Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 214
Filter
1.
J Biochem Mol Toxicol ; 35(12): e22918, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34541741

ABSTRACT

The neuronal system that controls respiration creates plasticity in response to physiological changes. Chronic sustained hypoxia causes neuroplasticity that contributes to ventilatory acclimatization to hypoxia (VAH). The purpose of this study is to explain the potential roles of the VAH mechanism developing because of chronic sustained hypoxia on respiratory neuroplasticity of vascular endothelial growth factor (VEGF) receptor activation on the nucleus tractus solitarius (NTS) and phrenic nerve. In this study 24 adult male Sprague-Dawley rats were used. Subjects were separated into four groups, a moderate-sham (mSHAM), severed-sham (sSHAM), moderate chronic sustained hypoxia (mCSH), and severed chronic sustained hypoxia (sCSH). Normoxic group (mSHAM and sSHAM) rats were exposed to 21% O2 level (7 days) in the normobaric room while hypoxia group (mCSH and sCSH) rats were exposed to 13% and 10% O2 level (7 days). Different protocols were applied for normoxic and hypoxia groups and ventilation, respiratory frequency, and tidal volume measurements were made with whole-body plethysmography. After the test HIF-1α, erythropoietin (EPO), and VEGFR-2 expressions on the NTS region in the medulla oblongata and phrenic nerve motor neurons in spinal cord tissue were analyzed using the immunohistochemical stain method. Examinations on the medulla oblongata and spinal cord tissues revealed that HIF-1α, EPO, and VEGFR-2 expressions increased in hypoxia groups compared to normoxic groups while a similar increase was also seen when respiratory parameters were assessed. Consequently, learning about VAH-related neuroplasticity mechanisms developed as a result of chronic continuous hypoxia will contribute to developing new therapeutical approaches to various diseases causing respiratory failure using brain plasticity without recourse to medicines.


Subject(s)
Hypoxia/physiopathology , Neuronal Plasticity/physiology , Phrenic Nerve/physiopathology , Receptors, Vascular Endothelial Growth Factor/physiology , Solitary Nucleus/physiopathology , Animals , Chronic Disease , Male , Rats , Rats, Sprague-Dawley , Respiration
2.
Anesth Analg ; 133(5): 1311-1320, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34347648

ABSTRACT

BACKGROUND: Visceral and parietal peritoneum layers have different sensory innervations. Most visceral peritoneum sensory information is conveyed via the vagus nerve to the nucleus of the solitary tract (NTS). We already showed in animal models that intramuscular (i.m.) injection of local anesthetics decreases acute somatic and visceral pain and general inflammation induced by aseptic peritonitis. The goal of the study was to compare the effects of parietal block, i.m. bupivacaine, and vagotomy on spinal cord and NTS stimulation induced by a chemical peritonitis. METHODS: We induced peritonitis in rats using carrageenan and measured cellular activation in spinal cord and NTS under the following conditions, that is, a parietal nerve block with bupivacaine, a chemical right vagotomy, and i.m. microspheres loaded with bupivacaine. Proto-oncogene c-Fos (c-Fos), cluster of differentiation protein 11b (CD11b), and tumor necrosis factor alpha (TNF-α) expression in cord and NTS were studied. RESULTS: c-Fos activation in the cord was inhibited by nerve block 2 hours after peritoneal insult. Vagotomy and i.m. bupivacaine similarly inhibited c-Fos activation in NTS. Forty-eight hours after peritoneal insult, the number of cells expressing CD11b significantly increased in the cord (P = .010). The median difference in the effect of peritonitis compared to control was 30 cells (CI95, 13.5-55). TNF-α colocalized with CD11b. Vagotomy inhibited this microglial activation in the NTS, but not in the cord. This activation was inhibited by i.m. bupivacaine both in cord and in NTS. The median difference in the effect of i.m. bupivacaine added to peritonitis was 29 cells (80% increase) in the cord and 18 cells (75% increase) in the NTS. Our study underlines the role of the vagus nerve in the transmission of an acute visceral pain message and confirmed that systemic bupivacaine prevents noxious stimuli by inhibiting c-Fos and microglia activation. CONCLUSIONS: In rats receiving intraperitoneal carrageenan, i.m. bupivacaine similarly inhibited c-Fos and microglial activation both in cord and in the NTS. Vagal block inhibited activation only in the NTS. Our study underlines the role of the vagus nerve in the transmission of an acute visceral pain message and confirmed that systemic bupivacaine prevents noxious stimuli. This emphasizes the effects of systemic local anesthetics on inflammation and visceral pain.


Subject(s)
Acute Pain/prevention & control , Anesthetics, Local/administration & dosage , Bupivacaine/administration & dosage , Pain Management , Solitary Nucleus/drug effects , Spinal Cord/drug effects , Vagotomy , Vagus Nerve/surgery , Visceral Pain/prevention & control , Acute Pain/chemically induced , Acute Pain/metabolism , Acute Pain/physiopathology , Animals , CD11b Antigen/metabolism , Carrageenan , Disease Models, Animal , Injections, Intramuscular , Male , Microglia/drug effects , Microglia/metabolism , Peritonitis/chemically induced , Proto-Oncogene Proteins c-fos/metabolism , Rats, Sprague-Dawley , Solitary Nucleus/metabolism , Solitary Nucleus/physiopathology , Spinal Cord/metabolism , Spinal Cord/pathology , Tumor Necrosis Factor-alpha/metabolism , Vagus Nerve/physiopathology , Visceral Pain/chemically induced , Visceral Pain/metabolism , Visceral Pain/physiopathology
3.
Brain Res ; 1769: 147582, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34314729

