Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.574
Filter
1.
Food Res Int ; 188: 114531, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823850

ABSTRACT

Different emulsion gel systems are widely applied to deliver functional ingredients. The effects and mechanisms of ultrasound-assisted emulsification (UAE) treatment and carboxymethyl cellulose (CMC) modifying the curcumin delivery properties and in vitro digestibility of the myofibrillar protein (MP)-soybean oil emulsion gels were investigated. The rheological properties, droplet size, protein and CMC distribution, ultrastructure, surface hydrophobicity, sulfhydryl groups, and zeta potential of emulsion gels were also measured. Results indicate that UAE treatment and CMC addition both improved curcumin encapsulation and protection efficiency in MP emulsion gel, especially for the UAE combined with CMC (UAE-CMC) treatment which encapsulation efficiency, protection efficiency, the release rate, and bioaccessibility of curcumin increased from 86.75 % to 97.67 %, 44.85 % to 68.85 %, 18.44 % to 41.78 %, and 28.68 % to 44.93 % respectively. The protein digestibility during the gastric stage was decreased after the CMC addition and UAE treatment, and the protein digestibility during the intestinal stage was reduced after the CMC addition. The fatty acid release rate was increased after CMC addition and UAE treatment. Apparent viscosity, storage modulus, and loss modulus were decreased after CMC addition while increased after UAE and UAE-CMC treatment especially the storage modulus increased from 0.26 Pa to 41 Pa after UAE-CMC treatment. The oil size was decreased, the protein and CMC concentration around the oil was increased, and a denser and uniform emulsion gel network structure was formed after UAE treatment. The surface hydrophobicity, free SH groups, and absolute zeta potential were increased after UAE treatment. The UAE-CMC treatment could strengthen the MP emulsion gel structure and decrease the oil size to increase the curcumin delivery properties, and hydrophobic and electrostatic interaction might be essential forces to maintain the emulsion gel.


Subject(s)
Carboxymethylcellulose Sodium , Curcumin , Digestion , Emulsions , Gels , Hydrophobic and Hydrophilic Interactions , Rheology , Curcumin/chemistry , Emulsions/chemistry , Carboxymethylcellulose Sodium/chemistry , Gels/chemistry , Muscle Proteins , Soybean Oil/chemistry , Viscosity , Particle Size , Myofibrils/chemistry , Myofibrils/metabolism , Ultrasonic Waves
2.
Food Res Int ; 188: 114440, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823857

ABSTRACT

The emulsification activity of myosin plays a significant role in affecting quality of emulsified meat products. High-density lipoprotein (HDL) possesses strong emulsification activity and stability due to its structural characteristics, suggesting potential for its utilization in developing functional emulsified meat products. In order to explore the effect of HDL addition on emulsification stability, rheological properties and structural features of myosin (MS) emulsions, HDL-MS emulsion was prepared by mixing soybean oil with isolated HDL and MS, with pH adjustments ranging from 3.0 to 11.0. The results found that emulsification activity and stability in two emulsion groups consistently improved as pH increased. Under identical pH, HDL-MS emulsion exhibited superior emulsification behavior as compared to MS emulsion. The HDL-MS emulsion under pH of 7.0-11.0 formed a viscoelastic protein layer at the interface, adsorbing more proteins and retarding oil droplet diffusion, leading to enhanced oxidative stability, compared to the MS emulsion. Raman spectroscopy analysis showed more flexible conformational changes in the HDL-MS emulsion. Microstructural observations corroborated these findings, showing a more uniform distribution of droplet sizes in the HDL-MS emulsion with smaller particle sizes. Overall, these determinations suggested that the addition of HDL enhanced the emulsification behavior of MS emulsions, and the composite emulsions demonstrated heightened responsiveness under alkaline conditions. This establishes a theoretical basis for the practical utilization of HDL in emulsified meat products.


