (GC-O). According to the AI and relative odor activity value (rOAV), 27 compounds were identified as aroma-active compounds. Quantitative descriptive analysis (QDA) showed that the characteristic aroma attributes of XKGT were chestnut-like, corn-like, fresh, and so on. The results of network analysis showed that (E, Z)-2,6-nonadienal, nonanal, octanal and nerolidol were responsible for the fresh aroma. Similarly, dimethyl sulfide, (E, E)-2,4-heptadienal, (E)-2-octenal and ß-cyclocitral contributed to the corn-like aroma. Furthermore, indole was responsible for the chestnut-like and soybean-like aroma. This study contributes to a better understanding of the molecular mechanism of the aroma characteristics of XKGT.


Subject(s)
Gas Chromatography-Mass Spectrometry , Odorants , Olfactometry , Solid Phase Microextraction , Tea , Volatile Organic Compounds , Odorants/analysis , Tea/chemistry , Volatile Organic Compounds/analysis , Solid Phase Microextraction/methods , Humans , Camellia sinensis/chemistry , Solid Phase Extraction/methods
13.
Food Chem ; 451: 139427, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38692237

ABSTRACT

Here, we report a monomer planarity modulation strategy for room-temperature constructing molecularly imprinted-covalent organic frameworks (MI-COFs) for selective extraction of ochratoxin A (OTA). 2,4,6-triformylphloroglucinol (Tp) was used as basic building block, while three amino monomers with different planarity were employed as modulators to explore the effect of planarity on the selectivity of MI-COFs. The MI-TpTapa constructed from Tp and the lowest planarity of monomer Tapa gave the highest selectivity for OTA, and was further used as the adsorbent for dispersed-solid phase extraction (DSPE) of OTA in alcohol samples. Coupling MI-TpTapa based DSPE with high-performance liquid chromatography allowed the matrix-effect free determination of OTA in alcohol samples with the limit of detection of 0.023 µg kg-1 and the recoveries of 91.4-97.6%. The relative standard deviation (RSD, n = 6) of intra and inter day was <3.2%. This work provides a new way to construct MI-COFs for selective extraction of hazardous targets.


Subject(s)
Food Contamination , Molecular Imprinting , Ochratoxins , Solid Phase Extraction , Ochratoxins/analysis , Ochratoxins/isolation & purification , Ochratoxins/chemistry , Solid Phase Extraction/methods , Solid Phase Extraction/instrumentation , Chromatography, High Pressure Liquid , Food Contamination/analysis , Adsorption , Alcohols/chemistry , Alcohols/isolation & purification , Metal-Organic Frameworks/chemistry
14.
Acta Pharm ; 74(2): 343-354, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38815198

ABSTRACT

Remifentanil is an ultra-short-acting synthetic opioid-class analgesic which might be increasingly used "off-label" as pain management during labour. Side effects in parturients during labour, and in the infant at birth are of particular concern, especially respiratory depression which is concentration-dependent, and can occur at levels as low as 3-5 ng mL-1. The safety of such use, particularly in newborns due to remifentanil placental transfer, has not been fully demonstrated yet, partly due to the lack of a suitable non-invasive analytical method. The aim of our work was to develop a sensitive method to monitor the levels of remifentanil in neonates by a non-invasive sampling of umbi lical cord blood to support efficacy and safety trials. The presented LC-MS method is sensitive enough to reliably quantify remifentanil in just 20 µL of blood at only 0.3 ng mL-1. The dried blood spot sample preparation included solvent extraction with subsequent solid-phase extraction. The method was validated in terms of accuracy, precision, recovery, matrix effect, and stability, and was successfully applied to a small pilot study. The estimated arterial blood concentrations at the time of delivery ranged from 0.2 to 0.3, and up to 0.9 ng mL-1 in neonatal, and maternal samples, respectively.