ABSTRACT

Inflammation has been associated with cardiovascular diseases and the key point is the generation of reactive oxygen species (ROS). Exercise modulates medullary neurons involved in cardiovascular control. We investigated the effect of chronic exercise training (Tr) in treadmill running on gene expression (GE) of ROS and inflammation in commNTS and RVLM neurons. Male Wistar rats (N = 7/group) were submitted to training in a treadmill running (1 h/day, 5 days/wk/10 wks) or maintained sedentary (Sed). Superoxide dismutase (SOD), catalase (CAT), neuroglobin (Ngb), Cytoglobin (Ctb), NADPH oxidase (Nox), cicloxigenase-2 (Cox-2), and neuronal nitric oxide synthase (NOS1) gene expression were evaluated in commNTS and RVLM neurons by qPCR. In RVLM, Tr rats increased Ngb (1.285 ± 0.03 vs. 0.995 ± 0.06), Cygb (1.18 ± 0.02 vs.0.99 ± 0.06), SOD (1.426 ± 0.108 vs. 1.00 ± 0.08), CAT (1.34 ± 0.09 vs. 1.00 ± 0.08); and decreased Nox (0.55 ± 0.146 vs. 1.001 ± 0.08), Cox-2 (0.335 ± 0.05 vs. 1.245 ± 0.02), NOS1 (0.51 ± 0.08 vs. 1.08 ± 0.209) GE compared to Sed. In commNTS, Tr rats increased SOD (1.384 ± 0.13 vs. 0.897 ± 0.101), CAT GE (1.312 ± 0.126 vs. 0.891 ± 0.106) and decreased Cox-2 (0.052 ± 0.011 vs. 1.06 ± 0.207) and NOS1 (0.1550 ± 0.03559 vs. 1.122 ± 0.26) GE compared to Sed. Therefore, GE of proteins of the inflammatory process reduced while GE of antioxidant proteins increased in the commNTS and RVLM after training, suggesting a decrease in oxidative stress of downstream pathways mediated by nitric oxide.


Subject(s)
Encephalitis/physiopathology , Medulla Oblongata/physiopathology , Oxidative Stress , Physical Conditioning, Animal/physiology , Solitary Nucleus/physiopathology , Animals , Antioxidants/metabolism , Encephalitis/genetics , Gene Expression , Male , Medulla Oblongata/metabolism , Oxidative Stress/genetics , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism , Sedentary Behavior , Solitary Nucleus/metabolism
4.
Am J Physiol Regul Integr Comp Physiol ; 320(4): R418-R424, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33439770

ABSTRACT

The nucleus tractus solitarii (nTS) is the first central site for the termination and integration of autonomic and respiratory sensory information. Sensory afferents terminating in the nTS as well as the embedded nTS neurocircuitry release and utilize glutamate that is critical for maintenance of baseline cardiorespiratory parameters and initiating cardiorespiratory reflexes, including those activated by bouts of hypoxia. nTS astrocytes contribute to synaptic and neuronal activity through a variety of mechanisms, including gliotransmission and regulation of glutamate in the extracellular space via membrane-bound transporters. Here, we aim to highlight recent evidence for the role of astrocytes within the nTS and their regulation of autonomic and cardiorespiratory processes under normal and hypoxic conditions.


Subject(s)
Astrocytes/metabolism , Autonomic Nervous System/physiopathology , Cardiovascular System/innervation , Glutamic Acid/metabolism , Hypoxia/metabolism , Respiratory System/innervation , Sensory Receptor Cells/metabolism , Solitary Nucleus/metabolism , Animals , Astrocytes/pathology , Hemodynamics , Humans , Hypoxia/pathology , Hypoxia/physiopathology , Neuronal Plasticity , Respiration , Sensory Receptor Cells/pathology , Solitary Nucleus/pathology , Solitary Nucleus/physiopathology , Synaptic Transmission
5.
ACS Chem Neurosci ; 11(14): 2048-2050, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32614178

ABSTRACT

In COVID-19, lung manifestations present as a slowly evolving pneumonia with insidious early onset interstitial pulmonary edema that undergoes acute exacerbation in the late stages and microvascular thrombosis. Currently, these manifestations are considered to be only consequences of pulmonary SARS-CoV-2 virus infection. We are proposing a new hypothesis that neurogenic insult may also play a major role in the pathogenesis of these manifestations. SARS-CoV-2 mediated inflammation of the nucleus tractus solitarius (NTS) may play a role in the acute exacerbation of pulmonary edema and microvascular clotting in COVID-19 patients.


Subject(s)
Coronavirus Infections/physiopathology , Hypotension/physiopathology , Lung/blood supply , Microvessels/physiopathology , Pneumonia, Viral/physiopathology , Pulmonary Edema/physiopathology , Solitary Nucleus/physiopathology , Thrombosis/physiopathology , Betacoronavirus , COVID-19 , Capillary Permeability/physiology , Coronavirus Infections/immunology , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/physiopathology , Facial Nerve , Glossopharyngeal Nerve , Humans , Inflammation , Lung/immunology , Microvessels/immunology , Pandemics , Parasympathetic Nervous System/physiopathology , Pneumonia, Viral/immunology , Pulmonary Edema/immunology , SARS-CoV-2 , Solitary Nucleus/immunology , Vagus Nerve , Vasoconstriction
6.
ACS Chem Neurosci ; 11(13): 1865-1867, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32530597

ABSTRACT

Many COVID-19 patients are presenting with atypical clinical features. Happy hypoxemia with almost normal breathing, anosmia in the absence of rhinitis or nasal obstruction, and ageusia are some of the reported atypical clinical findings. Based on the clinical manifestations of the disease, we are proposing a new hypothesis that SARS-CoV-2 mediated inflammation of the nucleus tractus solitarius may be the reason for happy hypoxemia in COVID-19 patients.


