Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.293
Filter
1.
Front Cell Infect Microbiol ; 14: 1398461, 2024.
Article in English | MEDLINE | ID: mdl-38803573

ABSTRACT

Addressing the existing problem in the microbiological diagnosis of infections associated with implants and the current debate about the real power of precision of sonicated fluid culture (SFC), the objective of this review is to describe the methodology and analyze and compare the results obtained in current studies on the subject. Furthermore, the present study also discusses and suggests the best parameters for performing sonication. A search was carried out for recent studies in the literature (2019-2023) that addressed this research topic. As a result, different sonication protocols were adopted in the studies analyzed, as expected, and consequently, there was significant variability between the results obtained regarding the sensitivity and specificity of the technique in relation to the traditional culture method (periprosthetic tissue culture - PTC). Coagulase-negative Staphylococcus (CoNS) and Staphylococcus aureus were identified as the main etiological agents by SFC and PTC, with SFC being important for the identification of pathogens of low virulence that are difficult to detect. Compared to chemical biofilm displacement methods, EDTA and DTT, SFC also produced variable results. In this context, this review provided an overview of the most current scenarios on the topic and theoretical support to improve sonication performance, especially with regard to sensitivity and specificity, by scoring the best parameters from various aspects, including sample collection, storage conditions, cultivation methods, microorganism identification techniques (both phenotypic and molecular) and the cutoff point for colony forming unit (CFU) counts. This study demonstrated the need for standardization of the technique and provided a theoretical basis for a sonication protocol that aims to achieve the highest levels of sensitivity and specificity for the reliable microbiological diagnosis of infections associated with implants and prosthetic devices, such as prosthetic joint infections (PJIs). However, practical application and additional complementary studies are still needed.


Subject(s)
Prosthesis-Related Infections , Sonication , Prosthesis-Related Infections/diagnosis , Prosthesis-Related Infections/microbiology , Humans , Sensitivity and Specificity , Biofilms/growth & development , Microbiological Techniques/methods , Staphylococcal Infections/diagnosis , Staphylococcal Infections/microbiology , Bacteriological Techniques/methods , Prostheses and Implants/microbiology
2.
Ultrason Sonochem ; 106: 106894, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729035

ABSTRACT

Piper betel contains phytochemicals with diverse pharmacological effects. The objective of this study was to enhance the extraction efficiency of phytochemicals and the chlorophyll content using ultrasonication. The Box-Behnken design was employed to optimize the time (10, 20, 30 min), temperature (20, 30, and 40 °C), and solid-solvent ratio (1:10, 1:20, 1:30) by utilizing response surface methods with three independent variables. Multiple parameters, including extract yield, total phenol, total flavonoid, antioxidant activity, and chlorophyll content were used to optimize the conditions. The linear relationship between power intensity and responses was determined to be statistically significant, with a p-value less than 0.01. The interaction effect of temperature, time, and ratio of solid solvent was shown to be statistically significant (p < 0.05) for all the obtained results. The optimal parameters for achieving the highest extract yield were as follows: a temperature of 40 °C, a sonication time of 30 min, and a solid solvent ratio of 1:10. These conditions result in an extract yield of 21.99 %, a total flavonoid content of 44.97 mg/GAE, a total phenolic content of 185.05 mg/GAE, a DPPH scavenging activity of 99.1 %, and a chlorophyll content of 49.95 mg/ml. This study highlights the significance of customized extraction methodologies for optimizing the bioactive capacity of phytochemicals derived from betel leaves. The elucidation of extraction parameters and the resultant phytochemical profiles serves as a fundamental framework for the advancement of innovative pharmaceuticals and nutraceuticals, capitalizing on the therapeutic attributes of this traditional medicinal botanical.


Subject(s)
Phytochemicals , Ultrasonic Waves , Phytochemicals/isolation & purification , Phytochemicals/chemistry , Antioxidants/isolation & purification , Antioxidants/chemistry , Chemical Fractionation/methods , Temperature , Sonication/methods , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Solvents/chemistry , Flavonoids/isolation & purification , Flavonoids/analysis , Piper betle/chemistry , Chlorophyll/isolation & purification , Chlorophyll/analysis
3.
Ultrason Sonochem ; 106: 106904, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38749102

ABSTRACT

Ultrasound processing is an emerging green technology that has the potential for wider application in the food processing industry. While the effects of ultrasonication on isolated macromolecules such as protein and starch have been reported, the effects of physical barriers on sonication on these macro-molecules, for example inside whole seed, tissue or cotyledon cells, have mostly been overlooked. Intact chickpea cells were subjected to sonication with different ultrasound processing times, and the effects of sonication on the starch and protein structure and digestibility were studied. The digestibility of these macronutrients significantly increased with the extension of processing time, which, however was not due to the molecular degradation of starch or protein but related to damage to cell wall macro-structure with increasing sonication time, leading to enhanced enzyme accessibility. Through this study, it is demonstrated that ultrasound processing has least effect on whole food structure, for example, whole seeds but can modulate the nutrient bioavailability without changing the properties of the macronutrients in seed fractions e.g. intact cells, offering new scientific knowledge on effect of ultrasound in whole foods at various length scales.


