Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 451
Filter
1.
Int J Mol Sci ; 25(10)2024 May 18.
Article in English | MEDLINE | ID: mdl-38791542

ABSTRACT

Molecularly imprinted polymers (MIPs) are established artificial molecular recognition platforms with tailored selectivity towards a target molecule, whose synthesis and functionality are highly influenced by the nature of the solvent employed in their synthesis. Steps towards the "greenification" of molecular imprinting technology (MIT) has already been initiated by the elaboration of green MIT principles; developing MIPs in a solvent-free environment may not only offer an eco-friendly alternative, but could also significantly influence the affinity and expected selectivity of the resulting binding sites. In the current study the first solvent-free mechanochemical synthesis of MIPs via liquid-assisted grinding (LAG) is reported. The successful synthesis of the imprinted polymer was functionally demonstrated by measuring its template rebinding capacity and the selectivity of the molecular recognition process in comparison with the ones obtained by the conventional, non-covalent molecular imprinting process in liquid media. The results demonstrated similar binding capacities towards the template molecule and superior chemoselectivity compared to the solution-based MIP synthesis method. The adoption of green chemistry principles with all their inherent advantages in the synthesis of MIPs may not only be able to alleviate the potential environmental and health concerns associated with their analytical (e.g., selective adsorbents) and biomedical (e.g., drug carriers or reservoirs) applications, but might also offer a conceptual change in molecular imprinting technology.


Subject(s)
Molecular Imprinting , Molecularly Imprinted Polymers , Molecularly Imprinted Polymers/chemistry , Molecularly Imprinted Polymers/chemical synthesis , Molecular Imprinting/methods , Solid-Phase Synthesis Techniques/methods , Polymers/chemistry , Polymers/chemical synthesis , Solvents/chemistry
2.
Curr Protoc ; 4(4): e1029, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38666611

ABSTRACT

The loading (i.e., substitution) of solid supports for oligonucleotide synthesis is an important parameter in large-scale manufacturing of oligonucleotides. Several key process parameters are dependent on the substitution of the solid support, including the number of phosphoramidite nucleoside equivalents used in the coupling step. For dimethoxytrityl (DMTr)-loaded solid supports, the substitution of the resin is determined by quantitatively cleaving the DMTr protecting group from the resin under acidic conditions and then analyzing the DMTr cation extinction by UV/vis spectroscopy. The spectrometric measurement can be performed at 409 nm or the global extinction maximum of 510 nm. The substitution is then calculated based on the Lambert-Beer law analogously to the substitution determination of Fmoc-substituted resins. Below, the determination of the molar extinction coefficient at 510 nm in a solution of 10% dichloroacetic acid in toluene and subsequent determination of the DMTr loading of DMTr-substituted resins is reported. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Determination of the molar extinction coefficient at 510 nm in DCA Deblock solution Basic Protocol 2: Substitution determination of DMTr-substituted resins by cleavage of the DMTr cation.


Subject(s)
Oligonucleotides , Oligonucleotides/chemistry , Oligonucleotides/chemical synthesis , Solid-Phase Synthesis Techniques/methods , Resins, Synthetic/chemistry
3.
Angew Chem Int Ed Engl ; 63(22): e202403063, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38529723

ABSTRACT

Ribonucleic acids (RNAs) play a vital role in living organisms. Many of their cellular functions depend critically on chemical modification. Methods to modify RNA in a controlled manner-both in vitro and in vivo-are thus essential to evaluate and understand RNA biology at the molecular and mechanistic levels. The diversity of modifications, combined with the size and uniformity of RNA (made up of only 4 nucleotides) makes its site-specific modification a challenging task that needs to be addressed by complementary approaches. One such approach is solid-phase RNA synthesis. We discuss recent developments in this field, starting with new protection concepts in the ongoing effort to overcome current size limitations. We continue with selected modifications that have posed significant challenges for their incorporation into RNA. These include deazapurine bases required for atomic mutagenesis to elucidate mechanistic aspects of catalytic RNAs, and RNA containing xanthosine, N4-acetylcytidine, 5-hydroxymethylcytidine, 3-methylcytidine, 2'-OCF3, and 2'-N3 ribose modifications. We also discuss the all-chemical synthesis of 5'-capped mRNAs and the enzymatic ligation of chemically synthesized oligoribonucleotides to obtain long RNA with multiple distinct modifications, such as those needed for single-molecule FRET studies. Finally, we highlight promising developments in RNA-catalyzed RNA modification using cofactors that transfer bioorthogonal functionalities.