Subject(s)
Emulsions , Lipoproteins, HDL , Myosins , Rheology , Emulsions/chemistry , Hydrogen-Ion Concentration , Lipoproteins, HDL/chemistry , Myosins/chemistry , Meat Products/analysis , Particle Size , Soybean Oil/chemistry , Viscosity , Spectrum Analysis, Raman
3.
Food Res Int ; 188: 114493, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823876

ABSTRACT

In this paper, two emulsion systems with high and low solid fat contents were prepared from 20 % water phase and 80 % oil phase by adjusting the palm oil/palm stearin/soybean oil ratio. Different ultrasonic power and time were used for the pretreatment of emulsion with different solid fat content, and the application characteristics of ultrasonic in W/O emulsions were explored and evaluated. Directly using high-intensity ultrasound to prepare fatty emulsions would weaken the hardness and storage modulus G' of the samples. Although ultrasound reduced the size of fat crystals in emulsions, the interaction between water droplets and fat crystals needs to be considered. After ultrasonic treatment, water droplets were difficult to immobilize on the crystal surface and thus acted as an active filler to stabilize the emulsion together with the fat crystal network. In high solid fat emulsion systems, an increase in ultrasound power (from 100 W to 200 W) could more affect the crystallization behavior of fats than an increase in ultrasound duration (from 30 s to 60 s), and the distribution of crystals and droplets was more uniform. In the low solid fat emulsion system, the texture of the sample after ultrasonic treatment was softer, and the surface was more delicate and smoother. However, the higher ultrasonic intensity (200 W) was not conducive to the preparation of the spread. Although the ultrasound with excessive intensity promoted the formation of small crystals, it would also lead to the aggregation of small crystals. These small crystals cannot form a uniform crystal network, which increases the fluidity of emulsions.


Subject(s)
Crystallization , Emulsions , Palm Oil , Particle Size , Water , Emulsions/chemistry , Water/chemistry , Palm Oil/chemistry , Soybean Oil/chemistry , Ultrasonic Waves , Ultrasonics
4.
Molecules ; 29(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38731414

ABSTRACT

Consumers are concerned about employing green processing technologies and natural ingredients in different manufacturing sectors to achieve a "clean label" standard for products and minimize the hazardous impact of chemical ingredients on human health and the environment. In this study, we investigated the effects of gelatinized starch dispersions (GSDs) prepared from six plant sources (indica and japonica rice, wheat, corn, potatoes, and sweet potatoes) on the formulation and stability of oil-in-water (O/W) emulsions. The effect of gelatinization temperature and time conditions of 85-90 °C for 20 min on the interfacial tension of the two phases was observed. Emulsification was performed using a primary homogenization condition of 10,000 rpm for 5 min, followed by high-pressure homogenization at 100 MPa for five cycles. The effects of higher oil weight fractions (15-25% w/w) and storage stability at different temperatures for four weeks were also evaluated. The interfacial tension of all starch GSDs with soybean oil decreased compared with the interfacial tension between soybean oil and water as a control. The largest interfacial tension reduction was observed for the GSD from indica rice. Microstructural analysis indicated that the GSDs stabilized the O/W emulsion by coating oil droplets. Emulsions formulated using a GSD from indica rice were stable during four weeks of storage with a volume mean diameter (d4,3) of ~1 µm, minimal viscosity change, and a negative ζ-potential.


Subject(s)
Emulsions , Soybean Oil , Starch , Water , Emulsions/chemistry , Starch/chemistry , Water/chemistry , Soybean Oil/chemistry , Oryza/chemistry , Gelatin/chemistry , Temperature , Surface Tension , Particle Size
5.
Molecules ; 29(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38731587

ABSTRACT

We aimed to obtain the optimal formula for human milk fat substitute (HMFS) through a combination of software and an evaluation model and further verify its practicability through an animal experiment. The results showed that a total of 33 fatty acid (FA) and 63 triglyceride (TAG) molecular species were detected in vegetable oils. Palmitic acid, oleic acid, linoleic acid, 18:1/16:0/18:1, 18:2/16:0/18:2, 18:1/18:1/18:1 and 18:1/18:2/18:1, were the main molecular species among the FAs and TAGs in the vegetable oils. Based on the HMFS evaluation model, the optimal mixed vegetable oil formula was blended with 21.3% palm oil, 2.8% linseed oil, 2.6% soybean oil, 29.9% rapeseed oil and 43.4% maize oil, with the highest score of 83.146. Moreover, there was no difference in the weight, blood routine indices or calcium and magnesium concentrations in the feces of the mice between the homemade mixed vegetable oil (HMVO) group and the commercial mixed vegetable oil (CMVO) group, while nervonic acid (C24:1) and octanoic acid (C8:0) were absorbed easily in the HMVO group. Therefore, these results demonstrate that the mixing of the different vegetable oils was feasible via a combination of computer software and an evaluation model and provided a new way to produce HMFS.