Subject(s)
Betacoronavirus , Coronavirus Infections/physiopathology , Hypoxia/physiopathology , Pneumonia, Viral/physiopathology , Solitary Nucleus/physiopathology , Solitary Nucleus/virology , COVID-19 , Coronavirus Infections/complications , Cranial Nerves/physiopathology , Cranial Nerves/virology , Humans , Hypoxia/etiology , Inflammation/etiology , Inflammation/physiopathology , Inflammation/virology , Pandemics , Pneumonia, Viral/complications , SARS-CoV-2
7.
ACS Chem Neurosci ; 11(11): 1520-1522, 2020 06 03.
Article in English | MEDLINE | ID: mdl-32427468

ABSTRACT

Accumulating data have now shown strong evidence that COVID-19 infection leads to the occurrence of neurological signs with different injury severity. Anosmia and agueusia are now well documented and included in the criteria list for diagnosis, and specialists have stressed that doctors screen COVID-19 patients for these two signs. The eventual brainstem dysregulation, due to the invasion of SARS CoV-2, as a cause of respiratory problems linked to COVID-19, has also been extensively discussed. All these findings lead to an implication of the central nervous system in the pathophysiology of COVID-19. Here we provide additional elements that could explain other described signs like appetite loss, vomiting, and nausea. For this, we investigated the role of brainstem structures located in the medulla oblongata involved in food intake and vomiting control. We also discussed the possible pathways the virus uses to reach the brainstem, i.e., neurotropic and hematogenous (with its two variants) routes.


Subject(s)
Anorexia/physiopathology , Appetite Regulation/physiology , Autonomic Nervous System/physiopathology , Coronavirus Infections/physiopathology , Eating/physiology , Nausea/physiopathology , Pneumonia, Viral/physiopathology , Solitary Nucleus/physiopathology , Vomiting/physiopathology , Ageusia/etiology , Anorexia/etiology , Area Postrema/physiopathology , Blood-Brain Barrier , COVID-19 , Coronavirus Infections/complications , Humans , Hypothalamus/physiopathology , Medulla Oblongata/physiopathology , Nausea/etiology , Neural Pathways/physiopathology , Olfaction Disorders/etiology , Olfactory Nerve , Pandemics , Pneumonia, Viral/complications , Vagus Nerve , Vomiting/etiology
9.
J Neurophysiol ; 123(6): 2122-2135, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32347148

ABSTRACT

Peripheral viscerosensory afferent signals are transmitted to the nucleus tractus solitarii (nTS) via release of glutamate. Following release, glutamate is removed from the extrasynaptic and synaptic cleft via excitatory amino acid transporters (EAATs), thus limiting glutamate receptor activation or over activation, and maintaining its working range. We have shown that EAAT block with the antagonist threo-ß-benzyloxyaspartic acid (TBOA) depolarized nTS neurons and increased spontaneous excitatory postsynaptic current (sEPSC) frequency yet reduced the amplitude of afferent (TS)-evoked EPSCs (TS-EPSCs). Interestingly, chronic intermittent hypoxia (CIH), a model of obstructive sleep apnea (OSA), produces similar synaptic responses as EAAT block. We hypothesized EAAT expression or function are downregulated after CIH, and this reduction in glutamate removal contributes to the observed neurophysiological responses. To test this hypothesis, we used brain slice electrophysiology and imaging of glutamate release and TS-afferent Ca2+ to compare nTS properties of rats exposed to 10 days of normoxia (Norm; 21%O2) or CIH. Results show that EAAT blockade with (3S)-3-[[3-[[4-(trifluoromethyl)benzoyl]-amino]phenyl]methoxy]-l-aspartic acid (TFB-TBOA) in Norm caused neuronal depolarization, generation of an inward current, and increased spontaneous synaptic activity. The latter augmentation was eliminated by inclusion of tetrodotoxin in the perfusate. TS stimulation during TFB-TBOA also elevated extracellular glutamate and decreased presynaptic Ca2+ and TS-EPSC amplitude. In CIH, the effects of EAAT block are eliminated or attenuated. CIH reduced EAAT expression in nTS, which may contribute to the attenuated function seen in this condition. Therefore, CIH reduces EAAT influence on synaptic and neuronal activity, which may lead to the physiological consequences seen in OSA and CIH.NEW & NOTEWORTHY Removal of excitatory amino acid transporter (EAAT) restraint increases spontaneous synaptic activity yet decreases afferent [tractus solitarius (TS)]-driven excitatory postsynaptic current (EPSC) amplitude. In the chronic intermittent hypoxia model of obstructive sleep apnea, this restraint is lost due to reduction in EAAT expression and function. Thus EAATs are important in controlling elevated glutamatergic signaling, and loss of such control results in maladaptive synaptic signaling.