Subject(s)
RNA , RNA/chemistry , RNA/chemical synthesis , Solid-Phase Synthesis Techniques/methods
4.
Protein Expr Purif ; 219: 106477, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38527576

ABSTRACT

Semaglutide is currently the most promising antidiabetic drug, especially for the treatment of type 2 diabetes mellitus, due to its excellent efficacy in glycemic control and weight loss. However, the production of semaglutide remains high cost, and high yield, low cost, and high purity still remains a challenge. Herein, we reported a convenient and high-yield strategy for the preparation of semaglutide through fragmented condensation coupling, involving solid-phase peptide synthesis of tetrapeptide and on-column refolding and on-column enzyme cleavage based inclusion body expression of Lys26Arg34GLP-1 (11-37) with fused protein tags in an X-Y-D4K-G pattern. The optimized N-terminal protein tag significantly boosts inclusion body expression level, while on-column refolding and on-column enzyme cleavage avoid precipitation, enhancing efficiency and yield together with one-step purification. The successful preparation of semaglutide is expected to achieve large-scale industrial production with low cost, high yield and high purity.


Subject(s)
Glucagon-Like Peptides , Inclusion Bodies , Solid-Phase Synthesis Techniques , Glucagon-Like Peptides/chemistry , Solid-Phase Synthesis Techniques/methods , Inclusion Bodies/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Hypoglycemic Agents/chemistry , Humans
5.
J Pept Sci ; 30(6): e3560, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38262069

ABSTRACT

The rise of antimicrobial resistance and multi-drug resistant pathogens has necessitated explorations for novel antibiotic agents as the discovery of conventional antibiotics is becoming economically less viable and technically more challenging for biopharma. Antimicrobial peptides (AMPs) have emerged as a promising alternative because of their particular mode of action, broad spectrum and difficulty that microbes have in becoming resistant to them. The AMPs bacitracin, gramicidin, polymyxins and daptomycin are currently used clinically. However, their susceptibility to proteolytic degradation, toxicity profile, and complexities in large-scale manufacture have hindered their development. To improve their proteolytic stability, methods such as integrating non-canonical amino acids (ncAAs) into their peptide sequence have been adopted, which also improves their potency and spectrum of action. The benefits of ncAA incorporation have been made possible by solid-phase peptide synthesis. However, this method is not always suitable for commercial production of AMPs because of poor yield, scale-up difficulties, and its non-'green' nature. Bioincorporation of ncAA as a method of integration is an emerging field geared towards tackling the challenges of solid-phase synthesis as a green, cheaper, and scalable alternative for commercialisation of AMPs. This review focusses on the bioincorporation of ncAAs; some challenges associated with the methods are outlined, and notes are given on how to overcome these challenges. The review focusses particularly on addressing two key challenges: AMP cytotoxicity towards microbial cell factories and the uptake of ncAAs that are unfavourable to them. Overcoming these challenges will draw us closer to a greater yield and an environmentally friendly and sustainable approach to make AMPs more druggable.


Subject(s)
Amino Acids , Antimicrobial Peptides , Amino Acids/chemistry , Amino Acids/metabolism , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/pharmacology , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Solid-Phase Synthesis Techniques/methods , Microbial Sensitivity Tests
6.
Chemistry ; 30(2): e202302937, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-37939246

ABSTRACT

This study presents an efficient method for on-resin dimer generation through self-condensation of 3,3-dimethoxypropionic acid-modified molecules, resulting in 2-pyridones. The approach demonstrated remarkable versatility by producing homodimers of peptides, peptoids, and non-peptidic ligands. Its ease of application, broad utility, and mild reaction conditions not only hold significance for peptide and peptoid research but also offer potential for the on-resin development of a wide range of bivalent ligands.


