Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 531
Filter
1.
Talanta ; 275: 126154, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38703477

ABSTRACT

Additive manufacturing is a technique that allows the construction of prototypes and has evolved a lot in the last 20 years, innovating industrial fabrication processes in several areas. In chemistry, additive manufacturing has been used in several functionalities, such as microfluidic analytical devices, energy storage devices, and electrochemical sensors. Theophylline and paracetamol are important pharmaceutical drugs where overdosing can cause adverse effects, such as tachycardia, seizures, and even renal failure. Therefore, this paper aims at the development of miniaturized electrochemical sensors using 3D printing and polylactic acid-based conductive carbon black commercial filament for theophylline and paracetamol detection. Electrochemical characterizations of the proposed sensor were performed to prove the functionality of the device. Morphological characterizations were carried out, in which chemical treatment could change the surface structure, causing the improvement of the analytical signal. Thus, the detection of theophylline at a linear range of 5.00-150 µmol L-1 with a limit of detection of 1.2 µmol L-1 was attained, and the detection of paracetamol at a linear range of 1.00-200 µmol L-1 with a limit of detection of 0.370 µmol L-1 was obtained, demonstrating the proposed sensor effectively detected pharmaceutical drugs.


Subject(s)
Acetaminophen , Electrochemical Techniques , Polyesters , Soot , Theophylline , Acetaminophen/analysis , Soot/chemistry , Electrochemical Techniques/methods , Theophylline/analysis , Polyesters/chemistry , Limit of Detection , Printing, Three-Dimensional , Miniaturization
2.
Anal Chim Acta ; 1307: 342645, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38719410

ABSTRACT

Electrochemical biosensors with high sensitivity can detect low concentrations of biomarkers, but their practical detection applications in complex biological environments such as human serum and sweat are severely limited by the biofouling. Herein, a conductive hydrogel based on bovine serum albumin (BSA) and conductive carbon black (CCB) was prepared for the construction of an antifouling biosensor. The BSA hydrogel (BSAG) was doped with CCB, and the prepared composite hydrogel exhibited good conductivity originated from the CCB and antifouling capability owing to the BSA hydrogel. An antifouling biosensor for the sensitive detection of cortisol was fabricated by drop-coating the conductive hydrogel onto a poly(3,4-ethylenedioxythiophene) (PEDOT) modified electrode and further immobilizing the cortisol aptamer. The constructed biosensor showed a linear range of 100 pg mL-1 - 10 µg mL-1 and a limit of detection of 26.0 pg mL-1 for the detection of cortisol, and it was capable of assaying cortisol accurately in complex human serum. This strategy of preparing antifouling and conductive hydrogels provides an effective way to develop robust electrochemical biosensors for biomarker detection in complex biological media.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Hydrocortisone , Hydrogels , Serum Albumin, Bovine , Soot , Humans , Biosensing Techniques/methods , Serum Albumin, Bovine/chemistry , Hydrocortisone/blood , Hydrocortisone/analysis , Soot/chemistry , Electrochemical Techniques/methods , Hydrogels/chemistry , Cattle , Biofouling/prevention & control , Limit of Detection , Animals , Electrodes , Aptamers, Nucleotide/chemistry , Polymers , Bridged Bicyclo Compounds, Heterocyclic
3.
Chemosphere ; 359: 142247, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38705410

ABSTRACT

Mn or Co supported CeO2 fiber catalysts were synthesized following a biotemplating route and evaluated in soot combustion and benzene total oxidation. The catalysts were characterized by SEM, EDX, N2 physisorption, FTIR-ATR, XRD, RAMAN and XPS. SEM results confirmed that the "twisted ribbon" morphology of the biotemplate was mostly maintained. XRD and Raman showed that Mn and Co cations partially insert into ceria lattice and also segregate at the surface of the fibers. XPS allowed to determine that both set of catalysts exhibit Ce3+ and Ce4+ species, in addition to adsorbed and lattice oxygen. Also, the average oxidation state (AOS) of surface Mn could be calculated. Compared to bare Fib Ce, the performances for both reactions were improved for the supported catalysts, except from the catalyst with lowest Mn content for soot combustion. The catalytic activity was discussed in terms of the physicochemical features of the supported catalysts.