Subject(s)
Fat Substitutes , Fatty Acids , Milk, Human , Plant Oils , Software , Triglycerides , Humans , Animals , Plant Oils/chemistry , Fatty Acids/chemistry , Milk, Human/chemistry , Mice , Triglycerides/chemistry , Fat Substitutes/chemistry , Palm Oil/chemistry , Soybean Oil/chemistry , Linseed Oil/chemistry , Rapeseed Oil/chemistry , Corn Oil/chemistry , Caprylates/chemistry , Palmitic Acid/chemistry , Oleic Acid/chemistry
6.
Sci Rep ; 14(1): 10947, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38740811

ABSTRACT

The immunomodulatory effects of omega-3 and omega-6 fatty acids are a crucial subject of investigation for sustainable fish aquaculture, as fish oil is increasingly replaced by terrestrial vegetable oils in aquafeeds. Unlike previous research focusing on fish oil replacement with vegetable alternatives, our study explored how the omega-6 to omega-3 polyunsaturated fatty acid (PUFA) ratio in low-fish oil aquafeeds influences Atlantic salmon's antiviral and antibacterial immune responses. Atlantic salmon were fed aquafeeds rich in soy oil (high in omega-6) or linseed oil (high in omega-3) for 12 weeks and then challenged with bacterial (formalin-killed Aeromonas salmonicida) or viral-like (polyriboinosinic polyribocytidylic acid) antigens. The head kidneys of salmon fed high dietary omega-3 levels exhibited a more anti-inflammatory fatty acid profile and a restrained induction of pro-inflammatory and neutrophil-related genes during the immune challenges. The high-omega-3 diet also promoted a higher expression of genes associated with the interferon-mediated signaling pathway, potentially enhancing antiviral immunity. This research highlights the capacity of vegetable oils with different omega-6 to omega-3 PUFA ratios to modulate specific components of fish immune responses, offering insights for future research on the intricate lipid nutrition-immunity interplay and the development of novel sustainable low-fish oil clinical aquaculture feeds.


Subject(s)
Aeromonas salmonicida , Fatty Acids, Omega-3 , Fatty Acids, Omega-6 , Fish Diseases , Salmo salar , Animals , Salmo salar/immunology , Fatty Acids, Omega-6/pharmacology , Fatty Acids, Omega-3/pharmacology , Aeromonas salmonicida/immunology , Fish Diseases/immunology , Fish Diseases/prevention & control , Fish Diseases/virology , Head Kidney/immunology , Animal Feed , Soybean Oil/pharmacology , Fish Oils/pharmacology , Aquaculture/methods
7.
Food Res Int ; 187: 114452, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763687

ABSTRACT

The antioxidant activity of the natural phenolic extracts is limited in particular food systems due to the existence of phenolic compounds in glycoside form. Acid hydrolysis post-treatment could be a tool to convert the glycosidic polyphenols in the extracts to aglycones. Therefore, this research investigated the effects of an acid hydrolysis post-treatment on the composition and antioxidant activity of parsley extracts obtained by an ultrasound-assisted extraction method to delay lipid oxidation in a real food system (i.e., soybean oil-in-water emulsion). Acid hydrolysis conditions were varied to maximize total phenolic content (TPC) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity. When extracts were exposed to 0.6 M HCl for 2 h at 80 ℃, TPC was 716.92 ± 24.43 µmol gallic acid equivalent (GAE)/L, and DPPH radical scavenging activity was 66.89 ± 1.63 %. Not only did acid hydrolysis increase the concentrations of individual polyphenols, but it also resulted in the release of new phenolics such as myricetin and gallic acid. The extract's metal chelating and ferric-reducing activity increased significantly after acid hydrolysis. In soybean oil-in-water emulsion containing a TPC of 400 µmol GAE/L, the acid-hydrolyzed extract had an 11-day lag phase for headspace hexanal compared to the 6-day lag phase of unhydrolyzed extract. The findings indicated that the conversion of glycosidic polyphenols to aglycones in phenolic extracts can help extend the shelf-life of emulsion-based foods.


Subject(s)
Antioxidants , Emulsions , Petroselinum , Phenols , Plant Extracts , Plant Leaves , Soybean Oil , Emulsions/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Soybean Oil/chemistry , Phenols/chemistry , Hydrolysis , Antioxidants/pharmacology , Antioxidants/chemistry , Petroselinum/chemistry , Plant Leaves/chemistry , Oxidation-Reduction , Water/chemistry , Lipid Peroxidation/drug effects , Biphenyl Compounds/chemistry , Picrates/chemistry , Polyphenols/chemistry , Polyphenols/pharmacology
8.
Int J Biol Macromol ; 268(Pt 1): 131692, 2024 May.
Article in English | MEDLINE | ID: mdl-38702247