Subject(s)
Astrocytes/physiology , Chemoreceptor Cells/physiology , Excitatory Postsynaptic Potentials/physiology , Glutamate Plasma Membrane Transport Proteins/metabolism , Glutamic Acid/metabolism , Hypoxia , Signal Transduction/physiology , Sleep Apnea, Obstructive , Solitary Nucleus , Animals , Disease Models, Animal , Glutamate Plasma Membrane Transport Proteins/antagonists & inhibitors , Hypoxia/metabolism , Hypoxia/physiopathology , Male , Rats , Rats, Sprague-Dawley , Sleep Apnea, Obstructive/metabolism , Sleep Apnea, Obstructive/physiopathology , Solitary Nucleus/metabolism , Solitary Nucleus/physiopathology
10.
Exp Neurol ; 326: 113166, 2020 04.
Article in English | MEDLINE | ID: mdl-31887303

ABSTRACT

We tested the hypothesis that exposure to intermittent hypoxia (IH) during pregnancy would prolong the laryngeal chemoreflex (LCR) and diminish the capacity of serotonin (5-hydroxytryptamine; 5-HT) to terminate the LCR. Prenatal exposure to IH was associated with significant prolongation of the LCR in younger, anesthetized, postnatal day (P) rat pups age P8 to P16 compared to control, room air (RA)-exposed rat pups of the same age. Serotonin microinjected into the NTS shortened the LCR in rat pups exposed to RA during gestation, but 5-HT failed to shorten the LCR in rat pups exposed to prenatal IH. Given these observations, we tested the hypothesis that prenatal hypoxia would decrease binding to 5-HT3 receptors in the nucleus of the solitary tract (NTS) where 5-HT acts to shorten the LCR. Serotonin 3 receptor binding was reduced in younger rat pups exposed to IH compared to control, RA-exposed rat pups in the age range P8 to P12. Serotonin 3 receptor binding was similar in older animals (P18-P24) regardless of gas exposure during gestation. The failure of the 5-HT injected into the NTS to shorten the LCR was correlated with a developmental decrease in 5-HT3 receptor binding in the NTS associated with exposure to prenatal IH. In summary, prenatal IH sensitized reflex apnea and blunted processes that terminate reflex apneas in neonatal rat pups, processes that are essential to prevent death following apneas such as those seen in babies who died of SIDS.


Subject(s)
Fetal Hypoxia/physiopathology , Larynx/physiopathology , Receptors, Serotonin, 5-HT3/metabolism , Serotonin/pharmacology , Solitary Nucleus/metabolism , Solitary Nucleus/physiopathology , Anesthesia , Animals , Animals, Newborn , Apnea/physiopathology , Behavior, Animal , Chemoreceptor Cells , Disease Models, Animal , Female , Fetal Hypoxia/psychology , Humans , Infant, Newborn , Pregnancy , Prenatal Exposure Delayed Effects/physiopathology , Prenatal Exposure Delayed Effects/psychology , Rats , Rats, Sprague-Dawley , Sudden Infant Death
11.
Pflugers Arch ; 472(1): 49-60, 2020 01.
Article in English | MEDLINE | ID: mdl-31884528

ABSTRACT

The nucleus of the solitary tract (NTS) is an important area of the brainstem that receives and integrates afferent cardiorespiratory sensorial information, including those from arterial chemoreceptors and baroreceptors. It was described that acetylcholine (ACh) in the commissural subnucleus of the NTS (cNTS) promotes an increase in the phrenic nerve activity (PNA) and antagonism of nicotinic receptors in the same region reduces the magnitude of tachypneic response to peripheral chemoreceptor stimulation, suggesting a functional role of cholinergic transmission within the cNTS in the chemosensory control of respiratory activity. In the present study, we investigated whether cholinergic receptor antagonism in the cNTS modifies the sympathetic and respiratory reflex responses to hypercapnia. Using an arterially perfused in situ preparation of juvenile male Holtzman rats, we found that the nicotinic antagonist (mecamylamine, 5 mM), but not the muscarinic antagonist (atropine, 5 mM), into the cNTS attenuated the hypercapnia-induced increase of hypoglossal activity. Furthermore, mecamylamine in the cNTS potentiated the generation of late-expiratory (late-E) activity in abdominal nerve induced by hypercapnia. None of the cholinergic antagonists microinjected in the cNTS changed either the sympathetic or the phrenic nerve responses to hypercapnia. Our data provide evidence for the role of cholinergic transmission in the cNTS, acting on nicotinic receptors, modulating the hypoglossal and abdominal responses to hypercapnia.


Subject(s)
Cholinergic Neurons/physiology , Hypercapnia/metabolism , Respiration , Synaptic Transmission , Telencephalic Commissures/physiology , Animals , Atropine/pharmacology , Cholinergic Neurons/drug effects , Hypercapnia/physiopathology , Hypoglossal Nerve/physiology , Male , Mecamylamine/pharmacology , Muscarinic Agonists/pharmacology , Nicotinic Antagonists/pharmacology , Phrenic Nerve/physiology , Rats , Receptors, Cholinergic/metabolism , Reflex , Solitary Nucleus/physiology , Solitary Nucleus/physiopathology , Telencephalic Commissures/physiopathology
12.
Shock ; 54(2): 265-271, 2020 08.
Article in English | MEDLINE | ID: mdl-31626038