Subject(s)
Cicer , Nutrients , Sonication , Cicer/chemistry , Starch/chemistry , Starch/metabolism , Plant Proteins/chemistry , Plant Proteins/metabolism , Digestion , Seeds/chemistry
4.
J Oleo Sci ; 73(5): 709-716, 2024.
Article in English | MEDLINE | ID: mdl-38692893

ABSTRACT

Epigallocatechin-3-gallate (EGCG), a polyphenol derived from Green Tea, is one of the sources of natural bioactive compounds which are currently being developed as medicinal ingredients. Besides other biological activities, this natural compound exhibits anti-cariogenic effects. However, EGCG has low physical-chemical stability and poor bioavailability. Thus, the purpose of this study was to develop and characterize lipid-chitosan hybrid nanoparticle with EGCG and to evaluate its in vitro activity against cariogenic planktonic microorganisms. Lipid-chitosan hybrid nanoparticle (LCHNP-EGCG) were prepared by emulsion and sonication method in one step and characterized according to diameter, polydispersity index (PdI), zeta potential (ZP), encapsulation efficiency (EE), mucoadhesion capacity and morphology. Strains of Streptococcus mutans, Streptococcus sobrinus and Lactobacillus casei were treated with LCHNP- EGCG, and minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were evaluated. LCHNP-EGCG exhibited a size of 217.3 ± 5.1 nm with a low polydispersity index (0.17) and positive zeta potential indicating the presence of chitosan on the lipid nanoparticle surface (+33.7 mV). The LCHNP-EGCG showed a spherical morphology, high stability and a mucoadhesive property due to the presence of chitosan coating. In addition, the EGCG encapsulation efficiency was 96%. A reduction of almost 15-fold in the MIC and MBC against the strains was observed when EGCG was encapsulated in LCHNP, indicating the potential of EGCG encapsulation in lipid-polymer hybrid nanoparticles. Taking the results together, the LCHNP-EGCG could be an interesting system to use in dental care due to their nanometric size, mucoadhesive properties high antibacterial activity against relevant planktonic microorganisms.


Subject(s)
Anti-Bacterial Agents , Catechin , Catechin/analogs & derivatives , Chitosan , Microbial Sensitivity Tests , Nanoparticles , Streptococcus mutans , Catechin/pharmacology , Catechin/chemistry , Chitosan/chemistry , Chitosan/pharmacology , Streptococcus mutans/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Nanoparticles/chemistry , Streptococcus sobrinus/drug effects , Lacticaseibacillus casei/drug effects , Lipids/chemistry , Plankton/drug effects , Dental Caries/microbiology , Dental Caries/prevention & control , Drug Carriers/chemistry , Particle Size , Emulsions , Sonication
5.
Food Res Int ; 183: 114212, 2024 May.
Article in English | MEDLINE | ID: mdl-38760140

ABSTRACT

This study evaluated the effect of ultrasound treatment combined or not with heat treatment applied to lentil protein isolate (LPI) aiming to enhance its ability to stabilize high internal phase emulsions (HIPE). LPI dispersion (2%, w/w) was ultrasound-treated at 60% (UA) and 70% (UB) amplitude for 7 min; these samples were subjected to and then heat treatments at 70 °C (UAT70 and UBT70, respectively) or 80 °C (UAT80 and UBT80, respectively) for 20 min. HIPEs were produced with 25% untreated and treated LPI dispersions and 75% soybean oil using a rotor-stator (15,500 rpm/1 min). The LPI dispersions were evaluated for particle size, solubility, differential scanning calorimetry, electrophoresis, secondary structure estimation (circular dichroism and FT-IR), intrinsic fluorescence, surface hydrophobicity, and free sulfhydryl groups content. The HIPEs were evaluated for droplet size, morphology, rheology, centrifugal stability, and the Turbiscan test. Ultrasound treatment decreased LPI dispersions' particle size (∼80%) and increased solubility (∼90%). Intrinsic fluorescence and surface hydrophobicity confirmed LPI modification due to the exposure to hydrophobic patches. The combination of ultrasound and heat treatments resulted in a reduction in the free sulfhydryl group content of LPI. HIPEs produced with ultrasound-heat-treated LPI had a lower droplet size distribution mode, greater oil retention values in the HIPE structure (> 98%), lower Turbiscan stability index (< 2), and a firmer and more homogeneous appearance compared to HIPE produced with untreated LPI, indicating higher stability for the HIPEs stabilized by treated LPI. Therefore, combining ultrasound and heat treatments could be an effective method for the functional modification of lentil proteins, allowing their application as HIPE emulsifiers.