Subject(s)
Analgesics, Opioid , Dried Blood Spot Testing , Fetal Blood , Remifentanil , Tandem Mass Spectrometry , Remifentanil/blood , Humans , Tandem Mass Spectrometry/methods , Infant, Newborn , Dried Blood Spot Testing/methods , Analgesics, Opioid/blood , Female , Fetal Blood/chemistry , Chromatography, Liquid/methods , Pregnancy , Piperidines/blood , Pilot Projects , Reproducibility of Results , Solid Phase Extraction/methods
15.
Food Chem ; 452: 139553, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38733687

ABSTRACT

This study presents novel methodologies and materials for selectively and sensitively determining gibberellin traces in licorice to address food safety concerns. A novel hydrophilic imprinted resin-graphene oxide composite (HMIR-GO) was developed with fast mass transfer, high adsorption capacity, and exceptional aqueous recognition performance for gibberellin. Leveraging the advantages of molecular imprinting, hydrophilic resin synthesis, and rapid mass transfer characteristics of GO, HMIR-GO was employed as an adsorbent, showing resistance to matrix interference. Coupled with HPLC, a rapid and selective method for determining gibberellin was established. Under optimal conditions, the method exhibited a wide linear range (0.02-5.00 µg g-1, r = 0.9999), low detection limits (3.3 ng g-1), and satisfactory recoveries (92.0-98.4%), enabling the accurate and rapid detection of gibberellin in licorice. This study introduces a pioneering strategy for the selective extraction and determination of trace gibberellin levels, offering insights for similar applications in functional foods.


Subject(s)
Gibberellins , Glycyrrhiza , Graphite , Hydrophobic and Hydrophilic Interactions , Molecular Imprinting , Graphite/chemistry , Glycyrrhiza/chemistry , Gibberellins/chemistry , Gibberellins/analysis , Gibberellins/isolation & purification , Adsorption , Solid Phase Extraction/methods , Solid Phase Extraction/instrumentation , Chromatography, High Pressure Liquid , Limit of Detection
16.
Food Chem ; 452: 139579, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38735111

ABSTRACT

Novel metal-organic framework MIL-101(Cr)-NH2 functionalised hydrophilic polydopamine-modified Fe3O4 magnetic nanoparticles (Fe3O4@PDA@MIL-101(Cr)-NH2) were synthesised and used as magnetic solid-phase extraction (MSPE) adsorbents for extracting tetracyclines (TCs) from milk samples. The integrated Fe3O4@PDA@MIL-101(Cr)-NH2 exhibited convenient magnetic separation and exceptional multi-target binding capabilities. Furthermore, the PDA coating significantly enhanced the hydrophilicity and extraction efficiency of the material, thereby facilitating the extraction of trace TCs. Various factors affecting MSPE, such as adsorbent dosage, extraction time, pH value, and desorption conditions, were optimised. The developed MSPE method coupled with high-performance liquid chromatography demonstrated good linearity (R2 ≥ 0.9989), acceptable accuracy (82.2%-106.1%), good repeatability (intra-day precision of 0.8%-4.7% and inter-day precision of 1.1%-4.5%), low limits of detection (2.18-6.25 µg L-1), and low limits of quantification (6.54-18.75 µg L-1) in TCs detection. The approach was successfully used for the quantification of trace TCs in real milk samples.


Subject(s)
Magnetite Nanoparticles , Metal-Organic Frameworks , Milk , Solid Phase Extraction , Tetracyclines , Milk/chemistry , Solid Phase Extraction/methods , Solid Phase Extraction/instrumentation , Metal-Organic Frameworks/chemistry , Tetracyclines/isolation & purification , Tetracyclines/chemistry , Tetracyclines/analysis , Animals , Magnetite Nanoparticles/chemistry , Hydrophobic and Hydrophilic Interactions , Chromatography, High Pressure Liquid , Adsorption , Food Contamination/analysis
17.
J Chromatogr A ; 1727: 464970, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38744187