Subject(s)
Benzene , Cerium , Cobalt , Manganese , Oxidation-Reduction , Soot , Cerium/chemistry , Benzene/chemistry , Catalysis , Manganese/chemistry , Cobalt/chemistry , Soot/chemistry
4.
Environ Pollut ; 354: 124181, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38768677

ABSTRACT

Through a comprehensive investigation into the historical profiles of black carbon derived from ice cores, the spatial distributions of light-absorbing impurities in snowpit samples, and carbon isotopic compositions of black carbon in snowpit samples of the Third Pole, we have identified that due to barriers of the Himalayas and remove of wet deposition, local sources rather than those from seriously the polluted South Asia are main contributors of light-absorbing impurities in the inner part of the Third Pole. Therefore, reducing emissions from residents of the Third Pole themselves is a more effective way of protecting the glaciers of the inner Third Pole in terms of reducing concentrations of light-absorbing particles in the atmosphere and on glaciers.


Subject(s)
Air Pollutants , Environmental Monitoring , Environmental Monitoring/methods , Air Pollutants/analysis , Ice Cover/chemistry , Asia , Soot/chemistry , Atmosphere/chemistry , Snow/chemistry , Asia, Southern , Himalayas
5.
ACS Sens ; 9(4): 2156-2165, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38629405

ABSTRACT

Anisotropic strain sensors capable of multidirectional sensing are crucial for advanced sensor applications in human motion detection. However, current anisotropic sensors encounter challenges in achieving a balance among high sensitivity, substantial stretchability, and a wide linear detection range. To address these challenges, a facile freeze-casting strategy was employed to construct oriented filler networks composed of carbon nanotubes and conductive carbon black within a brominated butyl rubber ionomer (iBIIR) matrix. The resulting anisotropic sensor based on the iBIIR composites exhibited distinct gauge factors (GF) in the parallel and vertical directions (GF∥ = 4.91, while GF⊥ = 2.24) and a broad linear detection range over a strain range of 190%. This feature enables the sensor to detect various human activities, including uniaxial pulse, finder bending, elbow bending, and cervical spine movements. Moreover, the ion-cross-linking network within the iBIIR, coupled with strong π-cation interactions between the fillers and iBIIR macromolecules, imparted high strength (12.3 MPa, nearly twice that of pure iBIIR) and an ultrahigh elongation at break (>1800%) to the composites. Furthermore, the sensor exhibited exceptional antibacterial effectiveness, surpassing 99% against both Escherichia coli and Staphylococcus aureus. Notably, the sensor was capable of wireless sensing. It is anticipated that anisotropic sensors will have extensive application prospects in flexible wearable devices.


Subject(s)
Elastomers , Nanotubes, Carbon , Wireless Technology , Humans , Elastomers/chemistry , Nanotubes, Carbon/chemistry , Anisotropy , Wearable Electronic Devices , Soot/chemistry , Movement , Staphylococcus aureus/isolation & purification
6.
Waste Manag ; 182: 21-31, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38631177

ABSTRACT

This research investigates the formation mechanism of soot and particulate matter during the pyrolysis and gasification of waste derived from Municipal Solid Waste (MSW) in a laboratory scale drop tube furnace. Compared with CO2 gasification atmosphere, more ultrafine particles (PM0.2, aerodynamic diameter less than 0.2 µm) were generated in N2 atmosphere at 1200℃, which were mainly composed of polycyclic aromatic hydrocarbons (PAHs), graphitic carbonaceous soot and volatile alkali salts. High reaction temperatures promote the formation of hydrocarbon gaseous products and their conversion to PAHs, which ultimately leads to the formation of soot particles. The soot particles generated by waste derived from MSW pyrolysis and gasification both have high specific surface area and well-developed pore structure. Compared with pyrolysis, the soot generated by gasification of waste derived from MSW had smaller size and higher proportion of inorganic components. The higher pyrolysis temperature led to the collapse of the mesoporous structure of submicron particles, resulting in a decrease in total pore volume and an increase in specific surface area. Innovatively, this research provides an explanation for the effect of reaction temperature/ CO2 on the formation pathways and physicochemical properties of soot and fine particulate matter.