ABSTRACT

OBJECTIVE: Sepsis is a leading cause of mortality and morbidity in infants. Although the measures of autonomic dysfunction (e.g., reduced heart rate variability) predict mortality in sepsis, the mechanism of sepsis-induced autonomic dysfunction has remained elusive. The nucleus of the solitary tract (NTS) is a vital structure for the integrated autonomic response to physiological challenges. In the present study we hypothesized that sepsis alters the excitability of NTS neurons in a rat model of neonatal sepsis (14-day-old rats). METHODS AND RESULTS: Sepsis was induced by intraperitoneal injection of cecal slurry (CS) in rat neonates. The presence of autonomic dysfunction was confirmed by observing a significant reduction in both short-term and long-term heart rate variably following CS injection. We investigated the effect of polymicrobial sepsis on the electrophysiological properties of the medial NTS neurons using a whole cell patch clamp recording. Our results showed that the resting membrane potential in regular spiking neurons was significantly less polarized in the septic group (-37.6 ±â€Š1.76 mv) when compared with the control group (-54.7 ±â€Š1.73 mv, P < 0.001). The number of spontaneous action potentials in the septic group was also significantly higher than the control group (P < 0.05). In addition, the frequency and amplitude of the spontaneous excitatory post synaptic potentials was significantly higher in neurons recorded in the septic group (P < 0.001). Interestingly, regular spiking cells in the CS group exhibited a rebound action potential following hyperpolarization. Injection of depolarizing currents was associated with lower first spike latency and changes in rise slope of action potential (P < 0.001). CONCLUSIONS: We showed that polymicrobial sepsis increases the excitability of regular spiking cells in the medial NTS. These alterations can potentially affect neural coding and thus may contribute to an abnormal homeostatic or allostatic physiological response to sepsis and systemic inflammation.


Subject(s)
Neonatal Sepsis/physiopathology , Solitary Nucleus/physiopathology , Action Potentials/physiology , Animals , Male , Membrane Potentials/physiology , Rats , Rats, Sprague-Dawley
13.
J Neuroinflammation ; 16(1): 224, 2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31729994

ABSTRACT

BACKGROUND: Decreased heart rate variability (HRV) leads to cardiovascular diseases and increased mortality in clinical studies. However, the underlying mechanisms are still inconclusive. Systemic inflammation-induced neuroinflammation is known to impair the autonomic center of cardiovascular regulation. The dynamic stability of blood pressure and heart rate (HR) is regulated by modulation of the reciprocal responses of sympathetic and parasympathetic tone by the baroreflex, which is controlled by the nucleus of the solitary tract (NTS). METHODS: Systemic inflammation was induced by E. coli lipopolysaccharide (LPS, 1.2 mg/kg/day, 7 days) peritoneal infusion via an osmotic minipump in normotensive Sprague-Dawley rats. Systolic blood pressure (SBP) and HR were measured by femoral artery cannulation and recorded on a polygraph under anesthesia. The low-frequency (LF; 0.25-0.8 Hz) and high-frequency (HF; 0.8-2.4 Hz) components of SBP were adopted as the indices for sympathetic vasomotor tone and parasympathetic vasomotor tone, while the baroreflex effectiveness index (BEI) was adopted from the analysis of SBP and pulse interval (PI). The plasma levels of proinflammatory cytokines and mitochondrial DNA (mtDNA) oxidative damage were analyzed by ELISA. Protein expression was evaluated by Western blot. The distribution of oxidative mtDNA was probed by immunofluorescence. Pharmacological agents were delivered via infusion into the cisterna magna with an osmotic minipump. RESULTS: The suppression of baroreflex sensitivity was concurrent with increased SBP and decreased HR. Neuroinflammatory factors, including TNF-α, CD11b, and Iba-1, were detected in the NTS of the LPS group. Moreover, indices of mtDNA damage, including 8-OHdG and γ-H2AX, were significantly increased in neuronal mitochondria. Pentoxifylline or minocycline intracisternal (IC) infusion effectively prevented mtDNA damage, suggesting that cytokine and microglial activation contributed to mtDNA damage. Synchronically, baroreflex sensitivity was effectively protected, and the elevated blood pressure was significantly relieved. In addition, the mtDNA repair mechanism was significantly enhanced by pentoxifylline or minocycline. CONCLUSION: These results suggest that neuronal mtDNA damage in the NTS induced by neuroinflammation could be the core factor in deteriorating baroreflex desensitization and subsequent cardiovascular dysfunction. Therefore, the enhancement of base excision repair (BER) signaling in mitochondria could be a potential therapeutic strategy for cardiovascular reflex dysregulation.


Subject(s)
Baroreflex/physiology , DNA, Mitochondrial , Inflammation/physiopathology , Solitary Nucleus/physiopathology , Animals , Baroreflex/drug effects , Blood Pressure/physiology , DNA, Mitochondrial/drug effects , Heart Rate/physiology , Inflammation/chemically induced , Lipopolysaccharides/toxicity , Male , Rats , Rats, Sprague-Dawley
14.
World J Gastroenterol ; 25(40): 6077-6093, 2019 Oct 28.
Article in English | MEDLINE | ID: mdl-31686764