ABSTRACT

Natural bioactive molecules such as phenolic acids and alkaloids play a crucial role in preserving the quality and safety of food products, particularly oils, by preventing oxidation. Berberis integerrima, a rich source of such antioxidants, has been explored in this study for its potential application in soybean oil preservation. Electrospun nanofibers, composed of polyvinyl alcohol and chitosan, were fabricated and loaded with an alcoholic extract of Berberis integerrima. The antioxidant activity of Berberis integerrima was evaluated, and the phenolic compounds contributing to its efficacy were identified and quantified. The physicochemical properties of the polyvinyl alcohol /chitosan/Berberis integerrima nanofibers, including morphology, crystallinity, functional groups, and thermal stability, were characterized. The results revealed that the polyvinyl alcohol/chitosan/Berberis integerrima nanofibers exhibited high antioxidant capacity and improved the stability of Berberis integerrima, indicating their potential as effective and biodegradable materials for food preservation. This study underscores the potential of harnessing natural antioxidants from Berberis integerrima in nanofibers to enhance the quality and safety of soybean oil.


Subject(s)
Antioxidants , Berberis , Chitosan , Nanofibers , Oxidation-Reduction , Soybean Oil , Chitosan/chemistry , Nanofibers/chemistry , Soybean Oil/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Berberis/chemistry , Polyvinyl Alcohol/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology
9.
PLoS One ; 19(5): e0292005, 2024.
Article in English | MEDLINE | ID: mdl-38723022

ABSTRACT

India is the world's largest edible oil importer, and soybean oil accounts for a major portion of those imports, with implications for the Indian economy. Despite being the 4th largest globally in terms of harvested soybean area and 5th largest in terms of production, India is still heavily dependent on imports to meet the vegetable oil requirement for its population. It is therefore imperative to understand the dynamics and trends in India's soybean production to help the country achieve self-sufficiency in edible oils. This study provides the first spatially explicit analysis of soybean in India, using long-term spatial and temporal statistics at national and subnational levels, using spatial and temporal statistical analysis models to examine the historical trends and its future prospects. Our analysis details the overall soybean expansion across the country and the increase in production but we also note that the annual growth rate has declined in each consecutive decade even though the area continues to expand. The average national yield has been stagnant at around 1 T/Ha but for some of the low-producing districts, a higher yield of more than 3 T/ha is reported. For most major producing districts, soybean yields are below 1.5 T/Ha. The state of Madhya Pradesh which was the major soybean producer is now matched by the state of Maharashtra in terms of production, however, Madhya Pradesh still has the largest area under soybean. We analyzed soybean hotspot expansion in India and found that the mean center of the soybean area and production has shifted approximately 93 km towards the south and 24 km to the west as the crop is rapidly being adopted in the southern and western parts of India expanding the hotspot in these parts. District-level analysis showed that the total number of districts constituting hotspots of soybean cultivation in India has increased from 29 to 42 in three decades. Furthermore, analysis of soybean oil and meal consumption with respect to the national population, import, export, domestic production, GDP per capita, and price of soybean oil and meal suggests that soybean oil and meal are highly correlated with GDP per capita and population, indicating that consumption of soybean oil and meal is likely to increase as GDP per capita increases, and future demand is expected to rise with the anticipated growth in the Indian population. Increased soybean production can play a significant role in increasing national food security for India and reducing dependence on foreign oil imports and also help the economy with soy meal exports. Understanding the spatiotemporal variability in area and yield will help target interventions to increase production. Given the overall low yields with high variability in production, particularly in recent years primarily due to successive extreme rains and droughts in major producing districts and the overall need to increase production to meet the country's demand, there is a pressing need for government policies and research aimed at narrowing the yield gap and developing soybean varieties that are more productive and resilient to climate change.


Subject(s)
Food Security , Glycine max , Spatio-Temporal Analysis , Glycine max/growth & development , India , Humans , Soybean Oil
10.
Food Res Int ; 186: 114340, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729695