Subject(s)
Peptoids , Solid-Phase Synthesis Techniques , Solid-Phase Synthesis Techniques/methods , Peptides/chemistry , Peptoids/chemistry , Pyridones , Ligands
7.
Org Lett ; 25(48): 8661-8665, 2023 12 08.
Article in English | MEDLINE | ID: mdl-38009639

ABSTRACT

Through systematic optimization of halopyridinium compounds, we established a peptide coupling protocol utilizing 4-iodine N-methylpyridinium (4IMP) for solid-phase peptide synthesis (SPPS). The 4IMP coupling reagent is easily prepared, bench stable, and cost-effective. Employing 4IMP in the SPPS process has showcased remarkable chemoselectivity and efficiency, effectively eliminating racemization and epimerization. This achievement has been substantiated through the successful synthesis of a range of peptides via the direct utilization of commercially available amino acid substrates for SPPS.


Subject(s)
Peptides , Pyridinium Compounds , Peptides/chemistry , Amino Acids/chemistry , Solid-Phase Synthesis Techniques/methods
8.
Angew Chem Int Ed Engl ; 62(34): e202307782, 2023 08 21.
Article in English | MEDLINE | ID: mdl-37389988

ABSTRACT

Peptide stapling is a robust strategy for generating enzymatically stable, macrocyclic peptides. The incorporation of biologically relevant tags (such as cell-penetrating motifs or fluorescent dyes) into peptides, while preserving their binding interactions and enhancing their stability, is highly sought after. Despite the unique opportunities offered by tryptophan's indole scaffold for targeted functionalisation, its utilisation in peptide stapling has been limited as compared to other amino acids. Herein, we present an approach for peptide stapling using the tryptophan-mediated Petasis reaction. This method enables the synthesis of both stapled and labelled peptides and is applicable to both solution and solid-phase synthesis. Importantly, the use of the Petasis reaction in combination with tryptophan facilitates the formation of stapled peptides in a straightforward, multicomponent fashion, while circumventing the formation of undesired by-products. Furthermore, this approach allows for efficient and diverse late-stage peptide modifications, thereby enabling rapid production of numerous conjugates for biological and medicinal applications.


Subject(s)
Peptides , Tryptophan , Peptides/chemistry , Amino Acids/chemistry , Solid-Phase Synthesis Techniques/methods , Cyclization
9.
Angew Chem Int Ed Engl ; 62(23): e202303170, 2023 06 05.
Article in English | MEDLINE | ID: mdl-37005223

ABSTRACT

A method for automated solid-phase synthesis of oligo(disulfide)s was developed. It is based on a synthetic cycle comprising removal of a protecting group from a resin-bound thiol followed by treatment with monomers containing a thiosulfonate as an activated precursor. For ease of purification and characterization, the disulfide oligomers were synthesized as extensions of oligonucleotides on an automated oligonucleotide synthesizer. Six different dithiol monomer building blocks were synthesized. Sequence-defined oligomers of up to seven disulfide units were synthesized and purified. The sequence of the oligomer was confirmed by tandem MS/MS analysis. One of the monomers contains a coumarin cargo that can be released by a thiol-mediated release mechanism. When the monomer was incorporated into an oligo(disulfide) and subjected to reducing conditions, the cargo was released under near-physiological conditions, which underlines the potential use of these molecules in drug delivery systems.


Subject(s)
Disulfides , Tandem Mass Spectrometry , Solid-Phase Synthesis Techniques/methods , Sulfhydryl Compounds
10.
SLAS Technol ; 28(2): 89-97, 2023 04.
Article in English | MEDLINE | ID: mdl-36649783