ABSTRACT

The extensive usage of neonicotinoid insecticides (NIs) has raised many concerns about their potential harm to environment and human health. Thus, it is of great importance to develop an efficient and reliable method to determine NIs in food samples. In this work, three Zr4+-based metal-organic frameworks functionalized with various numbers of hydroxyl groups were fabricated with a facile one-pot solvothermal method. Among them, dihydroxy modified UiO-66 (UiO-66-(OH)2) exhibited best adsorption performance towards five target NIs. Then, a sensitive and efficient method for detection of NIs from vegetable and fruit samples was established based on dispersive solid phase extraction (dSPE) with UiO-66-(OH)2 as adsorbent coupled with ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS). Key parameters affecting the dSPE procedure including amounts of adsorbent, adsorption time, eluent solvents and desorption time were investigated. Under the optimal conditions, rapid adsorption of NIs within five minutes was achieved due to the high affinity of UiO-66-(OH)2 towards NIs. The developed method exhibited high sensitivity with limits of detection (LODs) varied from 0.003 to 0.03 ng/mL and wide linearity range over 3-4 orders of magnitude from 0.01 to 500 ng/mL. Furthermore, the established method was applied for determining trace NIs from complex matrices with recoveries ranging from 74.6 to 99.6 % and 77.0-106.8 % for pear and tomato samples, respectively. The results indicate the potential of UiO-66-(OH)2 for efficient enrichment of trace NIs from complex matrices.


Subject(s)
Insecticides , Limit of Detection , Metal-Organic Frameworks , Solid Phase Extraction , Tandem Mass Spectrometry , Vegetables , Tandem Mass Spectrometry/methods , Solid Phase Extraction/methods , Chromatography, High Pressure Liquid/methods , Insecticides/analysis , Insecticides/isolation & purification , Insecticides/chemistry , Metal-Organic Frameworks/chemistry , Adsorption , Vegetables/chemistry , Neonicotinoids/analysis , Neonicotinoids/chemistry , Neonicotinoids/isolation & purification , Fruit/chemistry , Anabasine/analysis , Anabasine/chemistry , Food Contamination/analysis , Zirconium/chemistry , Phthalic Acids
18.
J Chromatogr A ; 1727: 464976, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38744186

ABSTRACT

A new biosorbent was fabricated by modification of bacterial cellulose biopolymer grafted with lanthanum sulfide decorated carboxylated multiwall carbon nanotube (La2S3@MWCNT@BC). The sorbent was employed in a green alternative dispersive-solid phase extraction of a variety of 14 pesticides in environmental water samples. The analyses were performed using GC-µECD. The properties and structure of La2S3@MWCNT@BC nanocomposite were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, and adsorption-desorption isotherms. The composition of the sorbent was also investigated to evaluate the adsorptive properties of its constituents. The impact of various parameters influencing extraction efficacies such as sorbent dose, adsorption time, sample pH, ionic strength, and desorption conditions was investigated. The method was validated by specificity, matrix effect % (-0.4 to -7.4), enrichment factor (4-10), limits of quantification (0.007-0.31 µg L-1), matrix-matched calibration linearity (0.01-200 µg L-1), determination coefficients (r2=0.9921-0.9998), and precision. The optimized method was applied for the analysis of multiclass pesticides in seven environmental and drinking waters and the recoveries were obtained in the 81-108 % range with RSDs of 2.5-4.7 %. This paper is the first report on the synthesis and use of La2S3@MWCNT@BC nanocomposite to extract pesticides from different water samples. The greenness of the procedure was evaluated by the AGREE protocols.