ABSTRACT

Fruits are essential sources of nutrients in our daily diet; however, their spoilage is often intensified by mechanical damage and the ethylene phytohormone, resulting in significant economic losses and exacerbating hunger issues. To address these challenges, this study presented a straightforward in situ synthesis protocol for producing Z/SOPPU foam, a 3D porous-structured fruit packaging. This innovative packaging material offered advanced ethylene-adsorbing and cushioning capabilities achieved through stirring, heating, and standing treatments. The results demonstrated that the Z/SOPPU foam, with its porous structure, served as an excellent packaging material for fruits, maintaining the intact appearance of tomatoes even after being thrown 72 times from a height of 1.5 m. Additionally, it exhibited desirable hydrophobicity (contact angle of 114.31 ± 0.82°), degradability (2.73 ± 0.88 % per 4 weeks), and efficient ethylene adsorption (adsorption rate of 13.2 ± 1.7 mg/m3/h). These remarkable characteristics could be attributed to the unique 3D micron-porous configuration, consisting of soybean oil polyol polyurethane foam for mechanical strain cushioning and zein for enhanced ethylene adsorption efficiency. Overall, this research offers an effective and original approach to the rational design and fabrication of advanced bio-based fruit packaging.


Subject(s)
Ethylenes , Food Packaging , Fruit , Polyurethanes , Soybean Oil , Zein , Ethylenes/chemistry , Polyurethanes/chemistry , Food Packaging/methods , Porosity , Fruit/chemistry , Soybean Oil/chemistry , Zein/chemistry , Adsorption , Polymers/chemistry , Solanum lycopersicum/chemistry , Hydrophobic and Hydrophilic Interactions
11.
Int J Biol Macromol ; 269(Pt 2): 132085, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723836

ABSTRACT

Non-biodegradable polyolefin based plastic mulch residues in agricultural fields after the end of a crop cycle have raised several concerns as an environmental pollutant in recent years. This study explores the potential of Poly (lactic acid) (PLA) and Poly (butylene adipate-co-terephthalate) (PBAT) based compostable films reactively blended with compatibilizers and chain extenders as a promising solution to environmental challenges associated with traditional plastic mulch films. Epoxidized soybean oil (ESO) and Epoxy-functionalized styrene acrylic copolymer (ESA) have been used as reactive compatibilizers and chain extenders respectively. In-depth analysis of the mechanical, thermal, and barrier properties of the developed films, revealed that the PLA/PBAT blend films at 75:25 weight ratio in the presence of 5 phr ESO and 0.5 phr ESA exhibit improved performance characteristics for application as mulch films. Furthermore, the films were subjected to 360-h UV exposure to gauge their stability under prolonged exposure, specifically investigating changes in the carbonyl index. Additionally, a rigorous real-time field trial of the mulch films spanning eight months with various crops was carried out to understand their performance in practical agricultural settings. The study also involved the identification of microorganisms responsible for the degradation of the developed mulch films employing 16S rRNA sequencing.


Subject(s)
Agriculture , Biodegradation, Environmental , Polyesters , Soil Microbiology , Polyesters/chemistry , Agriculture/methods , Microbiota , Soil/chemistry , Soybean Oil
12.
Pediatr Surg Int ; 40(1): 97, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38581576

ABSTRACT

PURPOSE: The effect of different types of lipid emulsion may guide therapy of patients with intestinal failure (IF) to limit morbidity such as intestinal failure-associated liver disease (IFALD). METHODS: A retrospective chart review of pediatric patients with IF who received soybean oil lipid emulsion (SL) or mixed oil lipid emulsion (ML) was performed. Data over 1 year were collected. RESULTS: Forty-five patients received SL and 34 received ML. There were no differences in the incidence (82 versus 74%, P = 0.35) or resolution (86 versus 92%, P = 0.5) of IFALD between the cohorts. The median dose of ML was higher compared to SL (2 versus 1 g/kg/day, P < 0.001). If resolved, IFALD resolved rapidly in the ML cohort compared to the SL cohort (67 versus 37 days, P = 0.01). Weight gain was higher in the ML compared to the SL cohort at resolution of IFALD or 1 year from diagnosis of IF (P = 0.009). CONCLUSION: The administration of ML did not alter the incidence or resolution of IFALD compared to SL in pediatric IF. There was rapid resolution of IFALD and enhanced weight gain in the ML cohort compared to SL in pediatric IF.