ABSTRACT

BACKGROUND: Central sensitization plays a pivotal role in the maintenance of chronic pain induced by chronic pancreatitis (CP). We hypothesized that the nucleus tractus solitarius (NTS), a primary central site that integrates pancreatic afferents apart from the thoracic spinal dorsal horn, plays a key role in the pathogenesis of visceral hypersensitivity in a rat model of CP. AIM: To investigate the role of the NTS in the visceral hypersensitivity induced by chronic pancreatitis. METHODS: CP was induced by the intraductal injection of trinitrobenzene sulfonic acid (TNBS) in rats. Pancreatic hyperalgesia was assessed by referred somatic pain via von Frey filament assay. Neural activation of the NTS was indicated by immunohistochemical staining for Fos. Basic synaptic transmission within the NTS was assessed by electrophysiological recordings. Expression of vesicular glutamate transporters (VGluTs), N-methyl-D-aspartate receptor subtype 2B (NR2B), and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor subtype 1 (GluR1) was analyzed by immunoblotting. Membrane insertion of NR2B and GluR1 was evaluated by electron microscopy. The regulatory role of the NTS in visceral hypersensitivity was detected via pharmacological approach and chemogenetics in CP rats. RESULTS: TNBS treatment significantly increased the number of Fos-expressing neurons within the caudal NTS. The excitatory synaptic transmission was substantially potentiated within the caudal NTS in CP rats (frequency: 5.87 ± 1.12 Hz in CP rats vs 2.55 ± 0.44 Hz in sham rats, P < 0.01; amplitude: 19.60 ± 1.39 pA in CP rats vs 14.71 ± 1.07 pA in sham rats; P < 0.01). CP rats showed upregulated expression of VGluT2, and increased phosphorylation and postsynaptic trafficking of NR2B and GluR1 within the caudal NTS. Blocking excitatory synaptic transmission via the AMPAR antagonist CNQX and the NMDAR antagonist AP-5 microinjection reversed visceral hypersensitivity in CP rats (abdominal withdraw threshold: 7.00 ± 1.02 g in CNQX group, 8.00 ± 0.81 g in AP-5 group and 1.10 ± 0.27 g in saline group, P < 0.001). Inhibiting the excitability of NTS neurons via chemogenetics also significantly attenuated pancreatic hyperalgesia (abdominal withdraw threshold: 13.67 ± 2.55 g in Gi group, 2.00 ± 1.37 g in Gq group, and 2.36 ± 0.67 g in mCherry group, P < 0.01). CONCLUSION: Our findings suggest that enhanced excitatory transmission within the caudal NTS contributes to pancreatic pain and emphasize the NTS as a pivotal hub for the processing of pancreatic afferents, which provide novel insights into the central sensitization of painful CP.


Subject(s)
Chronic Pain/physiopathology , Enteric Nervous System/physiopathology , Hyperalgesia/physiopathology , Pancreatitis, Chronic/complications , Solitary Nucleus/physiopathology , Afferent Pathways/physiopathology , Animals , Chronic Pain/etiology , Disease Models, Animal , Humans , Hyperalgesia/etiology , Male , Neurons/physiology , Pancreas/innervation , Pancreatitis, Chronic/chemically induced , Patch-Clamp Techniques , Rats , Rats, Sprague-Dawley , Solitary Nucleus/cytology , Stereotaxic Techniques , Synaptic Transmission/physiology , Trinitrobenzenesulfonic Acid/toxicity
15.
Respir Physiol Neurobiol ; 269: 103250, 2019 11.
Article in English | MEDLINE | ID: mdl-31352011

ABSTRACT

Acute Lung Injury (ALI) alters pulmonary reflex responses, in part due to changes in modulation within the lung and airway neuronal control networks. We hypothesized that synaptic efficacy of nucleus tractus solitarii (nTS) neurons, receiving input from lung, airway, and other viscerosensory afferent fibers, would decrease following ALI. Sprague Dawley neonatal rats (postnatal days 9-11) were given intratracheal installations of saline or bleomycin (a well-characterized model that reproduces the pattern of ALI) and then, one week later, in vitro slices were prepared for whole-cell and perforated whole-cell patch-clamp experiments (postnatal days 16-21). In preparations from ALI rats, 2nd-order nTS neurons had significantly decreased amplitudes of both spontaneous and miniature excitatory postsynaptic currents (sEPSCs and mEPSCs), compared to saline controls. Rise and decay times of sEPSCs were slower in whole-cell recordings from ALI animals. Similarly, the amplitude of tractus solitarii evoked EPSCs (TS-eEPSCs) were significantly lower in 2nd-order nTS neurons from ALI rats. Overall these results suggest the presence of postsynaptic depression at TS-nTS synapses receiving lung, airway, and other viscerosensory afferent tractus solitarii input after bleomycin-induced ALI.


Subject(s)
Acute Lung Injury/physiopathology , Excitatory Postsynaptic Potentials/physiology , Neurons/physiology , Solitary Nucleus/physiopathology , Animals , Animals, Newborn , Rats , Rats, Sprague-Dawley , Synaptic Transmission/physiology
16.
J Neuroinflammation ; 16(1): 125, 2019 Jun 20.
Article in English | MEDLINE | ID: mdl-31221164

ABSTRACT

BACKGROUND: Lipopolysaccharide (LPS)-induced systemic inflammation (SI) is associated with neuroinflammation in the brain, hypotension, tachycardia, and multiple organs dysfunctions. Considering that during SI these important cardiovascular and inflammatory changes take place, we measured the sensitivity of the cardiovascular reflexes baroreflex, chemoreflex, and Bezold-Jarisch that are key regulators of hemodynamic function. We also evaluated neuroinflammation in the nucleus tractus solitarius (NTS), the first synaptic station that integrates peripheral signals arising from the cardiovascular and inflammatory status. METHODS: We combined cardiovascular recordings, immunofluorescence, and assays of inflammatory markers in male Wistar rats that receive iv administration of LPS (1.5 or 2.5 mg kg-1) to investigate putative interactions of the neuroinflammation in the NTS and in the anteroventral preoptic region of the hypothalamus (AVPO) with the short-term regulation of blood pressure and heart rate. RESULTS: LPS induced hypotension, tachycardia, autonomic disbalance, hypothermia followed by fever, and reduction in spontaneous baroreflex gain. On the other hand, during SI, the bradycardic component of Bezold-Jarisch and chemoreflex activation was increased. These changes were associated with a higher number of activated microglia and interleukin (IL)-1ß levels in the NTS. CONCLUSIONS: The present data are consistent with the notion that during SI and neuroinflammation in the NTS, rats have a reduced baroreflex gain, combined with an enhancement of the bradycardic component of Bezold-Jarisch and chemoreflex despite the important cardiovascular impairments (hypotension and tachycardia). These changes in the cardiac component of Bezold-Jarisch and chemoreflex may be beneficial during SI and indicate that the improvement of theses reflexes responsiveness though specific nerve stimulations may be useful in the management of sepsis.