Subject(s)
Cellulose , Lanthanum , Nanotubes, Carbon , Pesticides , Water Pollutants, Chemical , Nanotubes, Carbon/chemistry , Lanthanum/chemistry , Adsorption , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/isolation & purification , Cellulose/chemistry , Pesticides/analysis , Pesticides/chemistry , Pesticides/isolation & purification , Sulfides/chemistry , Limit of Detection , Solid Phase Extraction/methods
19.
J Chromatogr A ; 1727: 464988, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38749348

ABSTRACT

In this research, a novel magnetic nanocomposite (Fe3O4@Zn/Al-LABSA-LDH/ZIF-8) was synthesized using Fe3O4 as the magnetic core, layered double hydroxide (LDH) with linear alkylbenzene sulfonic acid (LABSA) intercalation and zeolitic imidazolate framework-8 (ZIF-8) as the shell. Benefiting from the intercalation of LABSA into LDH combined with ZIF-8, the multiple interactions, including π-π stacking, hydrogen bonding, and electrostatic interactions, conferred high selectivity and good extraction capability to the material towards heterocyclic aromatic amines (HAAs). Fe3O4@Zn/Al-LABSA-LDH@ZIF-8 was used as an adsorbent for magnetic solid-phase extraction (MSPE) to enrich HAAs in thermally processed meat samples, followed by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) detection. The method exhibited a low detection limit (0.021-0.221 ng/g), good linearity (R2 ≥ 0.9999), high precision (RSD < 7.2 %), and satisfactory sample recovery (89.7 % -107.5 %). This research provides a promising approach for developing novel adsorbents in sample preparation and improving analytical performance.


Subject(s)
Amines , Limit of Detection , Nanocomposites , Solid Phase Extraction , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Amines/analysis , Amines/chemistry , Nanocomposites/chemistry , Solid Phase Extraction/methods , Imidazoles/chemistry , Heterocyclic Compounds/analysis , Heterocyclic Compounds/chemistry , Hydroxides/chemistry , Zeolites/chemistry , Meat/analysis , Metal-Organic Frameworks/chemistry , Adsorption , Food Contamination/analysis , Liquid Chromatography-Mass Spectrometry
20.
J Chromatogr A ; 1727: 464993, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38759462

ABSTRACT

Anabolic steroids and ß-agonists are commonly prohibited substances found in doping control studies; therefore, the determination of anabolic substances in biological samples is crucial. To analyze the anabolic compounds in urine, an adsorbent, polyethylene glycol (PEG)-grafted magnetic nanoparticle material (Fe3O4@SiO2-PEG), with low toxicity and strong biocompatibility was prepared in this investigation. Compared to those of Fe3O4 and Fe3O4@SiO2, the grafted PEG chains (approximately 5.4 wt.%) on the magnetic nanoparticles improved the extraction efficiencies by factors of 3.9-17.0 and 2.5-2.9, respectively, likely due to the electrostatic attraction and hydrogen bonding. To achieve maximum extraction efficiency, several extraction parameters were optimized, including the kind and volume of desorption solvent, pH, and the extraction and desorption time. The standard curves were linear within the range of 0.5-20 µg/L for methyltestosterone and trenbolone, and 0.02-5 µg/L for clenbuterol. The limits of detection for the three drugs were 0.01-0.12 µg/L. The limits of quantification were 0.02-0.40 µg/L. The levels of precision of the optimized method were assessed based on the respective intra- and inter-day and batch-to-batch relative standard deviations in the ranges of 3.2-5.2 % (n = 5), 5.9-11.3 % (n = 4), and 6.7-9.2 % (n = 3). The Fe3O4@SiO2-PEG nanoparticles could exclude urine matrix interferences (matrix effect of 91.8-98.1 %) and achieve satisfactory recoveries (75.5-116.1 %), affording sensitive and accurate determination of trace anabolic substances in urine.


Subject(s)
Anabolic Agents , Limit of Detection , Magnetite Nanoparticles , Polyethylene Glycols , Humans , Polyethylene Glycols/chemistry , Anabolic Agents/urine , Anabolic Agents/isolation & purification , Magnetite Nanoparticles/chemistry , Doping in Sports , Adsorption , Reproducibility of Results , Solid Phase Extraction/methods , Silicon Dioxide/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...