Subject(s)
Hot Temperature , Particulate Matter , Pyrolysis , Solid Waste , Soot , Particulate Matter/analysis , Particulate Matter/chemistry , Solid Waste/analysis , Soot/analysis , Soot/chemistry , Refuse Disposal/methods , Incineration/methods , Carbon Dioxide/analysis , Carbon Dioxide/chemistry , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/chemistry , Particle Size
7.
Environ Sci Technol ; 58(18): 8096-8108, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38627223

ABSTRACT

Particulate matter, represented by soot particles, poses a significant global environmental threat, necessitating efficient control technology. Here, we innovatively designed and elaborately fabricated ordered hierarchical macroporous catalysts of Ce0.8Zr0.2O2 (OM CZO) integrated on a catalyzed diesel particulate filter (CDPF) using the self-assembly method. An oxygen-vacancy-enriched ordered macroporous Ce0.8Zr0.2O2 catalyst (VO-OM CZO) integrated CDPF was synthesized by subsequent NaBH4 reduction. The VO-OM CZO integrated CDPF exhibited a markedly enhanced soot oxidation activity compared to OM CZO and powder CZO coated CDPFs (T50: 430 vs 490 and 545 °C, respectively). The well-defined OM structure of the VO-OM CZO catalysts effectively improves the contact efficiency between soot and the catalysts. Meanwhile, oxygen vacancies trigger the formation of a large amount of highly reactive peroxide species (O22-) from molecular oxygen (O2) through electron abstraction from the three adjacent Ce3+ (3Ce3+ + Vö + O2 → 3Ce4+ + O22-), contributing to the efficient soot oxidation. This work demonstrates the fabrication of the ordered macroporous CZO integrated CDPF and reveals the importance of structure and surface engineering in soot oxidation, which sheds light on the design of highly efficient PM capture and removal devices.


Subject(s)
Oxidation-Reduction , Catalysis , Peroxides/chemistry , Soot/chemistry , Filtration , Particulate Matter/chemistry , Vehicle Emissions
8.
ACS Appl Bio Mater ; 7(5): 2734-2740, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38651321

ABSTRACT

3D printing of a living bioanode holds the potential for the rapid and efficient production of bioelectrochemistry systems. However, the ink (such as sodium alginate, SA) that formed the matrix of the 3D-printed bioanode may hinder extracellular electron transfer (EET) between the microorganism and conductive materials. Here, we proposed a biomimetic design of a 3D-printed Shewanella bioanode, wherein riboflavin (RF) was modified on carbon black (CB) to serve as a redox substance for microbial EET. By introducing the medicated EET pathways, the 3D-printed bioanode obtained a maximum power density of 252 ± 12 mW/m2, which was 1.7 and 60.5 times higher than those of SA-CB (92 ± 10 mW/m2) and a bare carbon cloth anode (3.8 ± 0.4 mW/m2). Adding RF reduced the charge-transfer resistance of a 3D-printed bioanode by 75% (189.5 ± 18.7 vs 47.3 ± 7.8 Ω), indicating a significant acceleration in the EET efficiency within the bioanode. This work provided a fundamental and instrumental concept for constructing a 3D-printed bioanode.


Subject(s)
Biocompatible Materials , Materials Testing , Printing, Three-Dimensional , Riboflavin , Shewanella , Riboflavin/chemistry , Riboflavin/metabolism , Shewanella/metabolism , Electron Transport , Biocompatible Materials/chemistry , Bioelectric Energy Sources , Electrodes , Soot/chemistry , Particle Size , Ink
9.
Chemosphere ; 356: 141940, 2024 May.
Article in English | MEDLINE | ID: mdl-38588894

ABSTRACT

Dissolved black carbon (DBC) is the ubiquitous component of dissolved organic matter pools with the high reactivity for disinfection byproducts formation. However, it is unknown that the influence of molecular weight (MW) of natural organic matter (NOM) on the DBC removal from potable water sources. Therefore, it was studied that the DBC removal by coagulation in the presence of the NOM with various molecular weights. The DBC removal was promoted due to the presence of NOM and the promotion degree decreased with decreasing MW of NOM. Furthermore, the removal ratio of humic-like component increased as the MW of NOM decreased, suggesting that the competition between DBC and NOM increased with decreasing MW. The functional groups after coagulation were the same with that before coagulation as the MW of NOM varied, suggesting that the molecular structure was not the key factor of influencing the DBC removal. This study will give the deep insight into the prediction of the DBC removal ratio by coagulation based on the MW of NOM in water sources.