Subject(s)
Emulsions , Hot Temperature , Lens Plant , Particle Size , Plant Proteins , Lens Plant/chemistry , Emulsions/chemistry , Plant Proteins/chemistry , Solubility , Hydrophobic and Hydrophilic Interactions , Food Handling/methods , Calorimetry, Differential Scanning , Spectroscopy, Fourier Transform Infrared , Circular Dichroism , Rheology , Ultrasonics/methods , Sonication/methods
6.
Ultrason Sonochem ; 106: 106886, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692020

ABSTRACT

Tetracycline has received a great deal of interest for the harmful effects of substance abuse on ecosystems and humanity. The effects of different processes on the degradation of tetracycline were compared, with dual-frequency ultrasound (DFUS) in combination with peroxymonosulfate (PMS) being the most effective for the tetracycline degradation. Free radical scavenging experiments showed that O2∙-,SO4∙- and •OH were the main reactive radicals in the degradation of tetracycline. According to the major intermediates of tetracycline degradation identified, three possible degradation pathways were proposed, which are of significance for translational studies of tetracycline degradation. Notably, these intermediates were found to be significantly less toxicity. The number of active bubbles in the degradation vessel was calculated using a semi-empirical formula, and a higher value of 1.44 × 108 L-1s-1 of bubbles was obtained when using dual-frequency ultrasound at 20 kHz (210 W/L) and 80 kHz (85.4 W/L). Therefore, compared to 20 kHz, although the yield of strong oxidizing substances from individual active bubbles decreased slightly, a significant increment of the number of active bubbles still resulted in a higher synergistic effect, and the combination of DFUS and PMS should be effective in promoting the generation of reactive free radicals and mass transfer processes within the degradation vessel, which provides a method for efficient removal of tetracycline from wastewater.


Subject(s)
Peroxides , Tetracycline , Ultrasonic Waves , Tetracycline/chemistry , Peroxides/chemistry , Sonication/methods , Water Pollutants, Chemical/chemistry
7.
Ultrason Sonochem ; 106: 106891, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38701549

ABSTRACT

Microalgae are new and sustainable sources of starch with higher productivity and flexible production modes than conventional terrestrial crops, but the downstream processes need further development. Here, ultrasonication (with power of 200 W or 300 W and duration of 10, 15, 20, or 25 min) was applied to simultaneously extract and modify starch from a marine microalga Tetraselmis subcordiformis for reducing the digestibility, and an aqueous two-phase system (ATPS) of ethanol/NaH2PO4 was then used to isolate the starches with varied properties. Increasing ultrasonic duration facilitated the partition of starch into the bottom pellet, while enhancing the ultrasonic power was conducive to the allocation in the interphase of the ATPS. The overall starch recovery yield reached 73 âˆ¼ 87 % and showed no significant difference among the ultrasonic conditions tested. The sequential ultrasonication-ATPS process successfully enriched the starch with purities up to 65 % âˆ¼ 88 %, which was among the top levels reported in microalgal starch isolated. Ultrasonication produced more amylose which was mainly fractionated into the interface of the ATPS. The digestibility of the starch was altered under different ultrasonic conditions and varied from different ATPS phases as well, with the one under the ultrasonic power of 200 W for 15 min at the bottom pellet having the highest resistant starch content (RS, 39.7 %). The structural and compositional analysis evidenced that the ultrasonication-ATPS process could exert impacts on the digestibility through altering the surface roughness and fissures of the starch granules, modulating the impurity compositions (protein and lipid) that could interact with starch, and modifying the long- and short-range ordered structures. The developed ultrasonication-ATPS process provided novel insights into the mechanism and strategy for efficient production of functional starch from microalgae with a potential in industrial application.