ABSTRACT

The development of peptide-based pharmaceutics is a hot topic in the pharmaceutical industry and in basic research. However, from the research and development perspective there is an unmet need for new, alternative, solid-phase peptide synthesizers that are highly efficient, automated, robust, able to synthetize peptides in parallel, inexpensive (to obtain and operate), have potential to be scaled up, and even comply with the principles of green chemistry. Moreover, a peptide synthesizer of this type could also fill the gap in university research, and therefore speed the advancement of peptide-based pharmaceutical options. This paper presents a Tecan add-on peptide synthesizer (TaPSy), which has operational flexibility (coupling time: 15-30 min), can handle all manual synthesis methods, and is economical (solvent use: 34.5 mL/cycle, while handling 0.49 mmol scale/reactor, even with ≤3 equivalents of activated amino acid derivatives). Moreover, it can carry out parallel synthesis of up to 12 different peptides (0.49 mmol scale in each). TaPSy uses no heating or high pressure, while it is still resistant to external influences (operating conditions: atmospheric pressure, room temperature 20-40 ˚C, including high [>70%] relative humidity). The system's solvent can also be switched from DMF to a green and biorenewable solvent, γ-valerolactone (GVL), without further adjustment. The designed TaPSy system can produce peptides with high purity (>70%), even with the green GVL solvent alternative. In this paper we demonstrate the optimization path of a newly developed peptide synthesizer in the context of coupling reagents, reaction time and reagent equivalents applying for a synthesis of a model peptide. We compare the results by analytical characteristics (purity of raw material, crude yield, yield) and calculated overall cost of the syntheses of one mg of crude peptide using a specified set of reaction conditions.


Subject(s)
Robotic Surgical Procedures , Solid-Phase Synthesis Techniques , Humans , Solid-Phase Synthesis Techniques/methods , Peptides , Solvents
11.
Angew Chem Int Ed Engl ; 62(4): e202215470, 2023 01 23.
Article in English | MEDLINE | ID: mdl-36336657

ABSTRACT

Electrochemical transformations provide enticing opportunities for programmable, residue-specific peptide modifications. Herein, we harness the potential of amidic side-chains as underutilized handles for late-stage modification through the development of an electroauxiliary-assisted oxidation of glutamine residues within unprotected peptides. Glutamine building blocks bearing electroactive side-chain N,S-acetals are incorporated into peptides using standard Fmoc-SPPS. Anodic oxidation of the electroauxiliary in the presence of diverse alcohol nucleophiles enables the installation of high-value N,O-acetal functionalities. Proof-of-principle for an electrochemical peptide stapling protocol, as well as the functionalization of dynorphin B, an endogenous opioid peptide, demonstrates the applicability of the method to intricate peptide systems. Finally, the site-selective and tunable electrochemical modification of a peptide bearing two discretely oxidizable sites is achieved.


Subject(s)
Glutamine , Peptides , Peptides/chemistry , Solid-Phase Synthesis Techniques/methods
12.
Org Lett ; 24(43): 7894-7899, 2022 11 04.
Article in English | MEDLINE | ID: mdl-36282923

ABSTRACT

A strategy for the synthesis of de novo discovered lactazole-like thiopeptides is reported. The approach revolves around a convergent and scalable preparation of the central triheterocyclic amino acid and its utilization in Fmoc solid-phase peptide synthesis for modular peptide chain assembly. A technique for preparing C-terminally functionalized thiopeptides for biological studies is also described. The syntheses of 11 TNIK-inhibitor thiopeptides and 6 of their derivatives in multimilligram quantities highlight the practical utility of the developed protocols.


Subject(s)
Peptides , Solid-Phase Synthesis Techniques , Solid-Phase Synthesis Techniques/methods , Peptides/chemistry , Amino Acids
13.
Molecules ; 27(17)2022 Aug 31.
Article in English | MEDLINE | ID: mdl-36080386

ABSTRACT

The hybrid peptides consisting of α and ß-amino acids show great promise as peptidomimetics that can be used as therapeutic agents. Therefore, the development of new unnatural amino acids and the methods of their incorporation into the peptide chain is an important task. Here, we described our investigation of the possibility of 5-amino-3-methyl-isoxazole-4-carboxylic acid (AMIA) application in the solid phase peptide synthesis. This new unnatural ß-amino acid, presenting various biological activities, was successfully coupled to a resin-bound peptide using different reaction conditions, including classical and ultrasonic agitated solid-phase synthesis. All the synthesized compounds were characterized by tandem mass spectrometry. The obtained results present the possibility of the application of this ß-amino acid in the synthesis of a new class of bioactive peptides.