Subject(s)
Humic Substances , Molecular Weight , Water Purification , Water Purification/methods , Humic Substances/analysis , Carbon/chemistry , Water Pollutants, Chemical/chemistry , Soot/chemistry , Drinking Water/chemistry , Disinfection , Organic Chemicals/chemistry , Organic Chemicals/isolation & purification
10.
Environ Sci Process Impacts ; 26(3): 499-509, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38318974

ABSTRACT

Black carbon (BC) exhibits promising potential as a sediment amendment owing to its commendable adsorption capacity for hydrophobic organic contaminants (HOCs), thereby resulting in HOC-laden sediments. Desorption kinetic studies play a crucial role in comprehending the release potential of HOCs from BC-sediment systems. Although the adsorption capacity of BC for HOCs has been found to decrease with aging, there is limited research on its impact on HOC desorption kinetics. In this study, BCs derived from agricultural waste (rice straw carbon, RC) and industrial waste (fly ash carbon, FC), respectively, were used to investigate the desorption kinetics of nonylphenol (NP). Additionally, a predictive model was established using the fitting parameters obtained from the modified two-domain model. The results showed that desorption of NP was divided into three fractions: rapid fraction (Frap), slow fraction (Fslow) and resistant fraction (Fr). BCs significantly decreased, while ageing increased the desorption amount and rate of NP. The performance of RC in controlling NP release was superior to that of FC. The predicted values calculated by the established model exhibit significant positive correlations with the measured values (p < 0.01). Additionally, the correlation analysis between sorption sites and desorption fractions revealed that the concentration of NP in the desorbing fraction was nearly equivalent to that of NP in partition sites within aged sediment/FC-sediment systems. However, the aged RC-sediment systems do not conform well to this rule. In other words, the estimation of NP release risk from sediments with a strong adsorbent would be overestimated, if Frap + Fsolw is considered equivalent to the desorbing fraction.


Subject(s)
Geologic Sediments , Phenols , Kinetics , Geologic Sediments/chemistry , Phenols/chemistry , Carbon/chemistry , Soot/chemistry , Adsorption
11.
Water Res ; 251: 121138, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38244298

ABSTRACT

Dissolved black carbon (DBC) has high photoactivity, which plays an important role in contaminants photodegradation. However, it is unclear how pyrolysis temperatures would affect the composition and photo-reactivity of DBC at the molecular level. Herein, we combined complementary techniques to study the characteristics of DBC pyrolyzed at 200 - 500 ℃, as well as the photoproduction of reactive species and the photodegradation of tetracycline (TC). Bulk composition characterization found that condensed aromatic carbonyl compounds (ConAC) with narrow molecular weights in DBC experienced an increase from 200 to 500 °C, which enhanced the photoproduction of 3DBC*,1O2, and ·OH. Molecular-level data suggested that 3DBC* and 1O2 were both related to the same DBC compounds. Comparatively, the patterns for ·OH were less pronounced, implying its precursor was not 3DBC* and had more complexity. Plentiful CHOx species of ConAC in DBC400 and DBC500 (DBCT, where T = pyrolysis temperature) accelerated the generation of 3DBC* and 1O2, enhancing the photodegradation of TC, and mainly triplet states of quinones reacted with TC. In contrast, DBC200 and DBC300 exhibited inhibition since massive CHOx species in lignin-like reduced 3TC* to TC. Our data revealed the diverse photochemical behavior mechanisms of DBC pyrolyzed at 200 - 500 ℃ at the molecular level and the implications for aquatic contaminants photochemistry.


Subject(s)
Pyrolysis , Soot , Temperature , Photolysis , Spectrum Analysis , Soot/analysis , Soot/chemistry , Anti-Bacterial Agents , Tetracycline , Carbon
12.
Environ Sci Technol ; 57(51): 21593-21604, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-37955649

ABSTRACT

Decades of research have established the toxicity of soot particles resulting from incomplete combustion. However, the unique chemical compounds responsible for adverse health effects have remained uncertain. This study utilized mass spectrometry to analyze the chemical composition of extracted soot organics at three oxidation states, aiming to establish quantitative relationships between potentially toxic chemicals and their impact on human alveolar basal epithelial cells (A549) through metabolomics-based evaluations. Targeted analysis using MS/MS indicated that particles with a medium oxidation state contained the highest total abundance of compounds, particularly oxygen-containing polycyclic aromatic hydrocarbons (OPAHs) composed of fused benzene rings and unsaturated carbonyls, which may cause oxidative stress, characterized by the upregulation of three specific metabolites. Further investigation focused on three specific OPAH standards: 1,4-naphthoquinone, 9-fluorenone, and anthranone. Pathway analysis indicated that exposure to these compounds affected transcriptional functions, the tricarboxylic acid cycle, cell proliferation, and the oxidative stress response. Biodiesel combustion emissions had higher concentrations of PAHs, OPAHs, and nitrogen-containing PAHs (NPAHs) compared with other fuels. Quinones and 9,10-anthraquinone were identified as the dominant compounds within the OPAH category. This knowledge enhances our understanding of the compounds contributing to adverse health effects observed in epidemiological studies and highlights the role of aerosol composition in toxicity.