Subject(s)
Microalgae , Sonication , Starch , Starch/chemistry , Starch/isolation & purification , Microalgae/chemistry , Sonication/methods , Water/chemistry , Chemical Fractionation/methods
8.
Molecules ; 29(8)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38675617

ABSTRACT

Nanoemulsions are gaining interest in a variety of products as a means of integrating easily degradable bioactive compounds, preserving them from oxidation, and increasing their bioavailability. However, preparing stable emulsion compositions with the desired characteristics is a difficult task. The aim of this study was to encapsulate the Tinospora cordifolia aqueous extract (TCAE) into a water in oil (W/O) nanoemulsion and identify its critical process and formulation variables, like oil (27-29.4 mL), the surfactant concentration (0.6-3 mL), and sonication amplitude (40% to 100%), using response surface methodology (RSM). The responses of this formulation were studied with an analysis of the particle size (PS), free fatty acids (FFAs), and encapsulation efficiency (EE). In between, we have studied a fishbone diagram that was used to measure risk and preliminary research. The optimized condition for the formation of a stable nanoemulsion using quality by design was surfactant (2.43 mL), oil concentration (27.61 mL), and sonication amplitude (88.6%), providing a PS of 171.62 nm, FFA content of 0.86 meq/kg oil and viscosity of 0.597 Pa.s for the blank sample compared to the enriched TCAE nanoemulsion with a PS of 243.60 nm, FFA content of 0.27 meq/kg oil and viscosity of 0.22 Pa.s. The EE increases with increasing concentrations of TCAE, from 56.88% to 85.45%. The RSM response demonstrated that both composition variables had a considerable impact on the properties of the W/O nanoemulsion. Furthermore, after the storage time, the enriched TCAE nanoemulsion showed better stability over the blank nanoemulsion, specially the FFAs, and the blank increased from 0.142 to 1.22 meq/kg oil, while TCAE showed 0.266 to 0.82 meq/kg.


Subject(s)
Emulsions , Particle Size , Plant Extracts , Tinospora , Water , Emulsions/chemistry , Plant Extracts/chemistry , Tinospora/chemistry , Water/chemistry , Sonication , Nanoparticles/chemistry , Oils/chemistry , Surface-Active Agents/chemistry
9.
Ultrason Sonochem ; 106: 106885, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677266

ABSTRACT

This research designed and developed an ultrasonic reactor for a fast and on demand production of cold brew coffee, remarkably reducing the brewing time from 24 h to less than 3 min. The technology was engineered by utilizing resonance to induce ultrasonic waves around the walls of the brewing basket of an espresso machine. The sound transmission system comprised a transducer, a horn and a brewing basket. This arrangement transformed the coffee basket into an effective sonoreactor that injected sound waves at multiple points through its walls, thereby generating multiple regions for acoustic cavitation within the reactor. Furthermore, acoustic streaming induced greater mixing and enhanced mass transfer during brewing. The design was accomplished by modeling the transmission of sound, and acoustic cavitation. Brew characterization and chemical composition analysis was performed, considering factors such as pH, acidity, color, and the composition of caffeine, fatty acids, and volatiles. The efficiency of the extraction increased by decreasing the basket loading percentage (BLP). For instance, sonicating at 100 W doubled the extraction yield and caffeine concentration, from 15.05 % to 33.44 % at BLP = 33 %, and from 0.91 mg/mL to 1.84 mg/mL at BLP = 67 %, respectively. The total fatty acids increased from 1.16 mg/mL to 9.20 mg/mL, representing an eightfold increase, at BLP = 33 %. Finally, a sensory analysis was conducted to evaluate appearance, aroma, texture, flavor, and aftertaste, which demonstrated that coffee brewed for 1 and 3 min in the sonoreactor exhibited almost undistinguishable properties compared to a standard 24 h brewing without ultrasound.


Subject(s)
Coffee , Coffee/chemistry , Time Factors , Taste , Sonication/methods , Food Handling/methods , Humans
10.
Food Chem ; 451: 139438, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38678652

ABSTRACT

This study investigated the effect of ultrasound (20-60 min, 40 kHz, 280 W) on the structural, physicochemical, and emulsifying properties of aquafaba extracted from various legumes (chickpea [CH], yellow soybean [YSB], black soybean [BSB], small black bean [SBB]). The hydrophobic amino acids and protein secondary structures (α-helix, random coil) significantly increased with sonication time (p < 0.05). The particle size of aquafaba was reduced by ultrasound (p < 0.05). A total of 27 volatile compounds were identified. Most volatiles increased with sonication time, and beany flavor was lowest in CH and SBB. The EAI, ESI, adsorbed proteins, and zeta-potential increased, while emulsion droplet size decreased in all legumes by ultrasound. The overall emulsifying properties were the highest in SBB sonicated for 40 min. This study discusses the applicability of ultrasound to aquafaba and provides insights into the functional properties and potential of aquafaba as a plant-based natural emulsifier.