Subject(s)
Hemodynamics/physiology , Inflammation/physiopathology , Solitary Nucleus/physiopathology , Animals , Hemodynamics/drug effects , Inflammation/chemically induced , Lipopolysaccharides/toxicity , Male , Rats , Rats, Wistar , Solitary Nucleus/drug effects
17.
J Neurophysiol ; 121(5): 1822-1830, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30892977

ABSTRACT

Sustained hypoxia (SH) activates chemoreceptors to produce cardiovascular and respiratory responses to bring the arterial partial pressure of O2 back to the physiological range. We evaluated the effect of SH (fraction of inspired O2 = 0.10, 24 h) on glutamatergic synaptic transmission and the interaction neuron-astrocyte in neurons of the nucleus tractus solitarii (NTS). Tractus solitarius (TS) fiber stimulation induced glutamatergic currents in neurons and astrocytes. SH increased α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/kainate (AMPA/kainate) [-183 ± 122 pA (n = 10) vs. -353 ± 101 pA (n = 10)] and N-methyl-d-aspartate (NMDA) current amplitude [61 ± 10 pA (n = 7) vs. 102 ± 37 pA (n = 10)]. To investigate the effects of SH, we used fluoroacetate (FAC), an astrocytic inhibitor, which revealed an excitatory modulation on AMPA/kainate current and an inhibitory modulation of NMDA current in control rats. SH blunted the astrocytic modulation of AMPA [artificial cerebrospinal fluid (aCSF): -353 ± 101 pA vs. aCSF + FAC: -369 ± 76 pA (n = 10)] and NMDA currents [aCSF: 102 ± 37 pA vs. aCSF + FAC: 108 ± 32 pA (n = 10)]. SH increased AMPA current density [control: -6 ± 3.5 pA/pF (n = 6) vs. SH: -20 ± 12 pA/pF (n = 7)], suggesting changes in density, conductance, or affinity of AMPA receptors. SH produced no effect on astrocytic resting membrane potential, input resistance, and AMPA/kainate current. We conclude that SH decreased the neuron-astrocyte interaction at the NTS level, facilitating the glutamatergic transmission, which may contribute to the enhancement of cardiovascular and respiratory responses to baro- and chemoreflexes activation in SH rats. NEW & NOTEWORTHY Using an electrophysiological approach, we have shown that in nucleus tractus solitarii (NTS) from control rats, astrocytes modulate the AMPA and NMDA currents in NTS neurons, changing their excitability. Sustained hypoxia (SH) increased both glutamatergic currents in NTS neurons due to 1) a reduction in the astrocytic modulation and 2) an increase in the density of AMPA receptors. These new findings show the importance of neuron-astrocyte modulation in the excitatory synaptic transmission in NTS of control and SH rats.


Subject(s)
Astrocytes/metabolism , Glutamic Acid/pharmacology , Hypoxia/physiopathology , Solitary Nucleus/physiopathology , Synaptic Transmission , Animals , Astrocytes/drug effects , Astrocytes/physiology , Excitatory Amino Acid Agonists/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Fluoroacetates/pharmacology , Hypoxia/metabolism , Kainic Acid/pharmacology , Male , Membrane Potentials , Neurons/drug effects , Neurons/physiology , Rats , Rats, Wistar , Solitary Nucleus/metabolism
18.
Neuroscience ; 402: 66-77, 2019 03 15.
Article in English | MEDLINE | ID: mdl-30684590

ABSTRACT

Neural insult during development results in recovery outcomes that vary dependent upon the system under investigation. Nerve regeneration does not occur if the rat gustatory chorda tympani nerve is sectioned (CTX) during neonatal (≤P10) development. It is unclear how chorda tympani soma and terminal fields are affected after neonatal CTX. The current study determined the impact of neonatal CTX on chorda tympani neurons and brainstem gustatory terminal fields. To assess terminal field volume in the nucleus of the solitary tract (NTS), rats received CTX at P5 or P10 followed by chorda tympani label, or glossopharyngeal (GL) and greater superficial petrosal (GSP) label as adults. In another group of animals, terminal field volumes and numbers of chorda tympani neurons in the geniculate ganglion (GG) were determined by labeling the chorda tympani with DiI at the time of CTX in neonatal (P5) and adult (P50) rats. There was a greater loss of chorda tympani neurons following P5 CTX compared to adult denervation. Chorda tympani terminal field volume was dramatically reduced 50 days after P5 or P10 CTX. Lack of nerve regeneration after neonatal CTX is not caused by ganglion cell death alone, as approximately 30% of chorda tympani neurons survived into adulthood. Although the total field volume of intact gustatory nerves was not altered, the GSP volume and GSP-GL overlap increased in the dorsal NTS after CTX at P5, but not P10, demonstrating age-dependent plasticity. Our findings indicate that the developing gustatory system is highly plastic and simultaneously vulnerable to injury.