Subject(s)
Amino Acids , Solid-Phase Synthesis Techniques , Amino Acids/chemistry , Carboxylic Acids , Isoxazoles , Peptides/chemistry , Solid-Phase Synthesis Techniques/methods
14.
J Pept Sci ; 28(12): e3441, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35785412

ABSTRACT

As peptides gained interest as new drugs in the past years, their synthetic routes had been the subject of review and improvement. Fmoc/tBu-based solid-phase peptide synthesis (SPPS) is the most convenient technique, and the implementation in continuous flow has allowed for single-pass coupling and deprotection reactions. The focus of this research is to evaluate the relationship between undesired solvent-promoted reactions and final crude purity, by studying volume changes of a variable bed flow reactor through the synthesis. Based on the temperature, typical solvents for SPPS such as dimethylformamide (DMF) or N-methyl-2-pyrrolidone (NMP) can cause unwanted Fmoc removal during wash steps. It was found that for every millilitre of DMF used at 80°C, up to 1 µmol of Fmoc-protected peptide is deprotected, leading to additional impurities. This effect can, however, be minimised by adding additives such as HOBt, which reduces such unwanted deprotection to just 0.1 µmol/ml.


Subject(s)
Peptides , Solid-Phase Synthesis Techniques , Solid-Phase Synthesis Techniques/methods , Dimethylformamide , Solvents , Fluorenes
15.
J Org Chem ; 87(15): 9443-9453, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35816389

ABSTRACT

Peptides of importance to both academia and industry are mostly synthesized in the solid-phase mode using a two-dimensional scheme. The so-called Fmoc/tBu strategy, where the groups are removed by piperidine and TFA, respectively, is currently the method of choice for peptide synthesis. However, as the molecular diversity of cyclic and branched peptides becomes a challenging interest, a high level of orthogonal dimensionality is required, such as through triorthogonal protection schemes. Here we present a fourth category of orthogonal protecting groups that are stable under cleavage conditions, including the TFA treatment that removes the tBu-based groups. At the end of the synthetic process and upon some chemical manipulation, the groups in this fourth category were removed with TFA. This new concept of protecting groups could facilitate the synthesis and manipulation of difficult peptides.


Subject(s)
Peptides , Solid-Phase Synthesis Techniques , Peptides/chemistry , Solid-Phase Synthesis Techniques/methods
16.
J Org Chem ; 87(15): 9433-9442, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35801570

ABSTRACT

Fmoc and Boc group are the two main groups used to protect the α-amino function in Solid-Phase Peptide Synthesis (SPPS). In this regard, the use of the Mmsb linker allows the combination of these two groups. Peptide-O-Mmsb-Resin is stable to the piperidine and trifluoroacetic acid (TFA) treatment used to remove Fmoc and Boc, respectively. The peptide is detached in a two-step protocol, namely reduction of the sulfoxide to the sulfide with Me3SiCl and Ph3P, and then treatment with TFA. The advantage of this strategy has been demonstrated by the following: preparation of peptide with no diketopiperazine formation in sequences prone to this side reaction; on-resin cyclization without the concourse of common organic reagents such as Pd(0) but of difficult use in a biological laboratory; and on-resin disulfide formation in a total side-chain unprotected peptide. The use of Mmsb linker together with Msib (4-(methylsulfinyl)benzyl) and Msbh (4,4'-bis(methylsulfinyl)benzhydryl) described in the accompanying manuscript add a fourth dimension to the SPPS protecting group scheme.


Subject(s)
Peptides , Solid-Phase Synthesis Techniques , Amino Acid Sequence , Benzyl Alcohols , Solid-Phase Synthesis Techniques/methods , Trifluoroacetic Acid
17.
Org Biomol Chem ; 20(29): 5699-5703, 2022 07 27.
Article in English | MEDLINE | ID: mdl-35838013

ABSTRACT

Thiol groups are suitable handles for site-selectively modifying, immobilizing or cyclizing individual peptides or entire peptide libraries. A limiting step in producing the thiol-functionalized peptides is the chromatographic purification, which is particularly laborious and costly if many peptides or even large libraries are to be produced. Herein, we present a strategy in which thiol-functionalized peptides are obtained in >90% purity and free of reducing agent, without a single chromatographic purification step. In brief, peptides are synthesized on a solid support linked via a disulfide bridge, the side-chain protecting groups are eliminated and washed away while the peptides remain on resin, and rather pure peptides are released from the solid support by reductive cleavage of the disulfide linker. Application of a volatile reducing agent, 1,4-butanedithiol (BDT), enabled removal of the agent by evaporation. We demonstrate that the approach is suited for the parallel synthesis of many peptides and that peptides containing a second thiol group can directly be cyclized by bis-electrophilic alkylating reagents for producing libraries of cyclic peptides.