Subject(s)
Emulsions , Fabaceae , Particle Size , Fabaceae/chemistry , Emulsions/chemistry , Emulsifying Agents/chemistry , Emulsifying Agents/isolation & purification , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Hydrophobic and Hydrophilic Interactions , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/isolation & purification , Sonication
11.
Mar Drugs ; 22(4)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38667796

ABSTRACT

Palmaria palmata is a viable source of nutrients with bioactive properties. The present study determined the potential role of post-extraction ultrasonication on some compositional features and antioxidant properties of enzymatic/alkaline extracts of P. palmata (EAEP). No significant difference was detected in terms of protein content and recovery, as well as the amino acid composition of the extracts. The nitrogen-to-protein conversion factor of 5 was found to be too high for the seaweed and EAEP. The extracts sonicated by bath for 10 min and not sonicated showed the highest and lowest total phenolic contents (p < 0.05), respectively. The highest radical scavenging and lowest metal-chelating activities were observed for the non-sonicated sample, as evidenced by IC50 values. The extract sonicated by bath for 10 min showed the most favorable in vitro antioxidant properties since its radical scavenging was not significantly different from that of the not-sonicated sample (p > 0.05). In contrast, its metal-chelating activity was significantly higher (p < 0.05). To conclude, post-extraction ultrasonication by an ultrasonic bath for 10 min is recommended to increase phenolic content and improve the antioxidant properties of EAEP.


Subject(s)
Antioxidants , Chelating Agents , Phenols , Plant Extracts , Rhodophyta , Antioxidants/chemistry , Antioxidants/isolation & purification , Chelating Agents/chemistry , Edible Seaweeds/chemistry , Free Radical Scavengers/chemistry , Free Radical Scavengers/isolation & purification , Phenols/chemistry , Phenols/isolation & purification , Plant Extracts/pharmacology , Plant Extracts/chemistry , Rhodophyta/chemistry , Sonication
12.
Ultrason Sonochem ; 105: 106873, 2024 May.
Article in English | MEDLINE | ID: mdl-38608436

ABSTRACT

Starting from the consideration of the structure of human milk fat globule (MFG), this study aimed to investigate the effects of ultrasonic treatment on milk fat globule membrane (MFGM) and soy lecithin (SL) complexes and their role in mimicking human MFG emulsions. Ultrasonic power significantly affected the structure of the MFGM-SL complex, further promoting the unfolding of the molecular structure of the protein, and then increased solubility and surface hydrophobicity. Furthermore, the microstructure of mimicking MFG emulsions without sonication was unevenly distributed, and the average droplet diameter was large. After ultrasonic treatment, the droplets of the emulsion were more uniformly dispersed, the particle size was smaller, and the emulsification properties and stability were improved to varying degrees. Especially when the ultrasonic power was 300 W, the mimicking MFG emulsion had the highest encapsulation rate and emulsion activity index and emulsion stability index were increased by 60.88 % and 117.74 %, respectively. From the microstructure, it was observed that the spherical droplets of the mimicking MFG emulsion after appropriate ultrasonic treatment remain well separated without obvious flocculation. This study can provide a reference for the screening of milk fat globules mimicking membrane materials and the further utilization and development of ultrasound in infant formula.


Subject(s)
Emulsions , Glycolipids , Glycoproteins , Lecithins , Lipid Droplets , Lecithins/chemistry , Glycolipids/chemistry , Lipid Droplets/chemistry , Glycoproteins/chemistry , Glycoproteins/analysis , Humans , Glycine max/chemistry , Milk, Human/chemistry , Chemical Phenomena , Particle Size , Ultrasonic Waves , Sonication
13.
Ultrason Sonochem ; 105: 106865, 2024 May.
Article in English | MEDLINE | ID: mdl-38564909

ABSTRACT

To further enhance the application of nobiletin (an important active ingredient in Citrus fruits), we used ultrasonic homogenization-assisted antisolvent precipitation to create ultrafine particles of nobiletin (UPN). DMSO was used as the solvent, and deionized water was used as the antisolvent. When ultrasonication (670 W) and homogenization (16000 r/min) were synergistic, the solution concentration was 57 mg/mL, and the minimum particle size of UPN was 521.02 nm. The UPN samples outperformed the RN samples in terms of the inhibition of porcine pancreatic lipase, which was inhibited (by 500 mg/mL) by 68.41 % in the raw sample, 90.34 % in the ultrafine sample, and 83.59 % in the positive control, according to the data. Fourier transform infrared spectroscopy analysis revealed no chemical changes in the samples before or after preparation. However, the crystallinity of the processed ultrafine nobiletin particles decreased. Thus, this work offers significant relevance for applications in the realm of food chemistry and indirectly illustrates the expanded application potential of nobiletin.