Subject(s)
Intestinal Diseases , Intestinal Failure , Liver Diseases , Liver Failure , Humans , Child , Fat Emulsions, Intravenous/therapeutic use , Parenteral Nutrition , Retrospective Studies , Intestinal Diseases/drug therapy , Liver Diseases/complications , Liver Failure/complications , Soybean Oil/therapeutic use , Weight Gain , Fish Oils
13.
Physiol Behav ; 280: 114548, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38615729

ABSTRACT

Corn and soybean oils are among the most frequently used vehicles for water-insoluble compounds in toxicological studies. These two vegetable oils are nutrients and may induce some biological effects on animals that might interfere with the experimental results. However, their chronic effects on a developing brain have not been reported. This study aims to evaluate the neurobehavioral and brain biochemical effects of both oils on male and female Swiss albino mice. Pregnant female mice were exposed to 1 µl/g/d of either tap water, corn oil (CO), or soybean oil (SO) from early gestation (GD1) until weaning then offspring mice were exposed to the same treatment regimen until adulthood (PND70). Our results showed that developmental exposure to both oils induced body weight changes in offspring mice. In addition, we detected some behavioral abnormalities where both oil-treated groups showed a significant decrease in locomotor activity and greater levels of anxiety behavior. Moreover, our results suggest that continuous exposure to these oils may alter motor coordination, spatial memory and induce depression-like behavior in adult mice. These alterations were accompanied by increased malondialdehyde, superoxide dismutase, and glutathione peroxidase activities in specific brain regions. Together, these data suggest that exposure to CO and SO as vehicles in developmental studies may interfere with the behavioral response and brain redox homeostasis in offspring mice.


Subject(s)
Brain , Corn Oil , Oxidative Stress , Prenatal Exposure Delayed Effects , Soybean Oil , Animals , Female , Corn Oil/administration & dosage , Oxidative Stress/drug effects , Mice , Pregnancy , Male , Prenatal Exposure Delayed Effects/chemically induced , Brain/drug effects , Brain/metabolism , Brain/growth & development , Glutathione Peroxidase/metabolism , Body Weight/drug effects , Malondialdehyde/metabolism , Superoxide Dismutase/metabolism , Motor Activity/drug effects , Behavior, Animal/drug effects , Anxiety/chemically induced , Maze Learning/drug effects , Pharmaceutical Vehicles
14.
Int J Biol Macromol ; 267(Pt 1): 131483, 2024 May.
Article in English | MEDLINE | ID: mdl-38599426

ABSTRACT

Probiotics are susceptible to diverse conditions during processing, storage, and digestion. Here, shellac (SC), sodium alginate (SA), coconut oil (CO), soybean oil (SO), and trehalose (AL) were used to prepare microcapsules aiming to improve the survival of Lactiplantibacillus plantarum KLDS1.0318 during freeze-drying, storage process, and gastrointestinal digestion. The results showed that for SA/AL/SC/CO and SA/AL/SC/SO, the survival loss decreased by 51.2 % and 51.0 % after a freeze-drying process compared with microcapsules embedded by SA; the viable bacteria count loss decreased by 4.36 and 4.24 log CFU/mL compared with free cell (CON) during storage for 28 d under 33%RH at 25 °C, respectively; while for simulating digestion in vitro, the survival loss decreased by 3.05 and 2.70 log CFU/mL, 0.63 and 0.55 log CFU/mL after digestion at simulated gastric fluid for 120 min and small intestine fluid for 180 min, respectively (P < 0.05). After microcapsules were added to fermented dairy stored at 4 °C for 21 d, the viable bacteria count of SA/AL/SC/CO and SA/AL/SC/SO significantly increased by 2.10 and 1.70 log CFU/mL compared with CON, respectively (P < 0.05). In conclusion, the current study indicated that shellac-based probiotic microcapsules have superior potential to protect and deliver probiotics in food systems.


Subject(s)
Alginates , Capsules , Digestion , Freeze Drying , Microbial Viability , Probiotics , Alginates/chemistry , Microbial Viability/drug effects , Gastrointestinal Tract/microbiology , Trehalose/chemistry , Soybean Oil/chemistry , Coconut Oil/chemistry
15.
Environ Sci Pollut Res Int ; 31(20): 29264-29279, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38573576

ABSTRACT

Guided by efficient utilization of natural plant oil and sulfur as low-cost sorbents, it is desired to tailor the porosity and composition of polysulfides to achieve their optimal applications in the management of aquatic heavy metal pollution. In this study, polysulfides derived from soybean oil and sulfur (PSSs) with improved porosity (10.2-22.9 m2/g) and surface oxygen content (3.1-7.0 wt.%) were prepared with respect to reaction time of 60 min, reaction temperature of 170 °C, and mass ratios of sulfur/soybean oil/NaCl/sodium citrate of 1:1:3:2. The sorption behaviors of PSSs under various hydrochemical conditions such as contact time, pH, ionic strength, coexisting cations and anions, temperature were systematically investigated. PSSs presented a fast sorption kinetic (5.0 h) and obviously improved maximum sorption capacities for Pb(II) (180.5 mg/g), Cu(II) (49.4 mg/g), and Cr(III) (37.0 mg/g) at pH 5.0 and T 298 K, in comparison with polymers made without NaCl/sodium citrate. This study provided a valuable reference for the facile preparation of functional polysulfides as well as a meaningful option for the removal of aquatic heavy metals.