Subject(s)
Air Pollutants , Polycyclic Aromatic Hydrocarbons , Polycyclic Compounds , Humans , Polycyclic Compounds/analysis , Soot/analysis , Soot/chemistry , Soot/toxicity , Tandem Mass Spectrometry , Polycyclic Aromatic Hydrocarbons/toxicity , Lung , Oxygen/analysis , Metabolome , Air Pollutants/analysis , Vehicle Emissions/analysis
13.
Chemosphere ; 334: 138995, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37211160

ABSTRACT

Increasing the contact efficiency and improving the intrinsic activity are two effective strategies to obtain efficient catalysts for soot combustion. Herein, the electrospinning method is used to synthesize fiber-like Ce-Mn oxide with a strong synergistic effect. The slow combustion of PVP in precursors and highly soluble manganese acetate in spinning solution facilitates the formation of fibrous Ce-Mn oxides. The fluid simulation clearly indicates that the slender and uniform fibers provide more interwoven macropores to capture soot particles than the cubes and spheres do. Accordingly, electrospun Ce-Mn oxide exhibits better catalytic activity than reference catalysts, including Ce-Mn oxides by co-precipitation and sol-gel methods. The characterizations suggest that Mn3+ substitution into fluorite-type CeO2 enhances the reducibility through the acceleration of Mn-Ce electron transfer, improves the lattice oxygen mobility by weakening the Ce-O bonds, and induces oxygen vacancies for the activation of O2. The theoretical calculation reveals that the release of lattice oxygen becomes easy because of a low formation energy of oxygen vacancy, while the high reduction potential is beneficial for the activation of O2 on Ce3+-Ov (oxygen vacancies). Due to above Ce-Mn synergy, the CeMnOx-ES shows more active oxygen species and higher oxygen storage capacity than CeO2-ES and MnOx-ES. The theoretical calculation and experimental results suggest that the adsorbed O2 is more active than lattice oxygen and the catalytic oxidation mainly follows the Langmuir-Hinshelwood mechanism. This study indicates that electrospinning is a novel method to obtain efficient Ce-Mn oxide.


Subject(s)
Cerium , Oxides , Oxides/chemistry , Soot/chemistry , Cerium/chemistry , Oxidation-Reduction , Catalysis , Oxygen
14.
Environ Sci Pollut Res Int ; 30(30): 76143-76156, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37231133

ABSTRACT

In order to avoid the high cost of existing precious metal catalyst like Pt, Ag/CeO2 was the most promising catalysts for mobile source soot emission control technologies, but there was a clear trade-off between hydrothermal aging resistance and catalytic oxidation performance hindered the application of this catalyst. In order to reveal the hydrothermal aging mechanism of Ag/CeO2 catalysts, the TGA (thermogravimetric analysis) experiments were investigated to reveal the mechanism of Ag modification on catalytic activity of CeO2 catalyst between fresh and hydrothermal aging and were also characterized with the related characterization experiments to in-depth research the lattice morphology and valence changes. The degradation mechanism of Ag/CeO2 catalysts in vapor with high-temperature was also explained and demonstrated based on density functional and molecular thermodynamics theories. The experimental and simulation data showed that the catalytic activity of soot combustion within Ag/CeO2 decreased more significantly after hydrothermal aging than CeO2 due to the less agglomerated, which caused by the decreased in OII/OI and Ce3+/Ce4+ compared with CeO2. As shown in density function theory (DFT) calculation, the decreased surface energy and the increased oxygen vacancy formation energy of the low Mille index surface after Ag modification led to the instability structure and the high catalytic activity. Ag modification also increased the adsorption energy and Gibbs free energy of H2O on the low Miller index surface compared to CeO2, indicating that the desorption temperature of H2O molecules in (1 1 0) and (1 0 0) was higher than (1 1 1) in CeO2 and Ag/CeO2, which led to the migration of (1 1 1) crystal surfaces to (1 1 0) and (1 0 0) in the vapor environment. These conclusions can provide a valuable addition to the regenerative application of Ce-based catalysts in diesel exhaust aftertreatment system the aerial pollution.