Subject(s)
Flavones , Lipase , Particle Size , Solvents , Lipase/metabolism , Lipase/antagonists & inhibitors , Animals , Flavones/chemistry , Flavones/pharmacology , Swine , Solvents/chemistry , Pancreas/enzymology , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Sonication , alpha-Glucosidases/metabolism , Chemical Precipitation , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry
14.
Ultrason Sonochem ; 105: 106870, 2024 May.
Article in English | MEDLINE | ID: mdl-38579570

ABSTRACT

The obtained seeds from fruit processing are considered by-products containing proteins that could be utilized as ingredients in food manufacturing. However, in the specific case of soursop seeds, their usage for the preparation of protein isolates is limited. In this investigation a protein isolate from soursop seeds (SSPI) was obtained by alkaline extraction and isoelectric precipitation methods. The SSPI was sonicated at 200, 400 and 600 W during 15 and 30 min and its effect on the physicochemical, functional, biochemical, and structural properties was evaluated. Ultrasound increased (p < 0.05) up to 5 % protein content, 261 % protein solubility, 60.7 % foaming capacity, 30.2 % foaming stability, 86 % emulsifying activity index, 4.1 % emulsifying stability index, 85.4 % in vitro protein digestibility, 423.4 % albumin content, 83 % total sulfhydryl content, 316 % free sulfhydryl content, 236 % α-helix, 46 % ß-sheet, and 43 % ß-turn of SSPI, in comparison with the control treatment without ultrasound. Furthermore, ultrasound decreased (p < 0.05) up to 50 % particle size, 37 % molecular flexibility, 68 % surface hydrophobicity, 41 % intrinsic florescence spectrum, and 60 % random coil content. Scanning electron microscopy analysis revealed smooth structures of the SSPI with molecular weights ranging from 12 kDa to 65 kDa. The increase of albumins content in the SSPI by ultrasound was highly correlated (r = 0.962; p < 0.01) with the protein solubility. Improving the physicochemical, functional, biochemical and structural properties of SSPI by ultrasound could contribute to its utilization as ingredient in food industry.


Subject(s)
Annona , Plant Proteins , Seeds , Solubility , Seeds/chemistry , Plant Proteins/chemistry , Plant Proteins/isolation & purification , Annona/chemistry , Ultrasonic Waves , Chemical Phenomena , Sonication
15.
Ultrason Sonochem ; 105: 106868, 2024 May.
Article in English | MEDLINE | ID: mdl-38581798

ABSTRACT

The use of extracts rich in bioactive compounds is becoming increasingly common in the food, cosmetics, and pharmaceutical industries for the production of functional products. Araticum is a potential fruit to be analyzed due to its content of phenolic compounds, carotenoids and vitamins, with antioxidant properties. Therefore, this study aimed to investigate the effect of ultrasound on total phenolic compounds, total carotenoids, ascorbic acid, color, turbidity and rheology in araticum juice. Response surface methodology based on a central composite design was applied. Araticum juice was subjected to sonication at amplitude levels ranging from 20 to 100 % of the total power (400 W) at a constant frequency of 20 kHz for different durations (2 to 10 min). Morphological analysis was conducted to observe microscopic particles, and viscosity and suitability to rheological models (Newtonian, Power Law, and Herschel-Bulkley) were assessed. The ultrasonic probe extraction method was compared to the control juice. According to the responses, using the desirability function, the optimal conditions for extraction were determined to be low power (low amplitude) applied in a short period of time or low power applied in a prolonged time. These conditions allowed an ultrasonic probe to act on releasing bioactive compounds without degrading them. All three rheological models were suitable, with the Power Law model being the most appropriate, exhibiting non-Newtonian pseudoplastic behavior.