Subject(s)
Disulfides , Solid-Phase Synthesis Techniques , Peptides/chemistry , Peptides, Cyclic , Reducing Agents , Solid-Phase Synthesis Techniques/methods , Sulfhydryl Compounds/chemistry
18.
Methods Mol Biol ; 2530: 69-80, 2022.
Article in English | MEDLINE | ID: mdl-35761043

ABSTRACT

A novel synthetic approach to thioamide-substituted peptides is reported. It provides a practical tool for the chemical biology study of peptides and proteins by replacing a carbonyl oxygen atom of an amide bond by an sp2-hybridized sulfur atom to precisely introduce a thioamide bond Ψ[CS-NH] into a peptide backbone. The α-thioacyloxyenamide intermediates, originating from ynamide coupling reagent and proteinogenic amino monothioacids, are proved to be novel effective thioacylating reagents in both the solution and solid phase peptide syntheses. Herein, we describe the detailed synthesis protocol for site-specifically incorporating a thioamide bond at 19 of 20 proteinogenic amino acid residues (except for His) of a peptide backbone in a racemization/epimerization-free manner.


Subject(s)
Peptides , Thioamides , Amides/chemistry , Indicators and Reagents , Peptides/chemistry , Solid-Phase Synthesis Techniques/methods , Thioamides/chemistry
19.
Methods Mol Biol ; 2530: 125-140, 2022.
Article in English | MEDLINE | ID: mdl-35761046

ABSTRACT

Peptides bearing C-terminal thioester and selenoester functionalities are essential precursors for the chemical synthesis of larger proteins using ligation chemistry, including native chemical ligation (NCL) and diselenide-selenoester ligation (DSL). The use of a side-chain anchoring thioesterification or selenoesterification approach offers a robust method to access peptide thioesters or peptide selenoesters in excellent yields and in high purity. Importantly, this methodology overcomes solubility issues and epimerization of the C-terminal amino acid residue that can occur using solution-phase approaches. Detailed methods for the solid-phase synthesis of peptide thioesters and selenoesters using a side-chain anchoring approach are outlined in this article.


Subject(s)
Peptides , Solid-Phase Synthesis Techniques , Peptides/chemistry , Proteins , Solid-Phase Synthesis Techniques/methods , Sulfur Compounds/chemistry
20.
Methods Mol Biol ; 2530: 241-256, 2022.
Article in English | MEDLINE | ID: mdl-35761053

ABSTRACT

Chemical synthesis can provide hydrophobic proteins with natural or man-made modifications (e.g. S-palmitoylation, site-specific isotope labeling and mirror-image proteins) that are difficult to obtain through the recombinant expression technology. The difficulty of chemical synthesis of hydrophobic proteins stems from the hydrophobic nature. Removable backbone modificaiton (RBM) strategy has been developed for solubilizing the hydrophobic peptides/proteins. Here we take the chemical synthesis of a S-palmitoylated peptide as an example to describe the detailed procedure of RBM strategy. Three critical steps of this protocol are: (1) installation of Lys6-tagged RBM groups into the peptides by Fmoc (9-fluorenylmethyloxycarbonyl) solid-phase peptide synthesis, (2) chemical ligation of the peptides, and (3) removal of the RBM tags by TFA (trifluoroacetic acid) cocktails to give the target peptide.


Subject(s)
Peptides , Solid-Phase Synthesis Techniques , Humans , Hydrophobic and Hydrophilic Interactions , Peptides/chemistry , Proteins , Solid-Phase Synthesis Techniques/methods , Trifluoroacetic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...