Subject(s)
Copper , Lead , Metals, Heavy , Soybean Oil , Sulfides , Water Pollutants, Chemical , Adsorption , Lead/chemistry , Soybean Oil/chemistry , Copper/chemistry , Sulfides/chemistry , Porosity , Water Pollutants, Chemical/chemistry , Metals, Heavy/chemistry , Chromium/chemistry , Kinetics , Hydrogen-Ion Concentration
16.
Food Microbiol ; 120: 104449, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38431336

ABSTRACT

This research investigated the presence of Burkholderia gladioli pathovar cocovenenans (BGC) in wet rice and starch products, Tremella, and Auricularia auricula in Guangzhou, China. It examined BGC growth and bongkrekic acid (BA) production in wet rice noodles and vermicelli with varying rice flour, edible starch ratios, and oil concentrations. A qualitative analysis of 482 samples revealed a detection rate of 0.62%, with three positive for BGC. Rice flour-based wet rice noodles had BA concentrations of 13.67 ± 0.64 mg/kg, 2.92 times higher than 100% corn starch samples (4.68 ± 0.54 mg/kg). Wet rice noodles with 4% soybean oil had a BA concentration of 31.72 ± 9.41 mg/kg, 5.74 times higher than those without soybean oil (5.53 ± 1.23 mg/kg). The BA concentration correlated positively (r = 0.707, P < 0.05) with BGC contamination levels. Low temperatures (4 °C and -18 °C) inhibited BGC growth and BA production, while higher storage temperatures (26 °C and 32 °C) promoted BGC proliferation and increased BA production. Reducing edible oil use and increasing edible starch can mitigate the risk of BGC-related food poisoning in wet rice noodles and vermicelli production. Further research is needed to find alternative oils that do not enhance BA production. Strengthening prevention and control measures is crucial across the entire production chain to address BGC contamination and BA production.


Subject(s)
Burkholderia gladioli , Oryza , Bongkrekic Acid/analysis , Soybean Oil/analysis , Starch , Food Contamination/analysis , Flour/analysis
17.
Drug Des Devel Ther ; 18: 719-729, 2024.
Article in English | MEDLINE | ID: mdl-38476205

ABSTRACT

Background: Capsaicin is the main compound found in chili pepper and has complex pharmacologic effects. This study aimed to elucidate the mechanism of the effect of capsaicin on physiological processes by analyzing changes in metabolites and metabolic pathways. Methods: Female C57BL/6 mice were divided into two groups(n = 10/group) and fed with capsaicin-soybean oil solution(group T) or soybean oil(group C) for 6 weeks. Ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UHPLC-qTOF-MS) based metabolomics was undertaken to assess plasma and skin metabolic profile changes and identify differential metabolites through multivariate analysis. Results: According to the OPLS-DA score plots, the plasma and skin metabolic profiles in the group T and group C were significantly separated. In plasma, 38 significant differential metabolites were identified. KEGG pathway enrichment analysis revealed that the most significant plasma metabolic pathways included pyruvate metabolism and ABC transporters. In skin, seven significant differential metabolites were found. Four metabolic pathways with p values < 0.05 were detected, including sphingolipid metabolism, sphingolipid signaling pathway, apoptosis, and necroptosis. Conclusion: These findings will provide metabolomic insights to assess the physiological functions of capsaicin and contribute to a better understanding of the potential effects of a capsaicin-rich diet on health.


Subject(s)
Capsaicin , Soybean Oil , Mice , Animals , Female , Chromatography, High Pressure Liquid/methods , Mice, Inbred C57BL , Metabolomics/methods , Metabolome , Sphingolipids , Biomarkers/metabolism
18.
Biomolecules ; 14(3)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38540690

ABSTRACT

This study explores the impact of rotational frying of three different food products on degradation of sterols, as well as their migration between frying oils and food. The research addresses a gap in the existing literature, which primarily focuses on changes in fat during the frying of single food items, providing limited information on the interaction of sterols from the frying medium with those from the food product. The frying was conducted at 185 ± 5 °C for up to 10 days where French fries, battered chicken, and fish sticks were fried in succession. The sterol content was determined by Gas Chromatography. This research is the first to highlight the influence of the type of oil on sterol degradation in both oils and food. Notably, sterols were found to be most stable when food products were fried in high-oleic low-linolenic rapeseed oil (HOLLRO). High-oleic soybean oil (HOSO) exhibited higher sterol degradation than high-oleic rapeseed oil (HORO). It was proven that cholesterol from fried chicken and fish sticks did not transfer to the fried oils or French fries. Despite initially having the highest sterol content in fish, the lowest sterol amount was recorded in fried fish, suggesting rapid degradation, possibly due to prefrying in oil with a high sterol content, regardless of the medium used.