Subject(s)
Rheology , Annona/chemistry , Fruit and Vegetable Juices/analysis , Carotenoids/chemistry , Viscosity , Ultrasonic Waves , Sonication , Phenols/chemistry , Ascorbic Acid/chemistry
16.
Ultrason Sonochem ; 105: 106867, 2024 May.
Article in English | MEDLINE | ID: mdl-38581799

ABSTRACT

In this initial study, the impact of thermosonication as an alternative to the traditional fusion in Brazilian cheese spread (Requeijão Cremoso) manufacture was investigated. The effect of ultrasound (US) power was evaluated considering various aspects such as gross composition, microstructure, texture, rheology, color, fatty acid composition, and volatile compounds. A 13 mm US probe operating at 20 kHz was used. The experiment involved different US power levels (200, 400, and 600 W) at 85 °C for 1 min, and results were compared to the conventional process in the same conditions (85 °C for 1 min, control treatment). The texture became softer as ultrasound power increased from 200 to 600 W, which was attributed to structural changes within the protein and lipid matrix. The color of the cheese spread also underwent noticeable changes for all US treatments, and treatment at 600 W resulted in increased lightness but reduced color intensity. Moreover, the fatty acid composition of the cheese spread showed variations with different US power, with samples treated at 600 W showing lower concentrations of saturated and unsaturated fatty acids, as well as lower atherogenicity and thrombogenicity indexes, indicating a potentially healthier product. Volatile compounds were also influenced by US, with less compounds being identified at higher powers, especially at 600 W. This could indicate possible degradation, which should be evaluated in further studies regarding US treatment effects on consumer perception. Hence, this initial work demonstrated that thermosonication might be interesting in the manufacture of Brazilian cheese spread, since it can be used to manipulate the texture, color and aroma of the product in order to improve its quality parameters.


Subject(s)
Cheese , Cheese/analysis , Sonication/methods , Brazil , Food Handling/methods , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/analysis , Fatty Acids/chemistry , Color , Temperature
17.
Ultrason Sonochem ; 105: 106864, 2024 May.
Article in English | MEDLINE | ID: mdl-38581796

ABSTRACT

The effects of ultrasound and different inulin (INU) concentrations (0, 10, 20, 30, and 40 mg/mL) on the structural and functional properties of soybean isolate protein (SPI)-INU complexes were hereby investigated. Fourier transform infrared spectroscopy showed that SPI was bound to INU via hydrogen bonding. All samples showed a decreasing and then increasing trend of α-helix content with increasing INU concentration. SPI-INU complexes by ultrasound with an INU concentration of 20 mg/mL (U-2) had the lowest content of α-helix, the highest content of random coils and the greatest flexibility, indicating the proteins were most tightly bound to INU in U-2. Both UV spectroscopy and intrinsic fluorescence spectroscopy indicated that it was hydrophobic interactions between INU and SPI. The addition of INU prevented the exposure of tryptophan and tyrosine residues to form a more compact tertiary structure compared to SPI alone, and ultrasound caused further unfolding of the structure of SPI. This indicated that the combined effect of ultrasound and INU concentration significantly altered the tertiary structure of SPI. SDS-PAGE and Native-PAGE displayed the formation of complexes through non-covalent interactions between SPI and INU. The ζ-potential and particle size of U-2 were minimized to as low as -34.94 mV and 110 nm, respectively. Additionally, the flexibility, free sulfhydryl groups, solubility, emulsifying and foaming properties of the samples were improved, with the best results for U-2, respectively 0.25, 3.51 µmoL/g, 55.51 %, 269.91 %, 25.90 %, 137.66 % and 136.33 %. Overall, this work provides a theoretical basis for improving the functional properties of plant proteins.


Subject(s)
Inulin , Soybean Proteins , Inulin/chemistry , Soybean Proteins/chemistry , Ultrasonic Waves , Glycine max/chemistry , Sonication
18.
Ultrason Sonochem ; 104: 106843, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38471387