Subject(s)
Cerium , Soot , Soot/chemistry , Density Functional Theory , Cerium/chemistry , Oxidation-Reduction , Vehicle Emissions , Dust
15.
Analyst ; 148(12): 2776-2781, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37194303

ABSTRACT

To combat the ongoing threat posed by severe fever with thrombocytopenia syndrome virus (SFTSV), especially in underserved areas, there is an urgent need for an affordable and reliable point-of-care diagnostic tool. This study presents a carbon black-based immunochromatographic test strip (CB-ICTS) for the detection of SFTSV, which is both quick and easy to operate. The study optimized the specific steps for carbon black-labeled antibodies, as well as the amount of carbon black and anti-SFTSV antibody used. Under optimal experimental conditions, the linear range and limit of detection of the CB-ICTS were evaluated using different concentrations of SFTSV standard samples. The detection range of the CB-ICTS for SFTSV was found to be 0.1-1000 ng mL-1, with a limit of detection of 100 pg mL-1. The precision and accuracy of the CB-ICTS were assessed by examining spiked healthy human serum samples, which displayed recoveries ranging from 91.58 to 105.4% with a coefficient of variation of less than 11%. This work evaluated the specificity of the CB-ICTS using various biomarkers (CA125, AFP, CA199, CEA, and HCG) and demonstrated that the CB-ICTS is highly specific for detecting SFTSV, suggesting its potential for the early diagnosis of SFTSV. In addition, the study evaluated the CB-ICTS in serum samples from patients with SFTSV, and the results were highly consistent with those detected by the polymerase chain reaction (PCR) method. Overall, this study demonstrates the feasibility and effectiveness of using the CB-ICTS as a reliable point-of-care diagnostic tool for the early detection of SFTSV.


Subject(s)
Colorimetry , Severe Fever with Thrombocytopenia Syndrome , Soot/chemistry , Colorimetry/methods , Severe Fever with Thrombocytopenia Syndrome/diagnosis , Severe Fever with Thrombocytopenia Syndrome/virology , Chromatography, Affinity/methods , Antibodies, Monoclonal/immunology
16.
Environ Pollut ; 327: 121540, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37019256

ABSTRACT

A catalyst is usually coated on Diesel particulate filter (DPF) for assisted regeneration. In this paper, the oxidation activity and pore structure evolutions of soot under the effect of CeO2 are explored. CeO2 effectively increases the oxidation activity of soot and reduces the initial activation energy; in the meantime, the addition of CeO2 changes the soot oxidation mode. Pure soot particles tend to produce the porous structure in the oxidation process. Mesopores promote the diffusion of oxygen, and macropores contribute to reduce the agglomeration of soot particles. Additionally, CeO2 provides the active oxygen for soot oxidation and promotes the multi-point oxidation at the beginning of soot oxidation. With the oxidation proceeding, catalysis causes the collapsion of soot microspatial structures, in the meantime, the macropores caused by the catalytic oxidation are filled by CeO2. It results in the tight contact between soot and catalyst, further promoting the formation of the available active oxygen for soot oxidation. This paper is meaningful to analyze the oxidation mechanism of soot under catalysis, which lays a foundation for improving the regeneration efficiency of DPF and reducing the particle emission.


Subject(s)
Oxygen , Soot , Soot/chemistry , Reactive Oxygen Species , Oxidation-Reduction , Catalysis , Dust
17.
Environ Sci Technol ; 57(13): 5137-5148, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36944040

ABSTRACT

Effective density (ρeff) is an important property describing particle transportation in the atmosphere and in the human respiratory tract. In this study, the particle size dependency of ρeff was determined for fresh and photochemically aged particles from residential combustion of wood logs and brown coal, as well as from an aerosol standard (CAST) burner. ρeff increased considerably due to photochemical aging, especially for soot agglomerates larger than 100 nm in mobility diameter. The increase depends on the presence of condensable vapors and agglomerate size and can be explained by collapsing of chain-like agglomerates and filling of their voids and formation of secondary coating. The measured and modeled particle optical properties suggest that while light absorption, scattering, and the single-scattering albedo of soot particle increase during photochemical processing, their radiative forcing remains positive until the amount of nonabsorbing coating exceeds approximately 90% of the particle mass.