Subject(s)
Brassica napus , Phytosterols , Animals , Soybean Oil , Rapeseed Oil , Sterols , Cooking/methods , Oils
19.
Carbohydr Polym ; 334: 122027, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38553226

ABSTRACT

To investigate the effect of oil additives on improving the water resistance of corn starch straws, corn oil (CO), soybean oil (SO), rapeseed oil (RO), peanut oil (PO), lard (LD) and coconut oil (CCO) were chosen and compared the structure and properties of starch straws with different oil additives. Corn starch straws (CS), and starch straws supplemented with CO, SO, RO, PO, LD and CCO were prepared by thermoplastic extrusion. The results showed that the incorporation of oils effectively enhanced the water resistance of starch straws such as water absorption, water solubility and water swelling performance. Meanwhile, the flexural strength of starch straws significantly increased. There was no significant linear relationship among starch chain length, oil unsaturation and straw performance. Among seven starch straws, S-SO had the strongest hydrogen bond interaction (3289 cm-1) and relaxation time (0.96 ms). The S-CO had the highest relative crystallinity (16.82 %) and degree of double helix (1.535), hence resulting in the lowest water absorption and solubility values, the highest flexural strength (23.43 MPa), the highest ΔT value (9.93 °C) and ΔH value (4.79 J/g). S-RO had the highest thermal transition temperatures.


Subject(s)
Starch , Zea mays , Starch/chemistry , Zea mays/chemistry , Water/chemistry , Soybean Oil , Chemical Phenomena , Rapeseed Oil , Corn Oil
20.
Sci Rep ; 14(1): 5439, 2024 03 05.
Article in English | MEDLINE | ID: mdl-38443469

ABSTRACT

The objective of this study was to determine whether adding phytoncide oil (PO) and soybean oil (SBO) to the dairy cow diet could increase milk conjugated linoleic acid (CLA) and depress methane (CH4) emissions in Holstein dairy cows. Rumen fermentation was conducted at four levels of SBO (0, 1, 2, and 4%, on DM basis) and two levels of PO (0 and 0.1%, on DM basis) with in vitro experiment. To evaluate blood parameters, fecal microbe population, milk yield and fatty acid compositions, and CH4 production, in vivo experiment was conducted using 38 Holstein dairy cows divided into two groups of control (fed TMR) and treatment (fed TMR with 0.1% PO and 2% SBO as DM basis). In the in vitro study (Experiment 1), PO or SBO did not affect rumen pH. However, SBO tended to decrease ruminal ammonia-N (p = 0.099). Additionally, PO or SBO significantly decreased total gas production (p = 0.041 and p = 0.034, respectively). Both PO and SBO significantly decreased CH4 production (p < 0.05). In addition, PO significantly increased both CLA isomers (c9, t11 and t10, c12 CLA) (p < 0.001). Collectively, 0.1% PO and 2% SBO were selected resulting in most effectively improved CLA and decreased CH4 production. In the in vivo study (Experiment 2), 0.1% PO with 2% SBO (PSO) did not affect complete blood count. However, it decreased blood urea nitrogen and magnesium levels in blood (p = 0.021 and p = 0.01, respectively). PSO treatment decreased pathogenic microbes (p < 0.05). It increased milk yield (p = 0.017) but decreased percentage of milk fat (p = 0.013) and MUN level (p < 0.01). In addition, PSO treatment increased both the concentration of CLA and PUFA in milk fat (p < 0.01). Finally, it decreased CH4 emissions from dairy cows. These results provide compelling evidence that a diet supplemented with PSO can simultaneously increase CLA concentration and decrease CH4 production with no influence on the amount of milk fat (kg/day) in Holstein dairy cows.


Subject(s)
Linoleic Acids, Conjugated , Milk , Monoterpenes , Animals , Female , Cattle , Linoleic Acids, Conjugated/pharmacology , Soybean Oil , Dietary Supplements , Methane
SELECTION OF CITATIONS
SEARCH DETAIL
...