ABSTRACT

The primary significance of this work is that the commercial yeast proteins particles were successfully used to characterize the high internal phase Pickering emulsions (HIPPEs). The different sonication time (0,3,7,11,15 min) was used to modulate the structure and interface characteristics of yeast proteins (YPs) that as Pickering particles. Immediately afterward, the influence of YPs particles prepared at different sonication time on the rheological behavior and coalescence mechanism of HIPPEs was investigated. The results indicate that the YPs sonicated for 7 min exhibited a more relaxed molecular structures and conformation, the smallest particle size, the highest H0 and optimal amphiphilicity (the three-phase contact (θ) was 88.91°). The transition from extended to compact conformations of YPs occurred when the sonication time exceeded 7 min, resulting in an augmentation of size of YPs particles, a reduction in surface hydrophobicity (H0), and an elevation in hydrophilicity. The HIPPEs stabilized by YPs particles sonicated for 7 min exhibited the highest adsorption interface protein percentage and a more homogeneous three-dimensional (3D) protein network, resulting in the smallest droplet size and the highest storage (G'). The HIPPEs sample that stabilized by YPs particles sonicated for 15 min showed the lowest adsorption protein percentage. This caused a reduction in the thickness of its interface protein layer and an enlargement in the droplet diameter (D [3,2]). It was prone to droplet coalescence according to the equation used to evaluate the coalescence probability of droplets (Eq (2)). And the non-adsorbed YPs particles form larger aggregation structures in the continuous phase and act as "structural agents" in 3D protein network. Therefore, mechanistically, the interface protein layer formed by YPs particles sonicated 7 min contributed more to HIPPEs stability. Whereas the "structural agents" contributed more to HIPPEs stability when the sonication time exceeded 7 min. The present results shed important new light on the application of commercial YPs in the functional food fields, acting as an available and effective alternative protein.


Subject(s)
Fungal Proteins , Sonication , Emulsions/chemistry , Hydrophobic and Hydrophilic Interactions , Particle Size
19.
Brain Stimul ; 17(2): 258-268, 2024.
Article in English | MEDLINE | ID: mdl-38442800

ABSTRACT

BACKGROUND: Theta burst TUS (tbTUS) can induce increased cortical excitability in human, but how different sonication parameters influence the effects are still unknown. OBJECTIVE: To examine how a range of sonication parameters, including acoustic intensity, pulse repetition frequency, duty cycle and sonication duration, influence the effects of tbTUS on human motor cortical excitability. METHODS: 14 right-handed healthy subjects underwent 8 sessions with different tbTUS parameters in a randomized, cross-over design on separate days. The original tbTUS protocol was studied in one session and one parameter was changed in each of the seven sessions. To examine changes in cortical excitability induced by tbTUS, we measured the motor-evoked potential (MEP) amplitude, resting motor threshold, short-interval intracortical inhibition and intracortical facilitation, as well as short-interval intracortical facilitation before and up to 90 min after tbTUS. RESULTS: All conditions increased MEP amplitudes except the condition with low acoustic intensity of 10 W/cm2. Pulse repetition frequency of 5 Hz produced higher MEP amplitudes compared to pulse repetition frequencies of 2 and 10 Hz. In addition, higher duty cycles (5%, 10%, and 15%) and longer sonication durations (40, 80, and 120 s) were associated with longer duration of increased MEP amplitudes. Resting motor threshold remained stable in all conditions. For paired-pulse TMS measures, tbTUS reduced short-interval intracortical inhibition and enhanced short-interval intracortical facilitation, but had no effect on intracortical facilitation. CONCLUSIONS: Ultrasound bursts repeated at theta (∼5 Hz) frequency is optimal to produce increased cortical excitability with the range of 2-10 Hz. Furthermore, there was a dose-response effect regarding duty cycle and sonication duration in tbTUS for plasticity induction. The aftereffects of tbTUS were associated with a shift of the inhibition/excitation balance toward less inhibition and more excitation in the motor cortex. These findings can be used to determine the optimal tbTUS parameters in neuroscience research and treatment of neurological and psychiatric disorders.


Subject(s)
Evoked Potentials, Motor , Motor Cortex , Theta Rhythm , Humans , Motor Cortex/physiology , Male , Evoked Potentials, Motor/physiology , Female , Adult , Theta Rhythm/physiology , Cross-Over Studies , Young Adult , Transcranial Magnetic Stimulation/methods , Sonication/methods
20.
Article in English | MEDLINE | ID: mdl-38547699

ABSTRACT

In this research, a method known as a hollow fiber-liquid-phase microextraction was employed to extract and concentrate free metoprolol from plasma samples. The extracted analyte was subsequently determined using high-performance liquid chromatography coupled with a diode-array detector. Several parameters, including hollow fiber length, sonication time, extraction temperature, and salt addition, were investigated and optimized to enhance extraction efficiency. After extracting the analyte under optimum conditions from plasma samples, the enrichment factor and extraction recovery were 50 and 86 %, respectively. Moreover, the method exhibited detection and quantification limits of 0.41 and 1.30 ng mL-1, respectively. The analysis of real samples demonstrated satisfactory relative recoveries in the range of 91-99 %.


Subject(s)
Liquid Phase Microextraction , Metoprolol , Liquid Phase Microextraction/methods , Chromatography, High Pressure Liquid/methods , Sodium Chloride , Sonication
SELECTION OF CITATIONS
SEARCH DETAIL
...