Subject(s)
Atmosphere , Soot , Humans , Aged , Soot/analysis , Soot/chemistry , Particle Size , Coal , Aerosols/analysis
18.
J Colloid Interface Sci ; 638: 109-122, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36736113

ABSTRACT

Metal oxide-oxide interface on supported catalyst has been rarely studied due to the complex interfacial structure and synthetic challenge. Herein, different Ag-supported CeO2/Co3O4 samples with various covered-state of CeO2 were prepared for catalytic soot oxidation. In comparison, catalytic activity was significantly improved by grafting CeO2 on Co3O4, in which the best performing Ag/CoCe-2 exhibited remarkable catalytic performance towards soot oxidation with a T50 of 290.5 â„ƒ under 10 % O2/N2. Catalyst characterization investigated by Scanning Electron Microscope (SEM), quasi in-situ X-ray Photoelectron Spectroscopy (XPS), in-situ Raman, etc. revealed that this outstanding promotion in catalytic activity can be principally ascribed to the formation of the CeO2/Co3O4 interface. An appropriate CeO2 dosage maximized the contact and interaction between Co3O4 and CeO2, resulting in the largest CeO2/Co3O4 interface featured with abundant generated superoxide species and activated surface lattice oxygen. Density functional theory (DFT) calculations were also carried out for the oxygen vacancy formation energy, Gibbs free energy, etc. In presence of the CeO2/Co3O4 interface, a charge density redistribution around the adsorbed reactants at oxygen vacancies could be formed, owing to the efficient charge transfer enhanced by the electron-appealing effect. The change in electronic structure favored reducing the oxygen vacancy formation energy and boosting the lattice oxygen activation induced by the hybridized Co-O-Ce bonds, finally lowering the adsorption and activation barriers for reactive species and accelerating the reaction kinetics.


Subject(s)
Cerium , Oxygen , Oxygen/chemistry , Soot/chemistry , Cerium/chemistry , Oxides/chemistry
19.
J Agric Food Chem ; 71(6): 3060-3067, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36720110

ABSTRACT

Sulfanilamide (SFL) is used to prevent infections in honeybees. However, many regulatory agencies prohibit or establish maximum levels of SFL residues in honey samples. Hence, we developed a low-cost and portable electrochemical method for SFL detection using a disposable device produced through 3D printing technology. In the proposed approach, the working electrode was printed using a conductive filament based on carbon black and polylactic acid and it was associated with square wave voltammetry (SWV). Under optimized SWV parameters, linear concentration ranges (1-10 µmol L-1 and 12.5-35.0 µmol L-1), a detection limit of 0.26 µmol L-1 (0.05 mg L-1), and suitable RSD values (2.4% for inter-electrode; n = 3) were achieved. The developed method was selective in relation to other antibiotics applied in honey samples, requiring only dilution in the electrolyte. The recovery values (85-120%) obtained by SWV were statistically similar (95% confidence level) to those obtained by HPLC, attesting to the accuracy of the analysis and the absence of matrix interference.


Subject(s)
Honey , Soot , Animals , Soot/chemistry , Sulfanilamide , Electrochemistry , Electrodes , Electrochemical Techniques , Carbon/chemistry
20.
Chemosphere ; 311(Pt 1): 136980, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36283428

ABSTRACT

The purpose of the present study is to better understand the reaction kinetics of diesel exhaust soot during oxidation process. A thermogravimetric analyzer was used to oxidize real diesel exhaust soot generated from a Euro VI diesel engine under non-isothermal conditions. The Friedman-Reich-Levi method and the Sestak-Berggren model were used to determine the oxidation kinetics. Raman spectroscopy and high-resolution transmission electron microscopy were employed to follow the changes of the soot structure during oxidation. The activation energy gradually increased with increasing conversion level during soot oxidation. The oxidation process of diesel exhaust soot could be described as three-step kinetics, and the calculated conversions fitted the experimental results very well. The kinetic predictions of diesel soot oxidation that were obtained using the proposed kinetic models were more accurate and precise than those with the common first-order model. The structural order increased as oxidation progressed, which was responsible for the increased activation energy. The structural ordering was principally caused by the preferential oxidation of the disordered fraction in the diesel soot, especially for the amorphous carbon, which was oxidized in the initial stage of the oxidation reaction.


Subject(s)
Soot , Vehicle Emissions , Vehicle Emissions/analysis , Soot/chemistry , Oxidation-Reduction , Microscopy, Electron, Transmission , Kinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...