Subject(s)
Chorda Tympani Nerve/injuries , Chorda Tympani Nerve/physiopathology , Facial Nerve Injuries/physiopathology , Geniculate Ganglion/physiopathology , Nerve Regeneration , Neuronal Plasticity , Solitary Nucleus/physiopathology , Animals , Animals, Newborn , Chorda Tympani Nerve/pathology , Facial Nerve Injuries/pathology , Female , Geniculate Ganglion/pathology , Glossopharyngeal Nerve , Presynaptic Terminals/pathology , Presynaptic Terminals/physiology , Rats, Sprague-Dawley , Solitary Nucleus/pathology
19.
J Neurophysiol ; 121(3): 881-892, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30601692

ABSTRACT

Chronic intermittent hypoxia (CIH) reduces afferent-evoked excitatory postsynaptic currents (EPSCs) but enhances basal spontaneous (s) and asynchronous (a) EPSCs in second-order neurons of nucleus tractus solitarii (nTS), a major area for cardiorespiratory control. The net result is an increase in synaptic transmission. The mechanisms by which this occurs are unknown. The N-type calcium channel and transient receptor potential cation channel TRPV1 play prominent roles in nTS sEPSCs and aEPSCs. The functional role of these channels in CIH-mediated afferent-evoked EPSC, sEPSC, and aEPSC was tested in rat nTS slices following antagonist inhibition and in mouse nTS slices that lack TRPV1. Block of N-type channels decreased aEPSCs in normoxic and, to a lesser extent, CIH-exposed rats. sEPSCs examined in the presence of TTX (miniature EPSCs) were also decreased by N-type block in normoxic but not CIH-exposed rats. Antagonist inhibition of TRPV1 reduced the normoxic and the CIH-mediated increase in sEPSCs, aEPSCs, and mEPSCs. As in rats, in TRPV1+/+ control mice, aEPSCs, sEPSCs, and mEPSCs were enhanced following CIH. However, none were enhanced in TRPV1-/- null mice. Normoxic tractus solitarii (TS)-evoked EPSC amplitude, and the decrease after CIH, were comparable in control and null mice. In rats, TRPV1 was localized in the nodose-petrosal ganglia (NPG) and their central branches. CIH did not alter TRPV1 mRNA but increased its protein in NPG consistent with an increased contribution of TRPV1. Together, our studies indicate TRPV1 contributes to the CIH increase in aEPSCs and mEPSCs, but the CIH reduction in TS-EPSC amplitude occurs via an alternative mechanism. NEW & NOTEWORTHY This study provides information on the underlying mechanisms responsible for the chronic intermittent hypoxia (CIH) increase in synaptic transmission that leads to exaggerated sympathetic nervous and respiratory activity at baseline and in response to low oxygen. We demonstrate that the CIH increase in asynchronous and spontaneous excitatory postsynaptic currents (EPSCs) and miniature EPSCs, but not decrease in afferent-driven EPSCs, is dependent on transient receptor potential vanilloid type 1 (TRPV1). Thus TRPV1 is important in controlling nucleus tractus solitarii synaptic activity during CIH.


Subject(s)
Glutamic Acid/metabolism , Hypoxia/metabolism , Solitary Nucleus/metabolism , TRPV Cation Channels/metabolism , Animals , Excitatory Postsynaptic Potentials , Hypoxia/physiopathology , Male , Mice , Mice, Inbred C57BL , Miniature Postsynaptic Potentials , Rats , Rats, Sprague-Dawley , Solitary Nucleus/physiopathology , TRPV Cation Channels/antagonists & inhibitors , TRPV Cation Channels/genetics
20.
Cardiovasc Pathol ; 38: 42-45, 2019.
Article in English | MEDLINE | ID: mdl-30466068

ABSTRACT

INTRODUCTION: In 2015, a multinational randomized controlled phase IV clinical trial of adaptive servoventilation for the management of heart failure with central sleep apnea was halted in progress because more patients in the study group were dying than in the control group. One year later, another large clinical trial reported results on the effectiveness of continuous positive airway pressure (CPAP) in preventing sudden death and other cardiovascular events such as heart attack and stroke in patients with preexisting vascular disease as well as obstructive sleep apnea. BACKGROUND: Sudden unexpected death has been associated with many types of small and nonmalignant medullary brain lesions, like demyelination plaques - largely asymptomatic until they caused sudden death. Many such medullary lesions, typically without hemorrhage or mass effect, have in themselves been previously considered relatively harmless - in cases where they have been known to be present. DISCUSSION: Why did not the improved pulmonary ventilation and subsequently improved gas exchange provided during the CPAP and servoventilation clinical trials help to resolve any ischemic lesions that may have been present both in the heart and in the medulla, thereby tending to normalize interactions between the vagal neural structures and the heart? CO2 is a potent dilator of brain vasculature, thereby increasing blood flow to the brain. When ventilation is increased, even if only to improve it back toward normal from a depressed steady-state level, the alveolar partial pressure of carbon dioxide is decreased, likely resulting in a converse relative vasoconstriction in the brain, thereby reducing blood flow in the brain, especially in watershed areas like the solitary tract nucleus. In normal physiology, this is demonstrated impressively by the ability of hyperventilation to induce loss of consciousness. CONCLUSIONS: The findings of several clinical trials recently reported, taken together with neuropathology case studies reported elsewhere, suggest that additional research is warranted in regard to the mechanisms by which focal medullary autonomic brain ischemia may be related to sudden death in general medical illnesses - and how it may additionally be influenced by changes in arterial CO2 levels.


Subject(s)
Autonomic Nervous System/metabolism , Brain Stem Infarctions/etiology , Carbon Dioxide/blood , Continuous Positive Airway Pressure/adverse effects , Death, Sudden, Cardiac/etiology , Medulla Oblongata/blood supply , Sleep Apnea, Obstructive/therapy , Solitary Nucleus/metabolism , Vasoconstriction , Autonomic Nervous System/physiopathology , Brain Stem Infarctions/blood , Brain Stem Infarctions/mortality , Brain Stem Infarctions/physiopathology , Humans , Risk Factors , Sleep Apnea, Obstructive/blood , Sleep Apnea, Obstructive/mortality , Sleep Apnea, Obstructive/physiopathology , Solitary Nucleus/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...